
A-INFINITY STRUCTURE ON EXT-ALGEBRAS

Abstract. We give an introduction to A-infinity algebras in these notes, which is a generalisation
of differential graded algebras. We show that for a graded algebra A, the Ext-algebra Ext∗A(kA, kA)

has an A-infinity structure that contains sufficient information to recover A. On the other hand,

we will present an example where the usual associative algebra structure on Ext∗A(kA, kA) cannot
recover A. We also show that the A-infinity structure is closely related to Massey products.

0.1. Differential graded algebras

We begin by reviewing the definition of a differential graded algebra. Throughout the notes, we
use k to denote the ground field unless otherwise stated.

Definition 0.1. A differential graded algebra (in short DG algebra) A over a commutative ring
k is a Z-graded k-algebra

A =
⊕
p∈Z

Ap

together with a differential d of degree 1 such that

d(ab) = (da)b+ (−1)pa(db)

for all a ∈ Ap and b ∈ A. In particular, A is a complex of k-modules with differentials dn : An →
An+1, and the cohomology ring HA of a DG k-algebra A is a graded associative ring over k with

HAn = ker(dn)/im(dn+1).

Example 0.2 (Ext-algebra as the cohomology of a DG algebra). Let A be a connected graded
associative algebra over k, and let kA be the trivial A-module concentrated in degree 0.

The Ext-algebra Ext∗A(kA, kA) is the cohomology ring of EndA(P ), where P is a free A-resolution
of kA. EndA(P ) is a DG algebra with

EndA(P )p =
∏
n∈Z

HomA(Pn, Pn+p)

and differential d given by
dp(f) = f∂ + (−1)p+1∂f,

with f ∈ EndA(P )p being a map of degree p.

0.2. Recovering the associative algebra from the Ext-algebra

For a connected graded associative algebra A over k, we have seen that the classical Ext-algebra
Ext∗A(kA, kA) is the cohomology ring of the DG algebra EndA(P ). Our question is to recover the
algebra A from Ext∗A(kA, kA). Consider the following example:

Example 0.3. Let A = k〈x1, x2〉/(f), with f = x1x2 + x2x1 in degree 2. One can show that the
minimal free resolution of kA has the form

· · · → 0→ Ar → Ae1 ⊕Ae2 → A→ k → 0,

with ei maps to xi and r maps to the relation, and

ExtsA(kA, kA) =


k s = 0,

k(−1)⊕ k(−1) s = 1,

k(−2) s = 2,

0 else.
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Write E = ExtsA(kA, kA). In general, we know that E1 is dual to A1 and E2 is dual to the relation
R = (f) = ⊕n>2Rn in A. Moreover, restricting the multiplication on E to E1 ⊗ E1, we get a map

E1 ⊗ E1 → E2

that is dual to the inclusion R2 → A1 ⊗ A1. In this sense, we can recover A from the Ext-algebra
E. See [1, Section 6] for more details of the example.

Note that if we set the relation f in degree q > 2, then the multiplication on E is trivial for degree
reasons. Nevertheless, we have the inclusion Rn → (A1)⊗n, whose dual is the “higher multiplication”

(E1)⊗q → E2
−q

of resolution degree 2− q.
We will make the definition precise in the following section.

0.3. A-infinity algebras

Definition 0.4. An A-infinity algebra over a base field k is a Z-graded vector space

A =
⊕
p∈Z

Ap

together with a family of graded k-linear maps

mn : A⊗n → A,

of degree 2− n for n > 1, satisfying the Stasheff identities SI(n):∑
(−1)r+stmu(id⊗r ⊗ms ⊗ id⊗t) = 0,

where the sum runs over all decompositions n = r + s+ t, and u = r + 1 + t.

For n small, the identities have the form:

SI(1) m1m1 = 0;
SI(2) m1m2 = m2(m1 ⊗ id+ id⊗m1);
SI(3) m2(id⊗m2 −m2 ⊗ id) = m1m3 +m3(m1 ⊗ id⊗ id+ id⊗m1 ⊗ id+ id⊗ id⊗m1).

In particular, a DG algebra is an A-infinity algebra with m1 = d and m2 = m and mn = 0 for n > 2.
We can have a grading on the spaces Ap too, with

Ap =
⊕
i∈G

Ap
i

indexed by an abelian group G. This grading i is called the Adams grading, and is denoted by a
lower index. The structure maps mn are required to respect the Adams grading.

In our examples, we always have G = Z. In this case, we say that the A-infinity algebra A is
Adams connected if A0 = k, and A = ⊕n>0An or A = ⊕n60An.

A morphism of A-infinity algebras consists of a family of k-linear graded maps

fn : A⊗n → B

satisfying the Stasheff morphism identities. A morphism f is a quasi-isomorphism if f1 is a quasi-
isomorphism.

Theorem 0.5. Let A be an A-infinity algebra, and let HA be the cohomology ring of A. Then there
is an A-infinity structure on HA with m1 = 0 and m2 induced by the multiplication on A. And there
is a quasi-isomorphism HA → A lifting the identity map of HA. This A-infinity structure on HA
is unique up to quasi-isomorphism.

By “lifting the identity map”, we mean that there is also a projection map p : A → HA that
induces a quasi-isomorphism. We will see in the proof that we have choose the projection p as a
vector space splitting. Then the section map HA → A will respect the chosen projection p. The
maps are not canonically defined.

Before we sketch a proof of the theorem, let us review the example.
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Example 0.6. For A = k〈x1, x2〉/(f) with f ∈ Aq. We see that the only non-zero multiplication on
E is mq. And one can show that the restriction of mq to (E1)⊗q is dual to the inclusion Rn → A⊗n1 .
The result is made more general in [1, Theorem A]

We sketch a proof of the theorem in the case when A is a DG algebra.

Sketch of proof. We start with an intuitive idea. Let λ2 : A ⊗ A → A be multiplication on A. We
want to define maps λn on A inductively by the formula

λn =
∑

s+t=n,s,t>1

λ2(λs ⊗ λt),

assuming that λs and λt are defined for smaller s and t. One immediately sees that there are two
problems here: the cohomology plays no role in this formula, and the degrees do not match. The
right formula that will fix the problems is as follows:

λn =
∑

s+t=n,s,t>1

λ2(Gλs ⊗Gλt),

where G is a homotopy on A from the identity map idA to the projection p onto HA. Here we
identify HA with ⊕Hn as a subspace of A, and choose a splitting An = Bn⊕Hn⊕Ln, and p is the
projection onto the summand H ⊆ A. Since Ln−1 ∼= Bn, we can choose G to respect the splitting:
G|Bn ∼= Ln−1 ⊆ An−1 and G|Hn⊕Ln = 0. For n = 1, we set Gλ1 formally to be the identity map.
Now one can check that the maps

p(λn|HA) : HA→ HA

endows HA with an A-infinity structure. �

0.4. A-infinity algebras and Massey products

Let A be a DG algebra. Let α1, α2, and α3 be classes in HA represented by a01, a12, and a23 in
A. Assume that α1α2 = α2α3 = 0. Set a02 = G(a01a12) and a13 = G(a12a23). Then ∂(a02) = a01a12
and ∂(a13) = a12a23. Up to signs, this is what we need to define the three-fold Massey product
〈α1, α2, α3〉 in HA, so (−1)bmn(α1 ⊗ α2 ⊗ α3) ∈ 〈α1, α2, α3〉. In general, this fact holds for higher
products too.

Theorem 0.7. Let A be a DG algebra. Let α1, . . . , αn be classes in HA such that the n-fold Massey
product 〈α1, . . . , αn〉 is defined. Then

(−1)bmn(α1 ⊗ · · · ⊗ αn) ∈ 〈α1, . . . , αn〉,
where b = 1 + deg(αn−1) + deg(αn−3) + deg(αn−5) + · · · .

Remark 0.8. Recall that the homotopy G : A → A depends on a splitting of A, so we can have
different homotopies G that produce different classes in the Massey product, but this process does
not necessarily produce all the classes in the Massey product.

Example 0.9. Let p be an odd prime, and let k be a field of characteristic p. Take A = k[x]/(xp)
with x in Adams degree 2d. Then the Ext-algebra of A is

Ext∗A(kA, kA) ∼= Λ(y1)⊗ k[y2],

with y1 in degree (1,−2d) and y2 in degree (2,−2dp). Moreover, we have mp(y1 ⊗ · · · ⊗ y1) = y2,

and one can compute that the p-fold Massey product 〈y1, . . . , y1〉 = {(−1)(p+1)/2y2}.
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