Math 241 - Calculus III
 Spring 2012, section CL1

\S 15.9. Change of variables in multiple integrals

1 General setup

Assume we want to compute the double integral

$$
\iint_{R} f d A=\iint_{R} f(x, y) d x d y
$$

on some (complicated) region R in the $x y$-plane. By changing to a different system of coordinates (u, v), the integral may be simplified, either because the function $f(x, y)$ or the region R becomes simpler.
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the transformation giving the (x, y)-coordinates in terms of the new (u, v)-coordinates, i.e.

$$
(x, y)=T(u, v)
$$

Let S be the (hopefully easier) region in the $u v$-plane corresponding to the region R in the $x y$-plane, i.e. $T(S)=R$. Then the change of variables formula is

$$
\iint_{R} f d A=\iint_{R} f(x, y) d x d y=\iint_{S} f(T(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where the Jacobian of the transformation T is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| .
$$

Example 1.1. When passing to polar coordinates, the transformation is

$$
T(r, \theta)=(r \cos \theta, r \sin \theta)
$$

and its Jacobian is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=r
$$

If the region of integration is, for example, the upper half-annulus between radii 3 and 4

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0,9 \leq x^{2}+y^{2} \leq 16\right\}
$$

then the corresponding region S in polar coordinates is the rectangle

$$
S=\left\{(r, \theta) \in \mathbb{R}^{2} \mid 3 \leq r \leq 4,0 \leq \theta \leq \pi\right\} .
$$

If the function being integrated is, for example, $f(x, y)=x+y^{2}$, then the integral is

$$
\begin{aligned}
\iint_{R} f(x, y) d x d y & =\iint_{R}\left(x+y^{2}\right) d x d y \\
& =\iint_{S}\left(r \cos \theta+r^{2} \sin ^{2} \theta\right)\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \\
& =\iint_{S}\left(r \cos \theta+r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =\int_{0}^{\pi} \int_{3}^{4}\left(r \cos \theta+r^{2} \sin ^{2} \theta\right) r d r d \theta
\end{aligned}
$$

2 Worked example

Let us solve problem $\sharp 15$ from section § 15.9.
Example 2.1. Let R be the region in the first quadrant bounded by the lines $y=x$ and $y=3 x$ and the hyperbolas $x y=1$ and $x y=3$. Note that those four curves also bound a region in the third quadrant, which we are ignoring.
We want to compute the integral

$$
\iint_{R} x y d A .
$$

a. Compute the integral using the change of variables $x=\frac{u}{v}, y=v$.

Let us compute the Jacobian:

$$
\begin{aligned}
x_{u} & =\frac{1}{v} \\
x_{v} & =-\frac{u}{v^{2}} \\
y_{u} & =0 \\
y_{v} & =1 \\
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
0 & 1
\end{array}\right| \\
& =\frac{1}{v} .
\end{aligned}
$$

The region S is bounded by the curves

$$
\begin{aligned}
& y=x \Leftrightarrow v=\frac{u}{v} \Leftrightarrow v^{2}=u \\
& y=3 x \Leftrightarrow v=\frac{3 u}{v} \Leftrightarrow v^{2}=3 u \\
& x y=1 \Leftrightarrow u=1 \\
& x y=3 \Leftrightarrow u=3
\end{aligned}
$$

and satisfying

$$
\begin{aligned}
& x>0 \Leftrightarrow \frac{u}{v}>0 \\
& y>0 \Leftrightarrow v>0 .
\end{aligned}
$$

This means that the bounding curves are $v=\sqrt{u}$ and $v=\sqrt{3 u}$ (and not the negative roots).

The integral is

$$
\begin{aligned}
\iint_{R} x y d A & =\iint_{S} \frac{u}{v} v\left|\frac{1}{v}\right| d v d u \\
& =\int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3 u}} \frac{u}{v} d v d u \\
& =\int_{1}^{3} u[\ln v]_{v=\sqrt{u}}^{v=\sqrt{3 u}} d u \\
& =\int_{1}^{3} u(\ln \sqrt{3 u}-\ln \sqrt{u}) d u \\
& =\int_{1}^{3} u\left(\frac{1}{2} \ln 3 u-\frac{1}{2} \ln u\right) d u \\
& =\frac{1}{2} \int_{1}^{3} u(\ln 3+\ln u-\ln u) d u \\
& =\frac{1}{2} \int_{1}^{3} u \ln 3 d u \\
& =\frac{1}{2} \ln 3\left[\frac{u^{2}}{2}\right]_{1}^{3} \\
& =\frac{1}{2} \ln 3 \frac{1}{2}(9-1) \\
& =2 \ln 3
\end{aligned}
$$

b. Compute the integral using your favorite change of variables.

Because of how the region R is defined, my favorite change of variables is $u=x y, v=\frac{y}{x}$. Unlike in part (a), u and v are expressed in terms of x and y, not the other way around. We will use the useful property

$$
\frac{\partial(x, y)}{\partial(u, v)}=\frac{\partial(u, v)}{\partial(x, y)}^{-1}
$$

to compute the Jacobian:

$$
\begin{aligned}
u_{x} & =y \\
u_{y} & =x \\
v_{x} & =-\frac{y}{x^{2}} \\
v_{y} & =\frac{1}{x} \\
\frac{\partial(u, v)}{\partial(x, y)} & =\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right| \\
& =\left|\begin{array}{cc}
y & x \\
-\frac{y}{x^{2}} & \frac{1}{x}
\end{array}\right| \\
& =\frac{y}{x}-\left(-\frac{y}{x}\right) \\
& =2 \frac{y}{x} \\
& =2 v \\
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial(u, v)^{-1}}{\partial(x, y)} \\
& =\frac{1}{2 v} .
\end{aligned}
$$

The region S is bounded by the curves

$$
\begin{aligned}
& y=x \Leftrightarrow \frac{y}{x}=1 \Leftrightarrow v=1 \\
& y=3 x \Leftrightarrow \frac{y}{x}=3 \Leftrightarrow v=3 \\
& x y=1 \Leftrightarrow u=1 \\
& x y=3 \Leftrightarrow u=3 .
\end{aligned}
$$

The integral is

$$
\begin{aligned}
\iint_{R} x y d A & =\iint_{S} u\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d v d u \\
& =\iint_{S} u\left|\frac{1}{2 v}\right| d v d u \\
& =\frac{1}{2} \int_{1}^{3} \int_{1}^{3} \frac{u}{v} d v d u \\
& =\frac{1}{2} \int_{1}^{3} u[\ln v]_{1}^{3} d u \\
& =\frac{1}{2} \int_{1}^{3} u(\ln 3-\ln 1) d u \\
& =\frac{1}{2} \int_{1}^{3} u \ln 3 d u \\
& =\frac{1}{2} \ln 3\left[\frac{u^{2}}{2}\right]_{1}^{3} \\
& =\frac{1}{2} \ln 3 \frac{1}{2}(9-1) \\
& =2 \ln 3 .
\end{aligned}
$$

Remark 2.2. Had we not used the trick "Jacobian of inverse equals inverse of Jacobian", we would have had to find the inverse transformation explicitly:

$$
\begin{aligned}
& u v=y^{2} \Leftrightarrow y=\sqrt{u v} \text { because } y>0 \\
& \frac{u}{v}=x^{2} \Leftrightarrow x=\sqrt{\frac{u}{v}} \text { because } x>0
\end{aligned}
$$

With those formulas, we can compute the Jacobian explicitly:

$$
\begin{aligned}
x_{u} & =\frac{1}{2} \sqrt{\frac{1}{u v}} \\
x_{v} & =-\frac{1}{2} \sqrt{\frac{u}{v^{3}}} \\
y_{u} & =\frac{1}{2} \sqrt{\frac{v}{u}} \\
y_{v} & =\frac{1}{2} \sqrt{\frac{u}{v}} \\
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| \\
& =\left|\begin{array}{ll}
\frac{1}{2} \sqrt{\frac{1}{u v}} & -\frac{1}{2} \sqrt{\frac{u}{v^{3}}} \\
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}}
\end{array}\right| \\
& =\frac{1}{4}\left|\begin{array}{ll}
\sqrt{\frac{1}{u v}} & -\sqrt{\frac{u}{v^{3}}} \\
\sqrt{\frac{v}{u}} & \sqrt{\frac{u}{v}}
\end{array}\right| \\
& =\frac{1}{4}\left(\begin{array}{ll}
\frac{1}{v^{2}} & +\sqrt{\frac{1}{v^{2}}}
\end{array}\right) \\
& =\frac{1}{4}\left(\frac{2}{v}\right) \\
& =\frac{1}{2 v} .
\end{aligned}
$$

