Math 241 - Calculus III
 Spring 2012, section CL1
 \S 14.5. Chain rule

1 Functions of 2 variables

Consider a function of 2 variables $f(x, y)$, e.g. the temperature in a room. Let's say x and y are themselves functions of some variable t, e.g. $(x(t), y(t))$ is a parametrized curve representing the position of a particle at time t. We are interested in the temperature of the particle and how it changes with time. In other words, we are interested in the function $f(x(t), y(t))$ and its derivative.

The chain rule says:

$$
\begin{equation*}
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x}(x(t), y(t)) \frac{d x}{d t}+\frac{\partial f}{\partial y}(x(t), y(t)) \frac{d y}{d t} \tag{1}
\end{equation*}
$$

In slightly more compact notation:

$$
\begin{equation*}
\frac{d}{d t} f(x(t), y(t))=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t) \tag{2}
\end{equation*}
$$

Let us rewrite the chain rule using notation that is less rigorous but easier to read and to remember:

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \text {. } \tag{3}
\end{equation*}
$$

Warning: When using this convenient but ambiguous notation (3), please remember where each quantity must be evaluated, as specified in the variants (1) and (2).

Example 1. The curve is a circle of radius $\sqrt{2}$ going counterclockwise around the origin:

$$
\left\{\begin{array}{l}
x(t)=\sqrt{2} \cos t \\
y(t)=\sqrt{2} \sin t
\end{array}\right.
$$

(as in figure 1) and the function is $f(x, y)=\left(x+y^{2}\right)^{2}$. Let $h(t):=f(x(t), y(t))$. Find $h^{\prime}\left(\frac{\pi}{4}\right)$.

Solution. At time $t=\frac{\pi}{4}$, the particle is at position

$$
\left\{\begin{array}{l}
x\left(\frac{\pi}{4}\right)=\sqrt{2} \cos \frac{\pi}{4}=1 \\
y\left(\frac{\pi}{4}\right)=\sqrt{2} \sin \frac{\pi}{4}=1
\end{array}\right.
$$

while its velocity is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-\sqrt{2} \sin t \\
x^{\prime}\left(\frac{\pi}{4}\right)=-\sqrt{2} \sin \frac{\pi}{4}=-1 \\
y^{\prime}(t)=\sqrt{2} \cos t \\
y^{\prime}\left(\frac{\pi}{4}\right)=\sqrt{2} \cos \frac{\pi}{4}=1
\end{array}\right.
$$

Figure 1: Circle around the origin.

The partial derivatives of f are

$$
\begin{aligned}
& f_{x}=2\left(x+y^{2}\right) \\
& f_{y}=2\left(x+y^{2}\right)(2 y)=4 y\left(x+y^{2}\right)
\end{aligned}
$$

The chain rule gives us

$$
\begin{aligned}
h^{\prime}\left(\frac{\pi}{4}\right) & =f_{x}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) x^{\prime}\left(\frac{\pi}{4}\right)+f_{y}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) y^{\prime}\left(\frac{\pi}{4}\right) \\
& =f_{x}(1,1)(-1)+f_{y}(1,1)(1) \\
& =4(-1)+8(1)=4 .
\end{aligned}
$$

Remark: We did not really need the chain rule in this case. We can explicitly write down the function

$$
\begin{aligned}
h(t) & =f(x(t), y(t)) \\
& =\left(x(t)+y(t)^{2}\right) \\
& =\left(\sqrt{2} \cos t+2 \sin ^{2} t\right)^{2}
\end{aligned}
$$

then compute its derivative

$$
h^{\prime}(t)=2\left(\sqrt{2} \cos t+2 \sin ^{2} t\right)(-\sqrt{2} \sin t+4 \sin t \cos t)
$$

and evaluate at $t=\frac{\pi}{4}$ to find

$$
\begin{aligned}
h^{\prime}\left(\frac{\pi}{4}\right) & =2\left(\sqrt{2} \cos \frac{\pi}{4}+2 \sin ^{2} \frac{\pi}{4}\right)\left(-\sqrt{2} \sin \frac{\pi}{4}+4 \sin \frac{\pi}{4} \cos \frac{\pi}{4}\right) \\
& =2(1+1)(-1+2) \\
& =4
\end{aligned}
$$

Question: How is the chain rule useful if we can do without it?

Answer: We don't always know what the function f is. In real life, it could be a function estimated from a few sample data points.

Example 2. The curve is a circle as in Example 1 but this time, the function $f(x, y)$ is unknown. All we know is the value of the partial derivatives

$$
\begin{gathered}
f_{x}(1,1)=17 \\
f_{y}(1,1)=30
\end{gathered}
$$

Let $h(t):=f(x(t), y(t))$. Find $h^{\prime}\left(\frac{\pi}{4}\right)$.

Solution. Although we cannot describe the function $h(t)$ explicitly, the chain rule gives us

$$
\begin{aligned}
h^{\prime}\left(\frac{\pi}{4}\right) & =f_{x}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) x^{\prime}\left(\frac{\pi}{4}\right)+f_{y}\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right) y^{\prime}\left(\frac{\pi}{4}\right) \\
& =f_{x}(1,1)(-1)+f_{y}(1,1)(1) \\
& =17(-1)+30(1)=13 .
\end{aligned}
$$

2 Sketch of proof

Here is a heuristic argument to prove the chain rule. Consider only linear approximations and neglect all higher order error terms. If time t increases by a very small amount Δt, then the position $(x(t), y(t))$ of the particle changes by amounts

$$
\left\{\begin{array}{l}
\Delta x \approx \frac{d x}{d t} \Delta t \\
\Delta y \approx \frac{d y}{d t} \Delta t
\end{array}\right.
$$

Therefore the function f changes by the amount

$$
\begin{aligned}
\Delta f & \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y \\
& \approx \frac{\partial f}{\partial x} \frac{d x}{d t} \Delta t+\frac{\partial f}{\partial y} \frac{d y}{d t} \Delta t
\end{aligned}
$$

so that the rate of change is approximately

$$
\frac{\Delta f}{\Delta t} \approx \frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

and in fact the instantaneous rate of change is indeed

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

With more care, this heuristic argument can be made rigorous.

3 Functions of many variables

Consider a function of 3 variables $f(x, y, z)$, all of which are themselves functions $x(t), y(t), z(t)$ of a variable t. This could describe the temperature of a particle moving in 3-space.
Using the same shorthand notation as in (3), the chain rule says:

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} . \tag{4}
\end{equation*}
$$

The pattern is the same for functions of any number of variables.

Example 3: Consider $f(x, y, z)=x^{2}+y z$ and

$$
\left\{\begin{array}{l}
x(t)=t \\
y(t)=t^{2} \\
z(t)=1-t
\end{array}\right.
$$

Let $h(t):=f(x(t), y(t), z(t))$. Find $h^{\prime}(t)$.

Solution. The chain rule gives us

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& =(2 x)(1)+(z)(2 t)+(y)(-1) \\
& =(2 t)(1)+(1-t)(2 t)+\left(t^{2}\right)(-1) \\
& =2 t+2 t-2 t^{2}-t^{2} \\
& =4 t-3 t^{2} .
\end{aligned}
$$

Remark: Here again, we did not need the chain rule, because we know the functions f, x, y, and z explicitly. We can write down the function

$$
\begin{aligned}
h(t) & =f(x(t), y(t), z(t)) \\
& =x(t)^{2}+y(t) z(t) \\
& =t^{2}+t^{2}(1-t) \\
& =2 t^{2}-t^{3}
\end{aligned}
$$

and compute its derivative

$$
h^{\prime}(t)=4 t-3 t^{2} .
$$

4 Several independent variables

Consider $f(x, y)$ where x and y are themselves functions $x(s, t)$ and $y(s, t)$ of 2 independent variables s and t. We are interested in the function $f(x(s, t), y(s, t))$ and its partial derivatives with respect to s and t.
Because partial derivatives are computed by treating the other variables as constants, the chain rule yields

$$
\begin{align*}
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \tag{5}\\
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \tag{6}
\end{align*}
$$

Example 4: Consider

$$
\left\{\begin{array}{l}
x(s, t)=s^{2}+5 t \\
y(s, t)=3 s-t^{2}
\end{array}\right.
$$

and the function $f(x, y)=e^{x y}$. Let $h(s, t):=f(x(s, t), y(s, t))$. Find $h_{s}(2,1)$ and $h_{t}(2,1)$.

Solution. We compute

$$
\left\{\begin{array}{l}
x(2,1)=4+5=9 \\
y(2,1)=6-1=5
\end{array}\right.
$$

and the partial derivatives

$$
\left\{\begin{array}{l}
x_{s}=2 s \\
x_{s}(2,1)=4 \\
x_{t}=5 \\
x_{t}(2,1)=5 \\
y_{s}=3 \\
y_{s}(2,1)=3 \\
y_{t}=-2 t \\
y_{t}(2,1)=-2
\end{array}\right.
$$

The partial derivatives of f are

$$
\begin{aligned}
f_{x} & =y e^{x y} \\
f_{y} & =x e^{x y}
\end{aligned}
$$

The chain rule gives us

$$
\begin{aligned}
h_{s}(2,1) & =f_{x}(x(2,1), y(2,1)) x_{s}(2,1)+f_{y}(x(2,1), y(2,1)) y_{s}(2,1) \\
& =f_{x}(9,5)(4)+f_{y}(9,5)(3) \\
& =5 e^{45}(4)+9 e^{45}(3) \\
& =(20+27) e^{45} \\
& =47 e^{45}
\end{aligned}
$$

$$
\begin{aligned}
h_{t}(2,1) & =f_{x}(x(2,1), y(2,1)) x_{t}(2,1)+f_{y}(x(2,1), y(2,1)) y_{t}(2,1) \\
& =f_{x}(9,5)(5)+f_{y}(9,5)(-2) \\
& =5 e^{45}(5)+9 e^{45}(-2) \\
& =(25-18) e^{45} \\
& =7 e^{45} .
\end{aligned}
$$

Remark: Here again, we did not need the chain rule, because we know the functions f, x, and y explicitly.

Example 5: As in example 4, consider

$$
\left\{\begin{array}{l}
x(s, t)=s^{2}+5 t \\
y(s, t)=3 s-t^{2}
\end{array}\right.
$$

and some unknown function $f(x, y)$ with partial derivatives

$$
\begin{aligned}
& f_{x}(9,5)=7 \\
& f_{y}(9,5)=-3
\end{aligned}
$$

Let $h(s, t):=f(x(s, t), y(s, t))$. Find $h_{s}(2,1)$ and $h_{t}(2,1)$.

Solution. Although we cannot describe the function $h(s, t)$ explicitly, the chain rule gives us

$$
\begin{aligned}
h_{s}(2,1) & =f_{x}(x(2,1), y(2,1)) x_{s}(2,1)+f_{y}(x(2,1), y(2,1)) y_{s}(2,1) \\
& =7(4)+(-3)(3) \\
& =28-9 \\
& =19 \\
h_{t}(2,1) & =f_{x}(x(2,1), y(2,1)) x_{t}(2,1)+f_{y}(x(2,1), y(2,1)) y_{t}(2,1) \\
& =f_{x}(9,5)(5)+f_{y}(9,5)(-2) \\
& =7(5)+(-3)(-2) \\
& =35+6 \\
& =41 .
\end{aligned}
$$

