
Math 241 - Calculus III

Spring 2012, section CL1

§ 16.5. Conservative vector fields in R
3

In these notes, we discuss conservative vector fields in 3 dimensions, and highlight the similar-
ities and differences with the 2-dimensional case. Compare with the notes on § 16.3.

1 Conservative vector fields

Let us recall the basics on conservative vector fields.

Definition 1.1. Let ~F : D → Rn be a vector field with domain D ⊆ R
n. The vector field

~F is said to be conservative if it is the gradient of a function. In other words, there is a
differentiable function f : D → R satisfying ~F = ∇f . Such a function f is called a potential

function for ~F .

Example 1.2. ~F (x, y, z) = (y2z3, 2xyz3, 3xy2z2) is conservative, since it is ~F = ∇f for the
function f(x, y, z) = xy2z3.

Example 1.3. ~F (x, y, z) = (3x2z, z2, x3+2yz) is conservative, since it is ~F = ∇f for the function
f(x, y, z) = x3z + yz2.

The fundamental theorem of line integrals makes integrating conservative vector fields along
curves very easy. The following proposition explains in more detail what is nice about conser-
vative vector fields.

Proposition 1.4. The following properties of a vector field ~F are equivalent.

1. ~F is conservative.

2.
∫

C
~F · d~r is path-independent, meaning that it only depends on the endpoints of the curve

C.

3.
∮

C
~F · d~r = 0 around any closed curve C.

Example 1.5. Find the line integral
∫

C
~F · d~r of the vector field ~F (x, y, z) = (3x2z, z2, x3+2yz)

along the curve C parametrized by

~r(t) =

(

ln t

ln 2
, t

3

2 , t cos(πt)

)

, 1 ≤ t ≤ 4.

Solution. We know that ~F is conservative, with potential function f(x, y) = x3z + yz2. The
endpoints of C are

~r(1) = (0, 1,−1)

~r(4) = (
ln 4

ln 2
, 8, 0) = (2, 8, 0).

1



The fundamental theorem of line integrals yields
∫

C

~F · d~r =

∫

C

∇f · d~r

= f(~r(4))− f(~r(1))

= f(2, 8, 0)− f(0, 1,−1)

= 0− 1

= −1 .

2 Necessary conditions

To know if a vector field ~F is conservative, the first thing to check is the following criterion.

Proposition 2.1. Let D ⊆ R
3 be an open subset and let ~F : D → R3 be a continuously

differentiable vector field with domain D. If ~F is conservative, then it satisfies curl ~F = ~0.

Explicitly, ~F = (F1, F2, F3) satisfies the three conditions

∂1F2 = ∂2F1

∂1F3 = ∂3F1

∂2F3 = ∂3F2

everywhere on D.

Proof. Assume there is a differentiable function f : D → R satisfying ~F = ∇f on D. Because
f is twice continuously differentiable (meaning it has all second partial derivatives and they are
all continuous), Clairaut’s theorem applies, meaning the mixed partial derivatives agree. Since
the first partial derivatives of f are (fx, fy, fz) = (∂1f, ∂2f, ∂3f) = (F1, F2, F3), we obtain

∂1∂2f = ∂2∂1f

∂1F2 = ∂2F1

∂1∂3f = ∂3∂1f

∂1F3 = ∂3F1

∂2∂3f = ∂3∂2f

∂2F3 = ∂3F2.

These conditions are equivalent to curl ~F = ~0, because of the formula:

curl ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k

∂1 ∂2 ∂3
F1 F2 F3

∣

∣

∣

∣

∣

∣

=~i(∂2F3 − ∂3F2)−~j(∂1F3 − ∂3F1) + ~k(∂1F2 − ∂2F1)

= (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1).
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Example 2.2. The vector field ~F = (x, y, 5x) is not conservative, because its curl

curl ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k

∂x ∂y ∂z
x y 5x

∣

∣

∣

∣

∣

∣

=~i(0− 0)−~j(5− 0) + ~k(0− 0)

= (0,−5, 0)

is not the zero vector field. In terms of partial derivatives, this is saying ∂z(x) 6= ∂x(5x).

Remark 2.3. Most vector fields are not conservative. If we pick functions F1, F2, F3 “at
random”, then in general they will not satisfy the conditions ∂1F2 = ∂2F1, ∂1F3 = ∂3F1,
∂2F3 = ∂3F2.

Definition 2.4. A vector field ~F is called irrotational if it satisfies curl ~F = ~0.

The terminology comes from the physical interpretation of the curl. If ~F is the velocity field of
a fluid, then curl ~F measures in some sense the tendency of the fluid to rotate.

With that terminology, proposition 2.1 says that a conservative vector field is always irrota-
tional.

Remark 2.5. That statement also holds in 2 dimensions: A conservative vector field is always ir-
rotational. A vector field ~F = (F1, F2) is called irrotational if its “scalar curl” or “2-dimensional
curl” ∂1F2 − ∂2F1 is zero.

Question 2.6. If a vector field is irrotational, is it automatically conservative?

Answer: NO.

Example 2.7. Recall the 2-dimensional vector field 1

x2+y2
(−y, x) with domain the punctured

plane
R

2 \ {(0, 0)} = {(x, y) ∈ R
2 | (x, y) 6= (0, 0)}.

In § 16.3, we saw that this vector field is irrotational but not conservative.

We can reuse that example in 3 dimensions by making the third component zero. Consider the
vector field ~F = 1

x2+y2
(−y, x, 0) with domain

D = R
3 \ {z-axis} = {(x, y, z) ∈ R

3 | (x, y) 6= (0, 0)}.

Then ~F is irrotational, i.e. it satisfies curl ~F = ~0. However, ~F is not conservative, because the
line integral of ~F along a loop around the z-axis is 2π and not zero.

3 Sufficient conditions

Depending on the shape of the domain D, the condition Py = Qx is sometimes enough to
guarantee that the field is conservative.

Proposition 3.1. Let ~F : R3 → R
3 is a continuously differentiable vector field (whose domain

is all of R3). If ~F satisfies curl ~F = ~0, then ~F is conservative.

Example 3.2. Consider the vector field ~F = (3x2y2z+5y3, 2x3yz+15xy2 − 7z, x3y2 − 7y+4z3)

with domain R
3. Determine whether ~F is conservative, and if it is, find a potential function for

it.

3



Solution. First we compute

curl ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k

∂x ∂y ∂z
3x2y2z + 5y3 2x3yz + 15xy2 − 7z x3y2 − 7y + 4z3

∣

∣

∣

∣

∣

∣

=~i
(

2x3y − 7− (2x3y − 7)
)

−~j(3x2y2 − 3x2y2) + ~k
(

6x2yz + 15y2 − (6x2yz + 15y2)
)

= (0, 0, 0).

Moreover, ~F is defined (and smooth) on all of R
3, hence it is conservative. Let us find a

potential function f(x, y, z) for ~F . We want

fx = F1 = 3x2y2z + 5y3

fy = F2 = 2x3yz + 15xy2 − 7z

fz = F3 = x3y2 − 7y + 4z3.

Using the first equation, we obtain

f =

∫

F1 dx

=

∫

3x2y2z + 5y3 dx

= x3y2z + 5xy3 + g(y, z)

whose derivative with respect to y is

2x3yz + 15xy2 + gy(y, z).

Using the second equation, we equate this with F2:

2x3yz + 15xy2 + gy(y, z) = 2x3yz + 15xy2 − 7z

⇒ gy(y, z) = −7z

⇒ g(y, z) =

∫

−7z dy

= −7yz + h(z).

Plugging this back into the expression for f , we obtain

f = x3y2z + 5xy3 − 7yz + h(z)

whose derivative with respect to z is

x3y2 − 7y + h′(z).

Using the third equation, we equate this with F3:

x3y2 − 7y + h′(z) = x3y2 − 7y + 4z3

⇒ h′(z) = 4z3

⇒ h(z) =

∫

4z3dz

= z4 + c.
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Choosing the constant c = 0, we obtain h(z) = z4 and thus the potential function

f(x, y, z) = x3y2z + 5xy3 − 7yz + z4 .

4 Simply connected domains

Asking for ~F to be defined (and continuously differentiable) on all of R3 is somewhat restrictive.
That condition can be loosened.

Definition 4.1. A subsetD of Rn is called simply connected if it is path-connected moreover,
and every loop in D can be contracted to a point.

Example 4.2. R3 itself is simply connected.

Example 4.3. The first octant {(x, y, z) ∈ R
3 | x, y, z > 0} is simply connected.

Example 4.4. The open ball {(x, y, z) ∈ R
3 | x2 + y2 + z2 < 1} is simply connected.

Example 4.5. The closed ball {(x, y, z) ∈ R
3 | x2 + y2 + z2 ≤ 1} is simply connected.

Example 4.6. The (surface of the) sphere {(x, y, z) ∈ R
3 | x2+y2+z2 = 1} is simply connected.

See the nice picture here:

http://en.wikipedia.org/wiki/Simply-connected#Informal_discussion.

Example 4.7. Interesting fact: The punctured space

R
3 \ {(0, 0, 0)} = {(x, y, z) ∈ R

3 | (x, y, z) 6= (0, 0, 0)}

is simply connected. This might seem confusing, since the punctured plane R
2 \ {(0, 0)} is

not simply connected. That is because in 3 dimensions, there is enough room to move a loop
around the puncture and then contract it to a point. Therefore the informal idea that “simply
connected means no holes” is not really accurate.

Example 4.8. The “thick sphere” {(x, y, z) ∈ R
3 | 1 < x2 + y2 + z2 < 4} between radii 1 and 2

is simply connected.

Example 4.9. R3 with a line removed, for example

D = R
3 \ {z-axis} = {(x, y, z) ∈ R

3 | x2 + y2 6= 0}

is not simply connected. Indeed, any curve in D going once around the z-axis cannot be
contracted to a point.

Example 4.10. The “thick cylinder” {(x, y, z) ∈ R
3 | 1 ≤ x2 + y2 ≤ 4} between radii 1 and 2 is

not simply connected, for the same reason.

Example 4.11. The solid torus {((3 + u cosα) cos θ, (3 + u cosα) sin θ, u sinα) | α, θ ∈ R, 0 ≤
u ≤ 1} is not simply connected. A curve going once around the “hole” in the middle (e.g. u, α
constant, θ goes from 0 to 2π) cannot be contracted to a point.

Example 4.12. The (surface of the) torus {((3+cosα) cos θ, (3+cosα) sin θ, sinα) | α, θ ∈ R} is
not simply connected. A curve going once around the “hole” in the middle (e.g. α constant, θ
goes from 0 to 2π) cannot be contracted to a point. Also, a curve going once around the “tire”
(e.g. θ constant, α goes from 0 to 2π) cannot be contracted to a point.

With that notion, we obtain the following improvement on proposition 3.1.
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Theorem 4.13. Let D ⊆ R
3 be open and simply connected, and let ~F : D → R

3 is a continu-
ously differentiable vector field with domain D. If ~F = (P,Q) satisfies the condition curl ~F = ~0,

then ~F is conservative (on D).

Theorem 4.13 did not apply to example 2.7, because the domain D = R
3 \ {z-axis} of ~F was

not simply connected.

When theorem 4.13 does not apply because the domain is not simply connected, then we cannot
conclude from the condition curl ~F = ~0 alone. A more subtle analysis is required.

Example 4.14. Recall the 2-dimensional vector field 1

x2+y2
(x, y) with domain the punctured

plane
R

2 \ {(0, 0)} = {(x, y) ∈ R
2 | (x, y) 6= (0, 0)}.

In § 16.3, we saw that this vector field conservative, with potential function f(x, y) = 1

2
ln(x2+

y2).

Again, we can turn this example into a 3-dimensional example by making the third component
zero. Consider the vector field ~F = 1

x2+y2
(x, y, 0) with domain

D = R
3 \ {z-axis} = {(x, y, z) ∈ R

3 | (x, y) 6= (0, 0)}.

Then ~F is conservative, with the same potential function f(x, y) = 1

2
ln(x2 + y2). However,

computing curl ~F = ~0 was not enough to conclude that ~F is conservative, since its domain D

is not simply connected.

Example 4.15. Consider the vector field ~F = 1

x2+y2+z2
(x, y, z). Is ~F conservative? If it is, find

a potential for ~F .

Solution. As shorthand notation, write ρ =
√

x2 + y2 + z2 for the distance to the origin, and
note ∂ρ

∂x
= x

ρ
. Now we compute

curl ~F =

∣

∣

∣

∣

∣

∣

~i ~j ~k

∂x ∂y ∂z
x
ρ2

y

ρ2
z
ρ2

∣

∣

∣

∣

∣

∣

=~i

(

z(−2ρ−3)
y

ρ
− y(−2ρ−3)

z

ρ

)

−~j

(

z(−2ρ−3)
x

ρ
− x(−2ρ−3)

z

ρ

)

+ ~k

(

y(−2ρ−3)
x

ρ
− x(−2ρ−3)

y

ρ

)

= −2ρ−4(zy − yz, xz − zx, yx− xy)

= (0, 0, 0).

Moreover, ~F is defined (and smooth) on the punctured space R
3 \ {(0, 0, 0)}, which is simply

connected. Therefore ~F is conservative.
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Let us find a potential f for ~F . We want

fx = F1 =
x

ρ2

fy = F2 =
y

ρ2

fz = F3 =
z

ρ2
.

Using the first equation, we obtain

f =

∫

F1 dx

=

∫

x

x2 + y2 + z2
dx Take u = x2 + y2 + z2, du = 2xdx

=

∫

1

u

1

2
du

=
1

2
ln u+ g(y, z)

=
1

2
ln(x2 + y2 + z2) + g(y, z)

whose derivative with respect to y is

y

x2 + y2 + z2
+ gy(y, z).

Using the second equation, we equate this with F2:

y

x2 + y2 + z2
+ gy(y, z) =

y

x2 + y2 + z2

⇒ gy(y, z) = 0

⇒ g(y, z) = 0 + h(z).

Plugging this back into the expression for f , we obtain

f =
1

2
ln(x2 + y2 + z2) + h(z)

whose derivative with respect to z is

z

x2 + y2 + z2
+ h′(z).

Using the third equation, we equate this with F3:

z

x2 + y2 + z2
+ h′(z) =

z

x2 + y2 + z2

⇒ h′(z) = 0

⇒ h(z) = c.

Choosing the constant c = 0, we obtain h(z) = 0 and thus the potential function

f(x, y, z) =
1

2
ln(x2 + y2 + z2) .
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5 Summary

Suppose we are given a vector field ~F in 3 dimensions and we want to know if ~F is conservative.

1. Compute curl ~F . If curl ~F 6= ~0, then ~F is certainly not conservative.

2. If curl ~F = ~0 and the domain of ~F is all of R3 (or more generally: a simply-connected

region), then ~F is certainly conservative.

3. If curl ~F = ~0 and the domain of ~F is not simply connected, then one cannot conclude: ~F

could be conservative or not. One must work harder to answer the question.
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