Math 241 - Calculus II1
Spring 2012, section CL1
§ 15.9. Change of variables in multiple integrals

1 General setup

Assume we want to compute the double integral
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on some (complicated) region R in the zy-plane. By changing to a different system of coordi-
nates (u,v), the integral may be simplified, either because the function f(z,y) or the region R
becomes simpler.

Let T: R?* — R? denote the transformation giving the (x,y)-coordinates in terms of the new
(u, v)-coordinates, i.e.

(z,y) = T(u,v).
Let S be the (hopefully easier) region in the uv-plane corresponding to the region R in the
xy-plane, i.e. T(S) = R. Then the change of variables formula is

dudv

1] saa= [ sanastn= [ sz

where the Jacobian of the transformation T is
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FExample 1.1. When passing to polar coordinates, the transformation is
T(r,0) = (rcosf,rsind)

and its Jacobian is
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If the region of integration is, for example, the upper half-annulus between radii 3 and 4

R={(,y) eR*[y>0,9 <a’+y’ <16}

then the corresponding region S in polar coordinates is the rectangle
S={(r,0) cR*|3<r<40<0<7}
If the function being integrated is, for example, f(z,y) = x + y?, then the integral is
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2 Worked example

Let us solve problem {15 from section § 15.9.

Example 2.1. Let R be the region in the first quadrant bounded by the lines y = x and y = 3z
and the hyperbolas xy = 1 and xy = 3. Note that those four curves also bound a region in the

third quadrant, which we are ignoring.
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a. Compute the integral using the change of variables x = , y = v.

We want to compute the integral

Let us compute the Jacobian:
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The region S is bounded by the curves
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This means that the bounding curves are v = y/u and v = v/3u (and not the negative roots).



The integral is
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b. Compute the integral using your favorite change of variables.

Because of how the region R is defined, my favorite change of variables is u = xy, v = £. Unlike
in part (a), u and v are expressed in terms of x and y, not the other way around. We will use
the useful property




to compute the Jacobian:
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The region S is bounded by the curves
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The integral is
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Remark 2.2. Had we not used the trick “Jacobian of inverse equals inverse of Jacobian”, we
would have had to find the inverse transformation explicitly:

w = y* <y = uv because y > 0

U U
—::UQ<:>3U:\/j because x > 0.
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With those formulas, we can compute the Jacobian explicitly:

1 1
Ty = =4 —
2V uv

1 /u
Ty = ——4]—
2\ v3

_1 v
Yu =\
_1 U
yv_2 "




