A-INFINITY STRUCTURE ON EXT-ALGEBRAS

ABSTRACT. We give an introduction to A-infinity algebras in these notes, which is a generalisation
of differential graded algebras. We show that for a graded algebra A, the Ext-algebra Ext* (ka,ka)
has an A-infinity structure that contains sufficient information to recover A. On the other hand,
we will present an example where the usual associative algebra structure on Ext* (ka,k4) cannot
recover A. We also show that the A-infinity structure is closely related to Massey products.

0.1. Differential graded algebras

We begin by reviewing the definition of a differential graded algebra. Throughout the notes, we
use k to denote the ground field unless otherwise stated.

Definition 0.1. A differential graded algebra (in short DG algebra) A over a commutative ring
k is a Z-graded k-algebra
A=par

z
together with a differential d of degree 1 such thgtE
d(ab) = (da)b+ (—1)Pa(db)
for all a € AP and b € A. In particular, A is a complex of k-modules with differentials d" : A™ —
A" and the cohomology ring HA of a DG k-algebra A is a graded associative ring over k with
HA™ = ker(d") /im(d" ).

Example 0.2 (Ext-algebra as the cohomology of a DG algebra). Let A be a connected graded
associative algebra over k, and let k4 be the trivial A-module concentrated in degree 0.

The Ext-algebra Ext% (ka, k) is the cohomology ring of End4(P), where P is a free A-resolution
of k4. Ends(P) is a DG algebra with

Enda(P), = [ [ Homa(P,, Posyp)
neZ

and differential d given by
dy(f) = fO+ (=1)P*F10f,
with f € Enda(P), being a map of degree p.

0.2. Recovering the associative algebra from the Ext-algebra

For a connected graded associative algebra A over k, we have seen that the classical Ext-algebra
Ext%(ka,ka) is the cohomology ring of the DG algebra End4(P). Our question is to recover the
algebra A from Ext’ (ka, ka). Consider the following example:

Example 0.3. Let A = k(x1,22)/(f), with f = z122 + 2221 in degree 2. One can show that the
minimal free resolution of k4 has the form

o= 0= Ar — Aeg @ Aeg - A=k — 0,

with e; maps to x; and r maps to the relation, and

k s=0,
R E(-1) @ k(-1) s=1,
Ext}y (ka, ka) = ké2; =) s—9

0 else.
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Write E = Ext% (ka, ka). In general, we know that E! is dual to A; and E? is dual to the relation
R = (f) = ®n>2R, in A. Moreover, restricting the multiplication on E to E' ® E', we get a map
E'® E' — E?
that is dual to the inclusion Ry — A; ® A;. In this sense, we can recover A from the Ext-algebra

E. See [1], Section 6] for more details of the example.

Note that if we set the relation f in degree ¢ > 2, then the multiplication on F is trivial for degree
reasons. Nevertheless, we have the inclusion R,, — (A;)®", whose dual is the “higher multiplication”
(E")®? — E?,

of resolution degree 2 — gq.
We will make the definition precise in the following section.

0.3. A-infinity algebras
Definition 0.4. An A-infinity algebra over a base field k is a Z-graded vector space

=@
PEL
together with a family of graded k-linear maps

my : A% = A,
of degree 2 — n for n > 1, satisfying the Stasheff identities SI(n):
> (=), (id®r @ mg @ id®') = 0,
where the sum runs over all decompositionsn =r+s+¢t, andu=r+1+t.

For n small, the identities have the form:

SI(I) mimy = 0,

SI(Q) mimso — mQ(ml X id + id (24 ml);

In particular, a DG algebra is an A-infinity algebra with m; = d and ms = m and m,, = 0 for n > 2.
We can have a grading on the spaces AP too, with

AP = P A
i€G
indexed by an abelian group G. This grading i is called the Adams grading, and is denoted by a
lower index. The structure maps m,, are required to respect the Adams grading.
In our examples, we always have G = Z. In this case, we say that the A-infinity algebra A is
Adams connected if A9 =k, and A = ®,>04, or A= Bp<oln.
A morphism of A-infinity algebras consists of a family of k-linear graded maps

fn:A®" 5 B
satisfying the Stasheff morphism identities. A morphism f is a quasi-isomorphism if f; is a quasi-
isomorphism.
Theorem 0.5. Let A be an A-infinity algebra, and let HA be the cohomology ring of A. Then there
is an A-infinity structure on HA with my = 0 and mo induced by the multiplication on A. And there
is a quasi-isomorphism HA — A lifting the identity map of HA. This A-infinity structure on HA
is unique up to quasi-isomorphism.

By “lifting the identity map”, we mean that there is also a projection map p : A — HA that
induces a quasi-isomorphism. We will see in the proof that we have choose the projection p as a
vector space splitting. Then the section map HA — A will respect the chosen projection p. The
maps are not canonically defined.

Before we sketch a proof of the theorem, let us review the example.
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Example 0.6. For A = k(x1,22)/(f) with f € A. We see that the only non-zero multiplication on
E is m,. And one can show that the restriction of m, to (E')®9 is dual to the inclusion R,, — A$".
The result is made more general in [T, Theorem A]

We sketch a proof of the theorem in the case when A is a DG algebra.

Sketch of proof. We start with an intuitive idea. Let Ao : A ® A — A be multiplication on A. We
want to define maps A, on A inductively by the formula

A= ) e ),
st+t=n,s,t>1

assuming that \s and \; are defined for smaller s and . One immediately sees that there are two
problems here: the cohomology plays no role in this formula, and the degrees do not match. The
right formula that will fix the problems is as follows:

M= Y M(GA @GN,
s+t=n,s,t>1

where G is a homotopy on A from the identity map id4 to the projection p onto HA. Here we
identify HA with @H"™ as a subspace of A, and choose a splitting A™ = B"@® H™ & L™, and p is the
projection onto the summand H C A. Since L"~! = B™ we can choose G to respect the splitting:
Glpn = L™ 1 C A" ! and G|gngr» = 0. For n = 1, we set G\; formally to be the identity map.
Now one can check that the maps

p(Anlga) : HA— HA
endows HA with an A-infinity structure. |
0.4. A-infinity algebras and Massey products

Let A be a DG algebra. Let a1, as, and agz be classes in H A represented by ag1, a2, and as3 in
A. Assume that 109 = (o3 = 0. Set ap2 = G(a01a12) and a13 = G(algagg). Then 6(@02) = ap1a12
and J(ai3) = aiaass. Up to signs, this is what we need to define the three-fold Massey product
(a1, 9, a3) in HA, so (—1)’m,(a; ® as ® az) € (a1, az,a3). In general, this fact holds for higher
products too.

Theorem 0.7. Let A be a DG algebra. Let aq, ..., ay be classes in HA such that the n-fold Massey
product {av, ..., ap) is defined. Then

(_l)bmn(al Q- Q Oén) S <041, R ,Ozn>,
where b =1+ deg(an_1) + deg(an—3) + deg(cp—5) + - - -

Remark 0.8. Recall that the homotopy G : A — A depends on a splitting of A, so we can have
different homotopies G that produce different classes in the Massey product, but this process does
not necessarily produce all the classes in the Massey product.

Example 0.9. Let p be an odd prime, and let k be a field of characteristic p. Take A = k[z]/(zP)
with = in Adams degree 2d. Then the Ext-algebra of A is

Extyy (ka, ka) = A(y1) @ kfyz),
with g1 in degree (1,—2d) and yo in degree (2, —2dp). Moreover, we have my,(y1 @ - -+ ® y1) = Yo,
and one can compute that the p-fold Massey product (yi,...,41) = {(=1)P+1/2y,1,
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