Math 241 - Calculus II1
Spring 2012, section CL1
§ 16.5. Conservative vector fields in R3

In these notes, we discuss conservative vector fields in 3 dimensions, and highlight the similar-
ities and differences with the 2-dimensional case. Compare with the notes on § 16.3.

1 Conservative vector fields

Let us recall the basics on conservative vector fields.

Definition 1.1. Let F: D — R" be a vector field with domain D C R™ The vector field
F is said to be conservative if it is the gradient of a function. In other words, there is a
differentiable function f: D — R satisfying F=vV f. Such a function f is called a potential
function for F.

Ezample 1.2. F(x,y,2) = (4223, 2zy23, 32y%2%) is conservative, since it is F = Vf for the
function f(x,y,2) = zy?2>.

Ezxample 1.3. ﬁ(m, y,z) = (3222, 2%, 2% +2y2) is conservative, since it is F= V f for the function
flx,y,2) = 232 + y22.

The fundamental theorem of line integrals makes integrating conservative vector fields along
curves very easy. The following proposition explains in more detail what is nice about conser-
vative vector fields.

Proposition 1.4. The following properties of a vector field F are equivalent.

1. F s conservative.

2. fc F-dris path-independent, meaning that it only depends on the endpoints of the curve
C.

3. fo F - dF =0 around any closed curve C'.

Ezample 1.5. Find the line integral |, F. dF of the vector field F(z,y, z) = (3222, 2%, 2% + 2y2)
along the curve C parametrized by

Int
7(t) = <£—2,t3,tcos(ﬂt)) 1<t <4

Solution. We know that F is conservative, with potential function f(z,y) = 232 + y2?. The
endpoints of C' are

7(1) = (0,1, —1)

In4
In2’

=y

(4) = (—,8,0) = (2,8,0).



The fundamental theorem of line integrals yields

/ﬁwE/Vfﬁ
C C

= [(r(4)) — f(r(1))
= £(2,8,0) — f(0,1,-1)
=0-1

—[01]

2 Necessary conditions

To know if a vector field F is conservative, the first thing to check is the following criterion.

Proposition 2.1. Let D C R? be an open subset and let F:D — R? be a continuously
differentiable vector field with domain D. If F' is conservative, then it satisfies curl F' = 0.

—

Ezplicitly, F = (F, Fy, F3) satisfies the three conditions

Oy, =01
O F3 = 0sFy
O Fs = 05F,

everywhere on D.

Proof. Assume there is a differentiable function f: D — R satisfying F=V f on D. Because
f is twice continuously differentiable (meaning it has all second partial derivatives and they are
all continuous), Clairaut’s theorem applies, meaning the mixed partial derivatives agree. Since
the first partial derivatives of f are (fy, fy, f2) = (O1f, Oof, 05 f) = (Fi, Fy, F3), we obtain

o f = 0201 f

O Fy = 0 F}
010sf = 050, f
O F3 = 05Fy
0203 f = 0302 f
o F3 = O3 F.

These conditions are equivalent to curl F = 0, because of the formula:

Cuﬂ F - 81 82 63
o Fy, Fy

= (0o Fy — 03Fy) — J(O1F3 — O3 F)) + k(O Fy — Do FY)
== ((92F3 - 83F2, 5’3F1 - (91F3, 81F2 - 82F1). D



Ezxample 2.2. The vector field F= (x,y,5x) is not conservative, because its curl

77k
curl ' =10, 0, O,
r Yy dx

i(0—0)—j(5—0)+ k(0 —0)
— (0, —5,0)

is not the zero vector field. In terms of partial derivatives, this is saying 0,(z) # 0.(5z).

Remark 2.3. Most vector fields are not conservative. If we pick functions Fiy, F5, F3 “at
random”, then in general they will not satisfy the conditions o1 Fy = 0o Fy, 01 F3 = 03F],
(92F 3 = (93F 2.

Definition 2.4. A vector field F is called irrotational if it satisfies curl £ = 0.

The terminology comes from the physical interpretation of the curl. If F'is the velocity field of
a fluid, then curl F' measures in some sense the tendency of the fluid to rotate.

With that terminology, proposition 2.1 says that a conservative vector field is always irrota-
tional.

Remark 2.5. That statement also holds in 2 dimensions: A conservative vector field is always ir-
rotational. A vector field F' = (F}, F3) is called irrotational if its “scalar curl” or “2-dimensional
curl” 81F2 - 82F1 is zero.

Question 2.6. If a vector field is irrotational, is it automatically conservative?

Answer: NO.
Ezxample 2.7. Recall the 2-dimensional vector field @(—y,x} with domain the punctured
plane

R*\A{(0,0)} = {(z,y) € R*| (z,y) # (0,0)}.

In § 16.3, we saw that this vector field is irrotational but not conservative.

We can reuse that example in 3 dimensions by making the third component zero. Consider the
vector field F' = ﬁ—iyg(—y, x,0) with domain

D =R*\ {z-axis} = {(v,y,2) € R*| (2,y) # (0,0)}.
Then F is irrotational, i.e. it satisfies curl F = 0. However, F is not conservative, because the
line integral of F' along a loop around the z-axis is 27 and not zero.

3 Sufficient conditions

Depending on the shape of the domain D, the condition P, = @), is sometimes enough to
guarantee that the field is conservative.

Proposition 3.1. Let F:R3 5 R3isaq continuously differentiable vector field (whose domain
is all of R®). If F' satisfies curl F = 0, then F is conservative.

Ezample 3.2. Consider the vector field F = (3z%y%z + 5y3, 203y + 152y% — Tz, 23y? — Ty + 42%)
with domain R3. Determine whether F' is conservative, and if it is, find a potential function for
it.



Solution. First we compute
| j

curl F' = Oy Oy .
3x2y%2 + 5y 2x3yz + 15wy? — T2 23y — Ty + 423

el

= Z(2$3y —7—(22% — 7)) — j(3a%y* — 3a%y?) + k (62°yz + 15y* — (62°yz + 15y%))
— (0,0,0).

Moreover, F is defined (and smooth) on all of R?, hence it is conservative. Let us find a
potential function f(x,y, z) for . We want

fo = F = 32°y*z + 5y°
fy=F =22z + 150y — 7z
fz = F3 = $3y2 — 7y + 423.

Using the first equation, we obtain

f:/Fldx

= /31‘23;22 + 5y dx

= 2%y?z + 5xy® + g(y, 2)
whose derivative with respect to y is
22%yz + 152y* + g, (y, 2).
Using the second equation, we equate this with Fj:
220%yz + 152y* + g,(y, 2) = 22°yz + 152y* — 72
= gy(y,2) = =Tz

= g(y, 2) =/—7zdy

= —Tyz + h(2).
Plugging this back into the expression for f, we obtain
f =22z +5xy® — Tyz + h(z)
whose derivative with respect to z is
2y — Ty + W (2).
Using the third equation, we equate this with Fj:
2y — Ty + W (z) = 2%y — Ty + 42°

= h(z) = 42°
= h(z) = /4z3dz
= +e



Choosing the constant ¢ = 0, we obtain h(z) = 2* and thus the potential function

[y, 2) = 2%y°2 + bay’® — Tyz + 2",

4 Simply connected domains

Asking for F to be defined (and continuously differentiable) on all of R? is somewhat restrictive.
That condition can be loosened.

Definition 4.1. A subset D of R™ is called simply connected if it is path-connected moreover,
and every loop in D can be contracted to a point.

Ezample 4.2. R3 itself is simply connected.

Example 4.3. The first octant {(z,y, z) € R | x,y,z > 0} is simply connected.

Example 4.4. The open ball {(z,y,z) € R? | 2% + y? + 22 < 1} is simply connected.

Ezample 4.5. The closed ball {(z,y, z) € R? | 2% + y*® + 2? < 1} is simply connected.

Example 4.6. The (surface of the) sphere {(z,y,2) € R?® | 22 +y*+ 22 = 1} is simply connected.

See the nice picture here:

http://en.wikipedia.org/wiki/Simply-connected#Informal_discussion.

Example 4.7. Interesting fact: The punctured space

R\ {(0,0,0)} = {(z,y,2) € R* | (z,,2) # (0,0,0)}

is simply connected. This might seem confusing, since the punctured plane R* \ {(0,0)} is
not simply connected. That is because in 3 dimensions, there is enough room to move a loop
around the puncture and then contract it to a point. Therefore the informal idea that “simply
connected means no holes” is not really accurate.

Ezample 4.8. The “thick sphere” {(z,y,2) € R® | 1 < 2% + y? + 2% < 4} between radii 1 and 2
is simply connected.

Ezample 4.9. R? with a line removed, for example
D = RO\ {-axis} = {(2,,2) € R® | 2 + 4 # 0}

is not simply connected. Indeed, any curve in D going once around the z-axis cannot be
contracted to a point.

Example 4.10. The “thick cylinder” {(z,y,z) € R? | 1 < 2% + y? < 4} between radii 1 and 2 is
not simply connected, for the same reason.

Example 4.11. The solid torus {((3 + ucosa)cosf, (3 + ucosa)sinf,usina) | a,0 € R,0 <
u < 1} is not simply connected. A curve going once around the “hole” in the middle (e.g. u, «
constant, 0 goes from 0 to 27) cannot be contracted to a point.

Ezxample 4.12. The (surface of the) torus {((3+cos ) cos 0, (3+cosa)sinf,sina) | o, 0 € R} is
not simply connected. A curve going once around the “hole” in the middle (e.g. « constant, 6
goes from 0 to 27) cannot be contracted to a point. Also, a curve going once around the “tire”
(e.g. O constant, a goes from 0 to 27) cannot be contracted to a point.

With that notion, we obtain the following improvement on proposition 3.1.

5



Theorem 4.13. Let D C R3 be open and simply gonnected, and let F: D — R3 is a continu-
ously differentiable vector field with domain D. If F = (P, Q) satisfies the condition curl F' = 0,
then F' is conservative (on D).

Theorem 4.13 did not apply to example 2.7, because the domain D = R? \ {z-axis} of F was
not simply connected.

When theorem 4.13 does not apply because the domain is not simply connected, then we cannot
conclude from the condition curl F' = 0 alone. A more subtle analysis is required.

1
$2+y2

Erample 4.14. Recall the 2-dimensional vector field (,y) with domain the punctured

plane

R*\ {(0,0)} = {(z,y) € R?| (w,y) # (0,0)}.
In § 16.3, we saw that this vector field conservative, with potential function f(z,y) = 3 In(z? +
y).
Again, we can turn this example into a 3-dimensional example by making the third component
zero. Consider the vector field F' = @(JE, y,0) with domain

D = R*\ {z-axis} = {(z,5,2) € B? | (z,) # (0,0)}.

Then F is conservative, with the same potential function f(z,y) = $In(z? + y?). However,

computing curl F = 0 was not enough to conclude that Fis conservative, since its domain D
is not simply connected.

Ezxample 4.15. Consider the vector field F = m(x, y,z). Is F' conservative? If it is, find

a potential for F.

Solution. As shorthand notation, write p = /22 + y? + 22 for the distance to the origin, and

note % =%, Now we compute
x " p

curl

I
Qs =y
ke @QJ SN}
R Q=

;(Z(_gp—3)% _ y(—2p‘3)§) —J (z(—2p_3)% - x(—20_3)§>

+k (y(—Qp‘3)% - 37(—2p_3)%>

= —2p"Y(zy — yz, vz — 22, Y8 — 1Y)
= (0,0,0).

Moreover, F is defined (and smooth) on the punctured space R?\ {(0,0,0)}, which is simply
connected. Therefore F' is conservative.



Let us find a potential f for F. We want

<"
I
-
I
Rl Rl =

Using the first equation, we obtain

f:/Fldx

:/ﬁdX Takeu:x2+y2+22, du = 2zdx
22 +y2 + 2

11
= [ —=d
/uQu

1
= 51nu+g(y,z)

1
=3 In(x? +y* + 2%) + g(y, 2)
whose derivative with respect to y is

Y

— 4 g,(y, 2).
x? +y? + 22 9(y:2)
Using the second equation, we equate this with F5:
Y Y
x? 4+ y? + 22 9u(y:2) r% 4 y? + 22
= gy(y,2) =0

= 9g(y,z) =0+ h(2).
Plugging this back into the expression for f, we obtain
1
f=3 In(z® + y* + 2°) + h(2)

whose derivative with respect to z is
z

—— + h(2).
22 +y? 4 22 (2)
Using the third equation, we equate this with Fj:
z z
B N T
x? +y? + 27 ) z? +y? 4+ 2?
= h(z)=0
= h(z) =c.

Choosing the constant ¢ = 0, we obtain h(z) = 0 and thus the potential function

1
flx,y,z) = 51n(932 + 2 + 22) .




5 Summary
Suppose we are given a vector field F in 3 dimensions and we want to know if F is conservative.

1. Compute curl F. If curl F + 0, then Fis certainly not conservative.

2. If curl F = 0 and the domain of F is all of R3 (or more generally: a simply-connected
region), then F' is certainly conservative.

3. If curl F = 0 and the domain of F is not simply connected, then one cannot conclude: F
could be conservative or not. One must work harder to answer the question.



