
Math 241 - Calculus III
Spring 2012, section CL1

§ 14.4. Tangent planes and differentiability

1 Reminders from 1-dimensional calculus

Consider a function of one variable f : D → R with domain D ⊂ R. Around any point x0 ∈ D,
f can be approximated by a degree 1 polynomial

f(x) ≈ f(x0) + f ′(x0)(x− x0)

called the linearization or linear approximation of f at x0, sometimes denoted L(x). Here
we are assuming that the derivative f ′(x0) exists.

Example 1. Consider f(x) = sin(3x). Let us find the linear approximation of f at the point
x = 2. The derivative is

f ′(x) = 3 cos(3x)

f ′(2) = 3 cos(6)

so that the linear approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0)

= f(2) + f ′(2)(x− 2)

= sin(6) + 3 cos(6)(x− 2). �

More generally, assuming f has enough derivatives, Taylor’s theorem says that around x0, f
can be approximated by a degree n polynomial

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + . . . +
f (n)(x0)

n!
(x− x0)

n

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k =: Pn(x)

called the Taylor polynomial (of degree n) of f at x0.

Note that Taylor polynomials Pn are a good approximation of the function f only when x is
close to x0. See for example the fun graphics here:

http://en.wikipedia.org/wiki/Taylor%27s_theorem

To emphasive that x should be close to x0, let us denote the difference h := x − x0. We can
thus rewrite the Taylor polynomials as

f(x0 + h) ≈ f(x0) + f ′(x0)h +
f ′′(x0)

2
h2 + . . . +

f (n)(x0)

n!
hn

=
n∑

k=0

f (k)(x0)

k!
hk
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and in particular the linear approximation of f around x0 is

f(x0 + h) ≈ f(x0) + f ′(x0)h.

Geometrically, the graph of the linear approximation L is the line that is tangent to the graph
of f at x0.

2 Linear approximation and tangent planes

The notion discussed above has an analogue in multivariate calculus.

Consider a function of two variables f : D → R with domain D ⊂ R2. Around any point
(x0, y0) ∈ D, f can be approximated by a degree 1 polynomial

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) =: L(x, y)

called the linearization or linear approximation of f at (x0, y0). Here we are assuming that
the partial derivatives fx(x0, y0), fy(x0, y0) exist.

Example 2. Consider f(x, y) = sin(3x + y). Let us find the linear approximation of f at the
point (2, 1). The partial derivatives are

fx(x, y) = 3 cos(3x + y)

fx(2, 1) = 3 cos(7)

fy(x, y) = cos(3x + y)

fy(2, 1) = cos(7)

so that the linear approximation is

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

= f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1)

= sin(7) + 3 cos(7)(x− 2) + cos(7)(y − 1). �

There are Taylor polynomials in several variables, but they are slightly trickier and we will not
discuss them here. The linear approximation L(x, y) described above is the degree 1 Taylor
polynomial of f .

Again, L(x, y) is a good approximation of the function f only when (x, y) is close to (x0, y0).
To emphasive that, let us denote the differences h := x− x0, k := y − y0. We can thus rewrite
the linear approximation as

f(x0 + h, y0 + k) ≈ f(x0, y0) + fx(x0, y0)h + fy(x0, y0)k.

Geometrically, the graph of the linear approximation L is the plane that is tangent to the graph
of f at (x0, y0).

Upshot: Finding the tangent plane to the graph of a function is the same as finding the linear
approximation of the function.
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Example 3. Consider f(x, y) = x2y3. Let us find the equation of the plane tangent to the
graph of f at the point (2, 1, f(2, 1)) = (2, 1, 4). The partial derivatives are

fx(x, y) = 2xy3

fx(2, 1) = 4

fy(x, y) = 3x2y2

fy(2, 1) = 12

so that the linear approximation at (2, 1) is

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

= f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1)

= 4 + 4(x− 2) + 12(y − 1).

Therefore the tangent plane has equation

z = 4 + 4(x− 2) + 12(y − 1)

which can be rewritten as
z = 4x + 12y − 16. �

3 Differentiability

Now we know how to approximate a function by a degree 1 polynomial, assuming the function
is nice enough. How do we know that the linear approximation is reasonably good? Not
all functions can be approximated by a degree 1 polynomial. That is what differentiability
measures.

The function f(x, y), close to (x0, y0), can always be written as

f(x0 + h, y0 + k) = f(x0, y0) + fx(x0, y0)h + fy(x0, y0)k + E(h, k)

where E(h, k) can be thought as the error term, the failure of f to be equal to its linear
approximation at (x0, y0).

Definition: The function f is differentiable at (x0, y0) if the error term E(h, k) satisfies

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0.

Analytically, this means that the linear approximation is “reasonably good”, in the sense that
the error term has order higher than 1, and thus becomes negligeable when (h, k) is very small.

Geometrically, it means that the graph of f has a tangent plane at the point (x0, y0, f(x0, y0)).
By analogy, consider a function of one variable which is not differentiable, for example the
absolute value function f(x) = |x| at x0 = 0. Then the graph of f at x0 does not have a
tangent line.
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Facts about differentiability

Proposition: If f is differentiable at (x0, y0), then f is continuous at (x0, y0).

Proof: The condition

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0

guarantees a fortiori
lim

(h,k)→(0,0)
E(h, k) = 0.

Therefore, as (x, y) gets very close to (x0, y0), we have

lim
(h,k)→(0,0)

f(x0 + h, y0 + k) = lim
(h,k)→(0,0)

[f(x0, y0) + fx(x0, y0)h + fy(x0, y0)k + E(h, k)]

= f(x0, y0) + 0 + 0 + 0

= f(x0, y0). �

Example 4: The function

f(x, y) =

{
xy

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is not differentiable at (0, 0). In fact, it is not even continuous at (0, 0) because the limit

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist.

However, note that f does have both partial derivatives at (0, 0), since f is identically zero
along the x-axis and y-axis. More precisely, we have

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0

h
= 0

fy(0, 0) = lim
k→0

f(0, 0 + k)− f(0, 0)

k
= lim

k→0

0

k
= 0. �

If a function is differentiable at a point (x0, y0), then it has both partial derivatives fx(x0, y0)
and fy(x0, y0). However, example 4 shows that the converse does not hold. In other words,
the existence of both partial derivatives does not guarantee differentiability. Morally, that
is because limits in several variables are more complicated than limits in one variable.

Here is an even worse example.

Example 5: The function

f(x, y) =

{
y3

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
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is not differentiable at (0, 0). It is continuous at (0, 0). Moreover, it has both partial derivatives

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0

h
= 0

fy(0, 0) = lim
k→0

f(0, 0 + k)− f(0, 0)

k
= lim

k→0

k

k
= 1.

In fact, it has all directional derivatives (which will be discussed in section 14.6). However, the
error term

E(h, k) = f(x0 + h, y0 + k)− f(x0, y0)− fx(x0, y0)h− fy(x0, y0)k

= f(h, k)− f(0, 0)− fx(0, 0)h− fy(0, 0)k

=
k3

h2 + k2
− k

=
−h2k

h2 + k2

does not satisfy

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0

since this limit does not exist. �

If partial derivatives are not enough, how to tell if a function is differentiable? The following
theorem provides sufficient conditions.

Theorem: If both partial derivatives fx and fy exist near a point (x0, y0) and are continuous
at (x0, y0), then f is differentiable at (x0, y0).

Example 6: The function

f(x, y) = x3y + exy5 + cos(xy)

is differentiable on all of R2.

5


	Reminders from 1-dimensional calculus
	Linear approximation and tangent planes
	Differentiability

