
Math 241 - Calculus III
Spring 2012, section CL1
§ 16.9. Gauss’s law

In these notes, we discuss Gauss’s law and why it is interesting not only for physics, but also
from a mathematical viewpoint.

1 Statement

The statement of Gauss’s law is as follows. The (net) charge enclosed by a closed surface S is

Q = ε0

∫∫
S

~E · ~n dS

where ~E is the electric field and ε0 is a constant, called the permittivity of free space.

More details can be found in the textbook, § 16.7 after Example 5 and § 16.9 after Example 2.

2 Sketch of proof

Gauss’s law follows from Coulomb’s law and the divergence theorem.

By Coulomb’s law, an electric charge Q at the origin produces the electric field

~E(~r) =
Q

4πε0

~r

|~r|3

where ~r = (x, y, z) is the position vector. Such a vector field is sometimes called an inverse
square field, because its magnitude

| ~E(~r)| = Q

4πε0

|~r|
|~r|3

=
Q

4πε0

1

|~r|2

is proportional to the inverse of the square of the distance to the origin (or some other base-

point). In symbols: | ~E(~r)| ∝ 1
|~r|2 .

Step 1: Sphere around the origin

Let S be the sphere of radius R centered at the origin, defined by the equation x2+y2+z2 = R2.
Orient S outward, so that the normal vector ~n points away from the origin. The flux of ~E across
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S is ∫∫
S

~E · ~n dS =

∫∫
S

| ~E|dS because ~E is parallel to ~n

=

∫∫
S

Q

4πε0

1

|~r|2
dS

=
Q

4πε0

∫∫
S

1

R2
dS

=
Q

4πε0

1

R2

∫∫
S

dS

=
Q

4πε0

1

R2
Area(S)

=
Q

4πε0

1

R2
(4πR2)

=
Q

ε0
.

Step 2: Weird surface around the origin

Now let S ′ be some arbitrary closed surface enclosing the origin. Orient S ′ outward. What is
the flux of ~E across S ′? We can find the answer using the divergence theorem.

Writing ρ = |~r| =
√
x2 + y2 + z2 consider the vector field ~F = 1

ρ3
~r = 1

ρ3
(x, y, z), which is just

~E scaled by a constant. Noting ∂ρ
∂x

= x
ρ
, the divergence is

div ~F =
∂

∂x
(xρ−3) +

∂

∂y
(yρ−3) +

∂

∂z
(zρ−3) (1)

= (1)ρ−3 + x(−3ρ−4)(
x

ρ
) + (1)ρ−3 + y(−3ρ−4)(

y

ρ
) + (1)ρ−3 + z(−3ρ−4)(

z

ρ
)

= 3ρ−3 − 3ρ−5(x2 + y2 + z2)

= 3ρ−3 − 3ρ−5(ρ2)

= 3ρ−3 − 3ρ−3

= 0.

Therefore we have

div ~E = div

(
Q

4πε0
~F

)
=

Q

4πε0
div ~F

= 0

or in words, ~E is incompressible.
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By the divergence theorem, the flux across S ′ is∫∫
S′

~E · ~n dS =

∫∫
S

~E · ~n dS

=
Q

ε0

where S is a sphere around the origin (of any radius).

Let us describe the argument in more detail. Pick a giant sphere S which encompasses all of S ′,
and orient S outward. Let D be the solid region between S and S ′, and orient the boundary of
D so that the normal vector points out of D, yielding ∂D = S − S ′. Applying the divergence
theorem to the region D, we obtain∫∫

∂D

~E · ~n dS =

∫∫∫
D

div ~EdV

=

∫∫∫
D

0 dV

= 0

which can be interpreted as

0 =

∫∫
∂D

~E · ~n dS

=

∫∫
S−S′

~E · ~n dS

=

∫∫
S

~E · ~n dS −
∫∫

S′

~E · ~n dS.

In other words, the flux across S is the same as the flux across S ′, as claimed above.

Note that the divergence theorem does not apply to the region enclosed by S, i.e. the punctured
solid ball defined by 0 < x2 + y2 + z2 ≤ R2, because that region is not closed. The singularity
at the origin prevents us from using the divergence theorem.

Step 3: Weird surface not around the origin

Now what if S ′′ is a closed surface that does not enclose the origin? Then S ′′ is the boundary
of a solid region D′′ which does not contain the origin, and the divergence theorem applies:∫∫

S′′

~E · ~n dS =

∫∫
∂D′′

~E · ~n dS

=

∫∫∫
D′′

div ~EdV

=

∫∫∫
D′′

0 dV

= 0.
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In short, we have shown that if S is a closed surface (with outward orientation), then the flux

of the electric field ~E across S is∫∫
S

~E · ~n dS =

{
Q
ε0

if S encloses the origin

0 if S does not enclose the origin.

We can rewrite this as

ε0

∫∫
S

~E · ~n dS =

{
Q if S encloses the origin

0 if S does not enclose the origin

which is equal to the (net) charge enclosed by S. This proves Gauss’s law in the case of a single
(pointlike) charge.

Step 4: Many electric charges

For a finite system of charges Qi at positions ~ri, consider the electric field ~Ei(~r) = Qi

4πε0

~r−~ri
|~r−~ri|3

produced by each charge. The total electric field ~E is their superposition:

~E = ~E1 + ~E2 + . . .+ ~EN .

For any closed surface S (oriented outward), ε0 times the flux of the electric field ~E across S is

ε0

∫∫
S

~E · ~n dS = ε0

∫∫
S

(
N∑
i=1

~Ei

)
· ~n dS

=
N∑
i=1

ε0

∫∫
S

~Ei · ~n dS

=
∑

i such that S encloses
the position ~ri

Qi

= net charge enclosed by S.

This proves Gauss’s law in the case of finitely many (pointlike) charges.

A similar argument proves Gauss’s law in the case of a continuous distribution of electric
charges, described by a charge density function.

3 Again, which vector fields are curls?

In section § 16.8, we asked the question: How do we know if a vector field ~F is the curl of some
vector field ~G? We found a necessary condition: a curl is always incompressible, i.e.

div(curl ~G) ≡ 0.

Then we wondered if that condition is sufficient: Given div ~F = 0, can we conclude that ~F is
the curl of some vector field? We provided the answer – NO! – without justification. Now we
can justify that negative answer.
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Consider the inverse square vector field ~F = 1
ρ3
~r = 1

ρ3
(x, y, z). It is incompressible, i.e.

div ~F = 0

as computed in (1). However, ~F is not the curl of a vector field. Indeed, we have found a closed

surface S (say, a sphere centered at the origin) such that the flux of ~F across S is non-zero:∫∫
S

~F · ~n dS = 4π 6= 0.

Therefore ~F is not a curl.

Here we used Stokes’ theorem, which implies that the flux of curl ~G across any closed surface
must be zero: ∫∫

S

curl ~G · ~n dS =

∫
∂S

~G · d~r

=

∫
∅

~G · d~r

= 0. (2)

Remark 3.1. With a bit of topology, one can show that property (2) characterizes curls: A
vector field is a curl if and only if its flux across any closed surface is zero.

Recall that there is a partial converse. The condition of being incompressible is sometimes
sufficient for being a curl.

Proposition 3.2. Let ~F be a continuously differentiable vector field on all of R3. If ~F satisfies
div ~F ≡ 0, then ~F is the curl of some vector field. In words: a vector field on all of R3 is a curl
if and only if it is incompressible.

Proof. The key point is that in R3, a closed surface S always bounds a solid region D.

Let ~F be a vector field satisfying div ~F ≡ 0 and let S be any closed surface. Let D be the solid
region bounded by S. Then the flux of ~F across S (oriented outward) is∫∫

S

~F · ~n dS =

∫∫
∂D

~F · ~n dS

=

∫∫∫
D

div ~F dV

=

∫∫∫
D

0 dV

= 0.

By 3.1, ~F is the curl of some vector field.
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