Math 241 - Calculus III
Spring 2012, section CL1
§ 14.5. Chain rule

1 Functions of 2 variables

Consider a function of 2 variables f(x,y), e.g. the temperature in a room. Let’s say x and y are
themselves functions of some variable ¢, e.g. (x(t),y(t)) is a parametrized curve representing
the position of a particle at time ¢. We are interested in the temperature of the particle and
how it changes with time. In other words, we are interested in the function f(z(t),y(t)) and
its derivative.

The chain rule says:

LI a0.90) = L0y + S et Y- )
In slightly more compact notation:
L P(r) 9(0) = Folalt), w0 (6) + Fy((e) y () (). )

Let us rewrite the chain rule using notation that is less rigorous but easier to read and to
remember:

df  Ofde _9fdy

dt_%dt+a_ydt’ )

Warning: When using this convenient but ambiguous notation (3), please remember where each
quantity must be evaluated, as specified in the variants (1) and (2).

Example 1. The curve is a circle of radius v/2 going counterclockwise around the origin:

z(t) = v/2cost
y(t) = v/2sint

(as in figure 1) and the function is f(z,y) = (z 4+ y*)*. Let h(t) := f((t),y(t)). Find #'(%).

Solution. At time ¢ = 7, the particle is at position
2(%) =V2cos T =
y(Z)=+2sinZ =1

INERSE

while its velocity is



(1,1) = (x(3), y(

ENE]
—
=

Figure 1: Circle around the origin.

The partial derivatives of f are

The chain rule gives us

™ ™ ™

W(3) = L) () () + (WD)

= fo(L1)(=1) + f, (L, 1)(1)
= 4(-1)+8(1) =4.0

Remark: We did not really need the chain rule in this case. We can explicitly write down
the function

h(t) = f(z(t),y(t))
= (z(t) +y(t)*)
= (V2cost + 2sin®t)?
then compute its derivative
W(t) = 2(V/2cost 4 2sin®t)(—v/2sint + 4sint cost)

and evaluate at ¢ = 7 to find
h’(%) = 2(\/5008% + 25sin? %)(—ﬁsin% + 4sin % cos %)
=214+ 1)(-1+4+2)

=4.0



Question: How is the chain rule useful if we can do without it?

Answer: We don’t always know what the function f is. In real life, it could be a function
estimated from a few sample data points.

Example 2. The curve is a circle as in Example 1 but this time, the function f(z,y) is
unknown. All we know is the value of the partial derivatives

fy(1,1) = 30.

Let h(t) := f(xz(t), y(t)). Find 1(Z).

Solution. Although we cannot describe the function h(t) explicitly, the chain rule gives us

LY ()

h/(z) = fx(l"(z), y(z))xl(z) + fy(if(z

= fo(L1)(=1) + f, (L, 1)(1)
= 17(—1) +30(1) = 13.0

m
4

2 Sketch of proof

Here is a heuristic argument to prove the chain rule. Consider only linear approximations and
neglect all higher order error terms. If time ¢ increases by a very small amount At, then the
position (x(t), y(t)) of the particle changes by amounts

{Am ~ AL
_d
Ay ~ AL

Therefore the function f changes by the amount

of of \
&BA Tty 0y

8fda: of dy
= O dt it 8y dt a

Af =

so that the rate of change is approximately

Af 0fde  Ofdy
At T Ordt ' oy dt

and in fact the instantaneous rate of change is indeed

df  dfde fdy

dt o dt T oydt

With more care, this heuristic argument can be made rigorous.

3



3 Functions of many variables

Consider a function of 3 variables f(z,y, z), all of which are themselves functions z(t), y(t), z(¢)
of a variable ¢t. This could describe the temperature of a particle moving in 3-space.

Using the same shorthand notation as in (3), the chain rule says:

o _0fdr 0fdy 0fdz
dt  Oxdt Oydt 0Ozdt|

The pattern is the same for functions of any number of variables.

Example 3: Consider f(z,v,2) = 2* + yz and

x(t) =t
y(t) =1*
z(t) =1—t.

Let h(t) := f(z(t),y(t), 2(t)). Find I'(t).

Solution. The chain rule gives us

dh _0fdr  0fdy  0fdz
dt Oz dt Oydt 0zdt

= (22)(1) + (2)(2¢) + (y)(=1)
= (26)(1) + (L= 1)(2t) + (*)(~1)
=2t + 2t — 2t* — #?

=4t —31*.0

Remark: Here again, we did not need the chain rule, because we know the functions f, z, v,
and z explicitly. We can write down the function

f(z(t),y(t), 2(t))
= 2(t)” +y(t)z(t)
=t* +13(1 — 1)

h(t)

and compute its derivative



4 Several independent variables

Consider f(z,y) where x and y are themselves functions z(s,?) and y(s,t) of 2 independent
variables s and t. We are interested in the function f(x(s,t),y(s,t)) and its partial derivatives

with respect to s and ¢.

Because partial derivatives are computed by treating the other variables as constants, the chain

rule yields

of _ofox  0f 0oy
ds 0x0s Oy0s

of _9fox _9f dy

ot Ox ot dyot|

Example 4: Consider

Solution. We compute
x(2,1)=4+5=9
y(2,1)=6—-1=5

and the partial derivatives

T, = 28

zs(2,1) =4

Ty =295

7 (2,1) =5

The partial derivatives of f are
fo =ye™
fy = xe™.

The chain rule gives us

hs(2,1) = fo(x(2,1),5(2,1))25(2,1) + f(2(2,1),9(2,1))ys(2,1)

= f2(9,5)(4) + f,(9,5)(3)
= 5e'(4) + 9¢"(3)

= (20 + 27)e*

= 47¢e%

()



hi(2,1) = fo(@(2,1),4(2,1))2(2,1) + £, (2(2, 1), y(2,1))w(2, 1)
= [2(9,5)(5) + f4(9,5)(=2)
= 5¢*(5) + 9¢*(—2)
= (25— 18)e®
=770

Remark: Here again, we did not need the chain rule, because we know the functions f, x,
and y explicitly.

Example 5: As in example 4, consider

{x(s, t) =% + 5t

y(s,t) = 3s — 2
and some unknown function f(x,y) with partial derivatives
f2(9,5) =7
f4(9,5) = =3.

Let h(s,t) := f(x(s,t),y(s,t)). Find hg(2,1) and h(2,1).

Solution. Although we cannot describe the function A(s,t) explicitly, the chain rule gives us

hs(2,1) = fo(x(2,1),5(2,1))25(2,1) + f(2(2,1),9(2,1))ys(2,1)
=7(4) +(=3)(3)
=28—-9
=19

ht(2> 1) = fx($(2> 1)a y(2> 1))xt(2> 1) + fy(I(2> 1)a y(2> 1))yt(2> 1)
= £:(9,5)(5) + £,(9,5)(—2)



