1. Let R be the region of integration pictured below right. Evaluate $\iint_{R} 6 y d A$. (4 points)

$$
\iint_{R} 6 y d A=
$$

2. Set up, but DO NOT EVALUATE, a triple integral that computes the volume of the tetrahedron shown at right. (5 points)

3. Set up, but DO NOT EVALUATE, a triple integral that computes the volume of the region that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the cone $z=\sqrt{x^{2}+y^{2}}$. (5 points)
4. Consider the triple integral $\int_{0}^{1 / 2} \int_{y}^{1-y} \int_{0}^{1-x^{2}-y^{2}} f(x, y, z) d z d x d y$. Mark the corresponding region of integration below. (3 points)

5. Find a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the unit circle to the ellipse given by $(x-3)^{2}+\frac{y^{2}}{4}=1$ as shown. (3 points)

$$
T(u, v)=(
$$

6. Let R be the region in the $x y$-plane depicted below right. Let $T(u, v)=(2 u+v, u-v)$.
(a) Find a rectangle S in the $u v$-plane whose image under T (that is, the collection of points $T(u, v)$ for all choices of (u, v) in S) is exactly R. (3 points)

ANSWER: $\quad S=\{(u, v) \mid \square u \leq \square, \quad \square \leq \square\}$
(b) Set up, but DO NOT EVALUATE, the integral $\iint_{R} \cos (x) d A \quad$ as an integral in the (u, v) coordinates. If you can't do part (a), leave the limits of integration blank. (5 points)

$$
\iint_{R} \cos (x) d A=
$$

7. Let $\mathbf{F}(x, y)=\left\langle x^{2}, x^{2} \cos (y)\right\rangle$. Then $\iint_{R}\left[\frac{\partial}{\partial x}\left(x^{2} \cos (y)\right)-\frac{\partial}{\partial y}\left(x^{2}\right)\right] d A=0$ where R is the region shown below. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the pictured curve that goes from $(-3,0)$ to $(3,0)$ via $(0,2) . \quad(3$ points)

8. Consider the region D in the plane bounded by the curve C as shown at right. For each part, circle the best answer. (1 point each)
(a) For $\mathbf{F}(x, y)=\left\langle x+1, y^{2}\right\rangle$, the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is
```
negative zero positive
```

(b) The integral $\int_{C}(-y d x+2 d y)$ is

negative	zero	positive

(c) The integral $\iint_{D}(y-x) d A$ is
negative zero positive
9. For each surface S below, give a parameterization $\mathbf{r}: D \rightarrow S$. Be sure to explicitly specify the domain D and call your parameters u and v.
(a) The rectangle in \mathbb{R}^{3} with vertices $(1,0,0),(0,1,0),(1,0,2),(0,1,2)$.
(3 points)

$$
D=\{\quad \leq u \leq \quad \text { and } \quad \leq v \leq \quad\}
$$

$$
\mathbf{r}(u, v)=\langle\quad, \quad, \quad\rangle
$$

(b) The portion of cone $y=\sqrt{x^{2}+z^{2}}$ for $0 \leq y \leq 1$ which is shown at right.

$$
D=\{\quad \leq u \leq \quad \text { and } \quad \leq v \leq \quad\}
$$

\square

$$
\mathbf{r}(u, v)=\langle
$$

10. Consider the surface S parameterized by $\mathbf{r}(u, v)=\left(v^{2}, u, v\right)$ for $0 \leq u \leq 1$ and $0 \leq v \leq 1$.
(a) Mark the correct picture of S below. (2 points)

(b) Evaluate the integral $\iint_{S} z d A$. (6 points)

$$
\iint_{S} z d A=
$$

11. Consider the solid described as follows using cylindrical coordinates: E is the region inside the paraboloid $z=1-r^{2}$ and where $0 \leq \theta \leq \pi$ and $z \geq 0$. Choose one double integral and one triple integral below that compute the volume of E. (1 point each)

$$
\begin{aligned}
& \square \int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} 1 d z d x d y \\
& \square \int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \int_{0}^{\sqrt{1-z-x^{2}}} 1 d y d x d z \\
& \square \int_{0}^{1} \int_{0}^{\sqrt{1-z}} 2 \sqrt{1-z-y^{2}} d y d z \\
& \square \int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{0}^{1-\sqrt{x^{2}+y^{2}}} 1 d z d x d y \\
& \square
\end{aligned}
$$

