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1 Introduction

The purpose of these four lectures is to provide an introduction to the theory of
dg-categories.

There are several possible points of view to present the subject, and my choice
has been to emphasised its relations with the localization problem (in the sense of
category theory). In the same way that the notion of complexes can be introduced
for the need of derived functors, dg-categories will be introduced here for the need
of a derived version of the localization construction. The purpose of the first lecture
is precisely to recall the notion of the localization of a category and to try to explain
its bad behaviour throught several examples. In the second part of the first lecture I
will introduce the notion of dg-categories and quasi-equivalences, and explain how
they can be used in order to state a refined version of the notion of localization. The
existence and properties of this new localization will be studied in the next lectures.

The second lecture is concerned with reminders about model category theory, and
its applications to the study of dg-categories. The first part is a very brief overview of
the basic notions and results of the theory, and the second part presents the specific
model categories appearing in the context of dg-categories.

Lecture three goes into the heart of the subject and is concerned with the study
of the homotopy category of dg-categories. The key result is a description of the
set of morphisms in this homotopy category as the set of isomorphism classes of
certain objects in a derived category of bi-modules. This result possesses several
important consequences, such as the existence of localizations and of derived internal
Homs for dg-categories. The very last part of this third lecture presents the notion of
triangulated dg-categories, which is a refined (and better) version of the usual notion
of triangulated categories.

The last lecture contains a few applications of the general theory explaining how
the problems with localization mentioned in the first lecture are solved when working
with dg-categories. We start to show that triangulated dg-categories have functorial
cones, unlike the case of triangulated categories. We also show that many invariants
(such as K-theory, Hochschild homology, . . . ) are invariant of dg-categories, though
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it is know that they are not invariant of triangulated categories. We also give a gluing
statement, providing a way to glue objects in dg-categories in a situation where it is
not possible to glue objects in derived categories. To finish I will present the notion
of saturated dg-categories and explain how they can be used in order to define a
secondary K-theory.

2 Lecture 1: DG-Categories and Localization

The purpose of this first lecture is to explain one motivation for working with
dg-categories concerned with the localization construction in category theory (in the
sense of Gabriel–Zisman, see below). I will start by presenting some very concrete
problems often encountered when using the localization construction. In a second
part I will introduce the homotopy category of dg-categories, and propose it as a
setting in order to define a better behaved localization construction. This homotopy
category of dg-categories will be further studied in the next lectures.

2.1 The Gabriel–Zisman Localization

Let C be a category and S be a subset of the set of morphisms in C1. A localization
of C with respect to S is the data of a category S−1C and a functor

l : C −→ S−1C

satisfying the following property: for any category D the functor induced by
composition with l

l∗ : Hom(S−1C,D)−→Hom(C,D)

is fully faithful and its essential image consists of all functors f : C −→ D such that
f (s) is an isomorphism in D for any s ∈ S (here Hom(A,B) denotes the category of
functors from a category A to another category B).

Using the definition it is not difficult to show that if a localization exists then it
is unique, up to an equivalence of categories, which is itself unique up to a unique
isomorphism. It can also be proved that a localization always exists. One possible
proof of the existence of localizations is as follows. Let I be the category with two
objects 0 and 1 and a unique morphism u : 0→ 1. In the same way, let I be the
category with two objects 0 and 1 and with a unique isomorphism u : 0→ 1. There
exists a natural functor I −→ I sending 0 to 0, 1 to 1 and u to u. Let now C be a
category and S be a set of morphisms in C. For any s ∈ S, with source x ∈ C and
target y ∈C, we define a functor is : I −→C sending 0 to x, 1 to y and u to s. We get
this way a diagram of categories and functors

1 In these lectures I will not take into account set theory problems, and will do as if all
categories were small. I warn the ready that, at some point, we will have to consider non-
small categories, and thus that these set theory problems should be solved somehow. On
possible solution is for instance by fixing various Grothendieck universes (see [2, Exp. 1]).
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C

⊔
s∈S I

⊔
is

��

�� ⊔
s I.

We consider this as a diagram in the category of categories (objects are categories
and morphisms are functors), and we form the push-out

C �� C′

⊔
s∈S I

⊔
is

��

�� ⊔
s I

��

It is not hard to show that for any category D the category of functors Hom(C′,D) is
isomorphic to the full sub-category of Hom(C,D) consisting of all functors sending
elements of S to isomorphisms in D. In particular, the induced functor C −→C′ is a
localization in the sense we defined above.

The only non-obvious point with this argument is the fact that the category of
categories possesses push-outs and even all kind of limits and colimits. One possible
way to see this is by noticing that the category of small categories is monadic over
the category of (oriented) graphs, and to use a general result of existence of colimits
in monadic categories (see e.g. [8, II-Prop. 7.4]).

In general localizations are extremely difficult to describe in a useful manner, and
the existence of localizations does not say much in practice (though it is sometimes
useful to know that they exist). The push-out constructions mentioned above can be
explicited to give a description of the localization C′. Explicitly, C′ has the same
objects as C itself. Morphisms between two objects x and y in C′ are represented by
strings of arrows in C

x �� x1 x2�� �� x3 . . .�� xn�� �� y,

for which all the arrows going backwards are assumed to be in S. To get the right
set of morphisms in C′ we need to say when two such strings define the same mor-
phism (see [9, Sect. I.1.1] for details). This description for the localization is rather
concrete, however it is most often useless in practice.

The following short list of examples show that localized categories are often
encountered and provide interesting categories in general.

Examples:

(a) If all morphisms in S are isomorphisms then the identity functor C → C is a
localization.

(b) If S consists of all morphisms in C, then S−1C is the groupoid completion of C.
When C has a unique object with a monoid M of endomorphisms, then S−1C has
unique object with the group M+ as automorphisms (M+ is the group completion
of the monoid M).
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(c) Let R be a ring and C(R) be the category of (unbounded) complexes over R. Its
objects are families of R-modules {En}n∈Z together with maps dn : En→ En+1

such that dn+1dn = 0. Morphisms are simply families of morphisms commuting
with the d’s. Finally, for E ∈ C(R), we can define its n-th cohomology by
Hn(E) := Ker(dn)/Im(dn−1), which is an R-module. The construction E �→
Hn(E) provides a functor Hn from C(R) to R-modules.
A morphism f : E −→ F in C(R) is called a quasi-isomorphism if for all i ∈ Z

the induced map
Hi( f ) : Hi(E)−→ Hi(F)

is an isomorphism. We let S be the set of quasi-isomorphisms in C(R). Then
S−1C(R) is the derived category of R and is denoted by D(R). Understanding
the hidden structures of derived categories is one of the main objectives of
dg-category theory.
Any R-module M can be considered as a complex concentrated in degree 0, and
thus as an object in D(R). More generally, if n ∈ Z, we can consider the object
M[n] which is the complex concentrated in degree −n and with values M. It can
be shown that for two R-modules M and N there exists a natural isomorphism

HomD(R)(M,N[n])� Extn(M,N).

(d) Let Cat be the category of categories: its objects are categories and its morphisms
are functors. We let S be the set of categorical equivalences. The localization ca-
tegory S−1Cat is called the homotopy category of categories. It can be shown
quite easily that S−1Cat is equivalent to the category whose objetcs are catego-
ries and whose morphismes are isomorphism classes of functors (see Exercise
2.1.2).

(e) Let Top be the category of topological spaces and continuous maps. A morphism
f : X −→Y is called a weak equivalence if it induces isomorphisms on all homo-
topy groups (with respect to all base points). If S denotes the set of weak equiva-
lences then S−1Top is called the homotopy category of spaces. It can be shown
that S−1Top is equivalent to the category whose objects are CW -complexes and
whose morphisms are homotopy classes of continuous maps.

One comment before going on. Let us denote by Ho(Cat) the category S−1Cat
considered in example (4) above. Let C be a category and S be a set of morphisms in
C. We define a functor

F : Ho(Cat)−→ Set

sending a category D to the set of all isomorphism classes of functors C −→ D sen-
ding S to isomorphisms. The functor F is therefore a sub-functor of the functor hC

corepresented by C. Another way to consider localization is by stating that the func-
tor F is corepresentable by an object S−1C ∈ Ho(Cat). This last point of view is a
bit less precise as the original notion of localizations, as the object S−1C satisfies a
universal property only on the level of isomorphism classes of functors and not on
the level of categories of functors themselves. However, this point of view is often
useful and enough in practice.
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Exercise 2.1.1 Let C and D be two categories and S (resp. T ) be a set of morphisms
in C (resp. in D) containing the identities.

(a) Prove that the natural functor

C×D−→ (S−1C)× (T−1D)

is a localization of C×D with respect to the set S×T. In other words localiza-
tions commutes with finite products.

(b) We assume that there exist two functors

f : C −→D C←− D : g

with f (S) ⊂ T and g(T ) ⊂ S. We also assume that there exists two natural
transformations h : f g⇒ id and k : g f ⇒ id such that for any x ∈ C (resp.
y ∈D) the morphism k(y) : g( f (x))→ x (resp. h(y) : f (g(y))→ y) is in S (resp.
in T ). Prove that the induced functors

f : S−1C −→ T−1D S−1C←− T−1D : g

are equivalences inverse to each other.
(c) If S consists of all morphisms in C and if C has a final or initial object then

C −→ ∗ is a localization of C with respect to S.

Exercise 2.1.2 Let Cat be the category of categories and functors, and let [Cat] be
the category whose objects are categories and whose morphisms are isomorphism
classes of functors (i.e. Hom[Cat](C,D) is the set of isomorphism classes of objects in
Hom(C,D)). Show that the natural projection

Cat −→ [Cat]

is a localization of Cat along the subset of equivalences of categories (prove directly
that it has the correct universal property).

2.2 Bad Behavior of the Gabriel–Zisman Localization

In these lectures we will be mainly interested in localized categories of the type D(R)
for some ring R (or some more general object, see lecture 2). I will therefore explain
the bad behaviour of the localization using examples of derived categories. However,
this bad behaviour is a general fact and also applies to other examples of localized
categories.

Though the localization construction is useful to construct interesting new ca-
tegories, the resulting localized categories are in general badly behaved. Often, the
category to be localized has some nice properties, such as the existence of limits and
colimits or being abelian, but these properties are lost after localization. Here is a
sample of problems often encountered in practice.
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(a) The derived category D(R) lacks the standard categorical constructions of
limits and colimits. There exists a non-zero morphism e : Z/2 −→ Z/2[1] in
D(Z), corresponding to the non-zero element in Ext1(Z/2,Z/2) (recall that
Exti(M,N) � [M,N[i]], where N[i] is the complex whose only non-zero part is
N in degree −i, and [−,−] denotes the morphisms in D(R)). Suppose that the
morphism e has a kernel, i.e. that a fiber product

X ��

��

Z/2

e

��
0 �� Z/2[1]

exists in D(Z). Then, for any integer i, we have a short exact sequence

0 �� [Z,X [i]] �� [Z,Z/2[i]] �� [Z,Z/2[i+ 1]],

or in other words

0 �� Hi(X) �� Hi(Z/2) �� Hi+1(Z/2).

This implies that X −→ Z/2 is a quasi-isomorphism, and thus an isomorphism
in D(Z). In particular e = 0, which is a contradiction.
A consequence of this is that D(R) is not an abelian category, though the
category of complexes itself C(R) is abelian.

(b) The fact that D(R) has no limits and colimits might not be a problem by itself,
as it is possible to think of interesting categories which do not have limits and
colimits (e.g. any non-trivial groupoid has no final object). However, the case of
D(R) is very frustrating as it seems that D(R) is very close to having limits and
colimits. For instance it is possible to show that D(R) admits homotopy limits
and homotopy colimits in the following sense. For a category I, let C(R)I be
the category of functors from I to C(R). A morphism f : F −→ G (i.e. a natu-
ral transformation between two functors F,G : I −→C(R)) is called a levelwise
quasi-isomorphism if for any i ∈ I the induced morphism f (i) : F(i) −→ G(i)
is a quasi-isomorphism in C(R). We denote by D(R, I) the category C(R)I

localized along levelwise quasi-isomorphisms. The constant diagram functor
C(R) −→ C(R)I is compatible with localizations on both sides and provides a
functor

c : D(R)−→D(R, I).

It can then been shown that the functor c has a left and a right adjoint denoted
by

HocolimI : D(R, I)−→ D(R) D(R)←− D(R, I) : HolimI,

called the homotopy colimit and the homotopy limit functor. Homotopy limits
and colimits are very good replacement of the notions of limits and colimits,
as they are the best possible approximation of the colimit and limit functors
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that are compatible with the notion of quasi-isomorphisms. However, this is
quite unsatisfactory as the category D(R, I) depends on more than the category
D(R) alone (note that D(R, I) is not equivalent to D(R)I), and in general it is
impossible to recontruct D(R, I) from D(R).

(c) To the ring R are associated several invariants such as its K-theory spectrum,
its Hochschild (resp. cyclic) homology . . . . It is tempting to think that these
invariants can be directly defined on the level of derived categories, but this
is not the case (see [24]). However, it has been noticed that these invariants
only depend on R up to some notion of equivalence that is much weaker than
the notion of isomorphism. For instance, any functor D(R) −→ D(R′) which
is induced by a complex of (R,R′)-bi-modules induces a map on K-theory,
Hochschild homology and cyclic homology. However, it is not clear that every
functor D(R) −→ D(R′) comes from a complex of (R,R′)-bi-modules (there
are counter examples when R and R′ are dg-algebras, see [7, Remarks 2.5 and
6.8]). Definitely, the derived category of complexes of (R,R′)-bi-modules is not
equivalent to the category of functors D(R) −→ D(R′). This is again an unsa-
tisfactory situation and it is then quite difficult (if not impossible) to understand
the true nature of these invariants (i.e. of which mathematical structures are they
truly invariants?).

(d) Another important problem with the categories D(R) is their non local nature.
To explain this let P

1 be the projective line (e.g. over Z). As a scheme P
1 is the

push-out

SpecZ[X ,X−1] ��

��

SpecZ[T ]

��
SpecZ[U ] �� P1,

where T is sent to X and U is sent to X−1. According to the push-out square, the
category of quasi-coherent sheaves on P

1 can be described as the (2-categorical)
pull-back

QCoh(P1) ��

��

Mod(Z[T ])

��
Mod(Z[U ]) �� Mod(Z[X ,X−1]).

In other words, a quasi-coherent module on P
1 is the same thing as a triple

(M,N,u), where M (resp. N) is a Z[T ]-module (resp. Z[U ]-module), and u is an
isomorphism

u : M⊗Z[T ] Z[X ,X−1]� N⊗Z[U] Z[X ,X−1]

of Z[X ,X−1]-modules. This property is extremely useful in order to reduce
problems of quasi-coherent sheaves on schemes to problems of modules over
rings. Unfortunately, this property is lost when passing to the derived categories.
The square
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Dqcoh(P1) ��

��

D(Z[T ])

��
D(Z[U ]) �� D(Z[X ,X−1]),

is not cartesian (in the 2-categorical sense) anymore (e.g. there exist non
zero morphisms OX −→ OX(−2)[1] that go to zero as a morphism in
D(Z[U ])×D(Z[X ,X−1]) D(Z[T ])). The derived categories of the affine pieces of

P
1 do not determine the derived category of quasi-coherent sheaves on P

1.

The list of problems above suggests the existence of a some sort of categorical
structure lying in between the category of complexes C(R) and its derived category
D(R), which is rather close to D(R) (i.e. in which the quasi-isomorphisms are in-
verted in some sense), but for which (1)–(4) above are no longer a problem. There
exist several possible approaches, and my purpose is to present one of them using
dg-categories.

Exercise 2.2.1 Let I = BN be the category with a unique object ∗ and with the
monoid N of natural numbers as endomorphism of this object. There is a bijection
between the set of functors from I to a category C and the set of pairs (x,h), where x
in an object in C and h is an endomorphism of x.

Let R be a commutative ring.

(a) Show that there is a natural equivalence of categories

D(R, I)� D(R[X ]),

where D(R, I) is the derived category of I-diagram of complexes of R-modules
as described in example (2) above. Deduce from this that D(R, I) is never an
abelian category (unless R = 0).

(b) Prove that D(R) is abelian when R is a field (show that D(R) is equivalent to
the category of Z-graded R-vector spaces).

(c) Deduce that D(R, I) and D(R)I can not be equivalent in general.
(d) Let now I be the category with two objects 0 and 1 and a unique morphism from

1 to 0. Using a similar approach as above show that D(R, I) and D(R)I are not
equivalent in general.

2.3 DG-Categories and DG-Functors

We now fix a base commutative ring k. Unless specified, all the modules and tensor
products will be over k.

2.3.1 DG-Categories

We start by recalling that a dg-category T (over k) consists of the following data.

• A set of objects Ob(T ), also sometimes denoted by T itself
• For any pair of objects (x,y) ∈ Ob(T )2 a complex T (x,y) ∈C(k)
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• For any triple (x,y,z) ∈ Ob(T )3 a composition morphism μx,y,z : T (x,y) ⊗
T (y,z)−→ T (x,z).

• For any object x ∈ Ob(T ), a morphism ex : k −→ T (x,x)

These data are required to satisfy the following associativity and unit conditions.

(a) (Associativity) For any four objects (x,y,z,t) in T , the following diagram

T (x,y)⊗T (y,z)⊗T (z,t)
id⊗μy,z,t ��

μx,y,z⊗id

��

T (x,y)⊗T (y, t)

μx,y,t

��
T (x,z)⊗T (z,t) μx,z,t

�� T (x, t)

commutes.
(b) (Unit) For any (x,y) ∈ Ob(T )2 the two morphisms

T (x,y)� k⊗T (x,y)
ex⊗id �� T (x,x)⊗T (x,y)

μx,x,y �� T (x,y)

T (x,y)� T (x,y)⊗ k
id⊗ey �� T (x,y)⊗T(y,y)

μx,y,y �� T (x,y)

are equal to the identities.

In a more explicit way, a dg-category T can also be described as follows. It has
a set of objects Ob(T ). For any two objects x and y, and any n ∈ Z it has a k-module
T (x,y)n, though as morphisms of degree n from x to y. For three objects x, y and z,
and any integers n and m there is a composition map

T (x,y)n×T (y,z)m −→ T (x,z)n+m

which is bilinear and associative. For any object x, there is an element ex ∈ T (x,x)0,
which is a unit for the composition. For any two objects x and y there is a differential
d : T (x,y)n −→ T (x,y)n+1, such that d2 = 0. And finally, we have the graded Leibnitz
rule

d( f ◦ g) = d( f )◦ g +(−1)m f ◦ d(g),

for f and g two composable morphisms, with f of degree m. Note that this implies
that d(ex) = 0, and thus that ex is always a zero cycle in the complex T (x,x).

On a more conceptual side, a dg-category is a C(k)-enriched category in the sense
of [17], where C(k) is the symmetric monoidal category of complexes of k-modules.
All the basic notions of dg-categories presented in these notes can be expressed
in terms of enriched category theory, but we will not use this point of view. We,
however, encourage the reader to consult [17] and to (re)consider the definitions of
dg-categories, dg-functors, tensor product of dg-categories . . . in the light of enriched
category theory.
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Examples:

(a) A very simple example is the opposite dg-category T op of a dg-category T . The
set of objects of T op is the same as the one of T , and we set

T op(x,y) := T (y,x)

together with the obvious composition maps

T (y,x)⊗T (z,y)� T (z,y)⊗T (y,x)−→ T (z,x),

where the first isomorphism is the symmetry isomorphism of the monoidal
structure on the category of complexes (see [5, Sect. X.4.1] for the signs rule).

(b) A fundamental example of dg-category over k is the one given by considering
the category of complexes over k itself. Indeed, we define a dg-category C(k)
by setting its set of objects to be the set of complexes of k-modules. For two
complexes E and F , we define C(k)(E,F) to be the complex Hom∗(E,F) of
morphisms from E to F . Recall, that for any n ∈ Z the k-module of elements of
degree n in Hom∗(E,F) is given by

Homn(E,F) := ∏
i∈Z

Hom(Ei,Fi+n).

The differential
d : Homn(E,F)−→Homn+1(E,F)

sends a family { f i}i∈Z to the family {d ◦ f i− (−1)n f i+1 ◦ d}i∈Z. Note that the
zero cycles in Hom∗(E,F) are precisely the morphisms of complexes from E
to F . The composition of morphisms induces composition morphisms

Homn(E,F)×Homm(E,F)−→Homn+m(E,F).

It is easy to check that these data defines a dg-category C(k).
(c) There is slight generalization of the previous example for the category C(R)

of complexes of (left) R-modules, where R is any associative and unital
k-algebra. Indeed, for two complexes of R-modules E and F , there is a com-
plex Hom∗(E,F) defined as in the previous example. The only difference is
that now Hom∗(E,F) is only a complex of k-modules and not of R-modules in
general (except when R is commutative). These complexes define a dg-category
C(R) whose objects are complexes of R-modules.

(d) A far reaching generalization of the two previous examples is the case of
complexes of objects in any k-linear Grothendieck category (i.e. an abelian co-
complete category with a small generator and for which filtered colimits are
exact, or equivalently a localization of a modules category, see [10]). Indeed,
for such a category A and two complexes E and F of objects in A , we define
a complex of k-modules Hom∗(E,F) as above

Homn(E,F) := ∏
i∈Z

Hom(Ei,Fi+n),
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with the differential given by the same formula as in example (2). The
composition of morphisms induce morphisms

Homn(E,F)×Homm(F,G)−→Homn+m(E,G).

It is easy to check that these data define a dg-category whose objects are
complexes in A . It will be denoted by C(A ).

(e) From a dg-category T , we can construct a category Z0(T ) of 0-cycles as follows.
It has the same objects as T , and for two such objects x and y the set of mor-
phisms between x and y in Z0(T ) is defined to be the set of 0-cycles in T (x,y)
(i.e. degree zero morphisms f ∈ T (x,y)0 such that d( f ) = 0. The Leibniz rule
implies that the composition of two 0-cycles is again a 0-cycle, and thus we
have induced composition maps

Z0(T (x,y))×Z0(T (y,z)) −→ Z0(T (x,z)).

These composition maps define the category Z0(T ). The category Z0(T ) is often
named the underlying category of T . We observe that Z0(T ) is more precisely
a k-linear category (i.e. that Homs sets are endowed with k-module structures
such that the composition maps are bilinear).
For instance, let A be a Grothendieck category and C(A ) its associated
dg-category of complexes as defined in example (4) above. The underlying ca-
tegory of C(A ) is then isomorphic to the usual category C(A ) of complexes
and morphisms of complexes in A .

(f) Conversely, if C is a k-linear category we view C as a dg-category in a rather
obvious way. The set of objects is the same of the one of C, and the complex of
morphisms from x to y is simply the complex C(x,y)[0], which is C(x,y) in de-
gree 0 and 0 elsewhere. In the sequel, every k-linear category will be considered
as a dg-category in this obvious way. Note that, this way the category of k-linear
categories and k-linear functors form a full sub-category of dg-categories and
dg-functors (see Sect. 1.3.2 below).

(g) A dg-category T with a unique object is essentially the same thing as a
dg-algebra. Indeed, if x is the unique object the composition law on T (x,x)
induces a unital and associative dg-algebra structure on T (x,x). Conversely, if
B is a unital and associative dg-algebra we can construct a dg-category T with
a unique object x and with T (x,x) := B. The multiplication in B is then used to
define the composition on T (x,x).

(h) Here is now a non-trivial example of a dg-category arising from geometry. In
this example k = R. Let X be a differential manifold (say C ∞). Recall that a flat
vector bundle on X consists the data of a smooth (real) vector bundle V on X
together with a connexion

∇ : A0(X ,V )−→ A1(X ,V ),

(where An(X ,V ) is the space of smooth n-forms on X with coefficients in V )
such that ∇2 = 0. For two such flat bundles (V,∇V ) and (W,∇W ) we define a
complex A∗DR(V,W ) by
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A∗DR(V,W )n := An(X ,Hom(V,W )),

where Hom(V,W ) is the vector bundle of morphisms from V to W . The
differential

d : An
DR(V,W )−→ An+1

DR (V,W )

is defined by sending ω ⊗ f to d(ω)⊗ f + (−1)nω ∧∇( f ). Here, ∇( f ) is the
1-form with coefficients in Hom(V,W ) defined by

∇( f ) := ∇W ◦ f − ( f ⊗ id)◦∇V .

The fact that ∇2
V = ∇2

W = 0 implies that A∗DR(V,W ) is a complex. Moreover, we
define a composition

An
DR(U,V )×Am

DR(V,W )−→ An+m(U,W )

for three flat bundles U , V and W by

(ω⊗ f ).(ω ′ ⊗g) := (ω ∧ω ′)⊗ ( f ◦ g).

It is easy to check that these data defines a dg-category TDR(X) (over R) whose
objects are flat bundles on X , and whose complex of morphisms from (V,∇V )
to (W,∇W ) are the complexes A∗DR(V,W ).
By construction the underlying category of TDR(X) is the category of flat
bundles and flat maps. By the famous Riemann–Hilbert correspondence (see
[6] for the analog statement in the complex analytic case) this category is thus
equivalent to the category of finite dimensional linear representations of the
fundamental group of X , or equivalently of finite dimensional local systems
(i.e. of locally constant sheaves of finite dimensional C-vector spaces). Moreo-
ver, for two flat bundles (V,∇V ) and (W,∇W ), corresponding to two local sys-
tems L1 and L2, the cohomology group Hi(TDR(X)(V,W )) = Hi(A∗DR(V,W )) is
isomorphic to the Ext group Exti(L1,L2), computed in the category of abelian
sheaves over X . Therefore, we see that even when X is simply connected the
dg-category TDR(X) contains interesting informations about the cohomology of
X (even though the underlying category of TDR(X) is simply the category of
finite dimensional vector spaces).

(i) The previous example has the following complex analog. Now we let k = C,
and X be a complex manifold. We define a dg-category TDol(X) in the following
way. The objects of TDol(X) are the holomorphic complex vector bundles on X .
For two such holomorphic bundles V and W we let

TDol(X)(V,W ) := A∗Dol(V,W ),

where A∗Dol(V,W ) is the Dolbeault complex with coefficients in the vector
bundle of morphisms from V to W . Explicitely,

Aq
Dol(V,W ) := A0,q(X ,Hom(V,W ))
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is the space of (0,q)-forms on X with coefficients in the holomorphic bundle
Hom(V,W ) of morphisms from V to W . The differential

Aq
Dol(V,W )−→ Aq+1

Dol (V,W )

is the operator ∂ , sending ω⊗ f to

∂ (ω⊗ f ) := ∂ (ω)⊗ f +(−1)qω ∧∂ ( f ),

where ∂ ( f ) is defined by

∂ ( f ) = ∂W ◦ f − ( f ⊗ id)◦ ∂V ,

with

∂V : A0(X ,V )−→ A0,1(X ,V ) ∂W : A0(X ,W )−→ A0,1(X ,W )

being the operators induced by the holomorphic structures on V and W (see [11,
Chap 0 Sect. 5]). As in the previous example we can define a composition

A∗Dol(U,V )×A∗Dol(V,W )−→ A∗Dol(U,W )

for three holomorphic bundles U , V and W on X . These data defines a
dg-category TDol(X) (over C).
By construction, the underlying category of TDol(X) has objects the holomor-
phic vector bundles, and the morphisms in this category are the C ∞-morphisms
of complex vector bundles f : V −→W satisfying ∂ ( f ) = 0, or equivalently
the holomorphic morphisms. Moroever, for two holomorphic vector bundles V
and W the cohomology group Hi(TDol(X)) is isomorphic to Exti

OX
(V ,W ), the

i-th ext-group between the associated sheaves of holomorphic sections (or equi-
valently the ext-group in the category of holomorphic coherent sheaves). For
instance, if 1 is the trivial vector bundle of rank 1 and V is any holomorphic
vector bundle, we have

Hi(TDol(1,V ))� Hi
Dol(X ,V ),

the i-th Dolbeault cohomology group of V .
The dg-category TDol(X) is important as it provides a rather explicit model
for the derived category of coherent sheaves on X . Indeed, the homotopy
category H0(TDol(X)) (see definition 2.3.1) is equivalent to the full sub-category
of Db

coh(X), the bounded coherent derived category of X , whose objects are
holomorphic vector bundles. Also, for two such holomorphic vector bundles
V and W and all i we have

HomDb
coh(X)(V,W [i])� Hi(TDol(X)(V,W ))� Exti

OX
(V ,W ).
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(j) Here is one last example of a dg-category in the topological context. We
construct a dg-category dgTop, whose set of objects is the set of all topological
spaces. For two topological spaces X and Y , we define a complex of morphisms
dgTop(X ,Y) in the following way. We first consider HomΔ (X ,Y ), the simpli-
cial set (see [13] for the notion of simplicial sets) of continuous maps between
X and Y : by definition the set of n-simplicies in HomΔ (X ,Y ) is the set of conti-
nuous maps X ×Δ n −→ Y , where Δ n := {x ∈ [0,1]n+1/∑xi = 1} is the stan-
dard simplex of dimension n in R

n+1. The face and degeneracy operators of
HomΔ (X ,Y ) are defined using the face embeddings (0≤ i≤ n)

di : Δ n −→ Δ n+1

x �→ (x0, . . . ,xi−1,0,xi, . . .xn),

and the natural projections (0≤ i≤ n)

si : Δ n+1 −→ Δ n

x �→ (x0, . . . ,xi + xi+1,xi+2, . . . ,xn+1).

Now, for any two topological spaces X and Y we set

dgTop(X ,Y) := C∗(HomΔ (X ,Y )),

the homology chain complex of HomΔ (X ,Y ) with coefficients in k. Explicitly,
Cn(HomΔ (X ,Y )) is the free k-module generated by continuous maps
f : X×Δ n −→ Y . The differential of such a map is given by the formula

d( f ) := ∑
0≤i≤n

(−1)idi( f ),

where di( f ) is the map X×Δ n−1 −→ Y obtained by composition

X×Δ n−1
id×di �� X×Δ n f �� Y.

For three topological spaces X , Y and Z, there exists a composition morphism
at the level of simplicial sets of continuous maps

HomΔ (X ,Y )×HomΔ(Y,Z) −→ HomΔ (X ,Z).

This induces a morphism on the level of chain complexes

C∗(HomΔ (X ,Y )×HomΔ(Y,Z)) −→C∗(HomΔ (X ,Z)).

Composing this morphism with the famous Eilenberg–MacLane map (see [20,
Sect. 29])

C∗(HomΔ (X ,Y ))⊗C∗(HomΔ (Y,Z)) −→C∗(HomΔ (X ,Y )×HomΔ(Y,Z))

defines a composition

dgTop(X ,Y)⊗dgTop(Y,Z)−→ dgTop(X ,Z).

The fact that the Eilenberg–MacLane morphisms are associative and unital
(they are moreover commutative, see [20, Sect. 29]) implies that this defines
a dg-category dgTop.
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2.3.2 DG-Functors

For two dg-categories T and T ′, a morphism of dg-categories (or simply a
dg-functor) f : T −→ T ′ consists of the following data.

• A map of sets f : Ob(T )−→Ob(T ′).
• For any pair of objects (x,y) ∈ Ob(T )2, a morphism in C(k)

fx,y : T (x,y)−→ T ′( f (x), f (y)).

These data are required to satisfy the following associativity and unit conditions.

(a) For any (x,y,z) ∈ Ob(T )3 the following diagram

T (x,y)⊗T(y,z)
μx,y,z ��

fx,y⊗ fy,z
��

T (x,z)

fx,z
��

T ′( f (x), f (y))⊗T ′( f (y), f (z))
μ ′f (x), f (y), f (z)

�� T ′( f (x), f (z))

commutes.
(b) For any x ∈Ob(T ), the following diagram

k
ex ��

e′f (x) ������������� T (x,x)

fx,x
��

T ′( f (x), f (x))

commutes.

Examples:

(a) Let T be any dg-category and x ∈ T be an object. We define a dg-functor

f = hx : T −→C(k)

in the following way (recall that C(k) is the dg-category of complexes over k).
The map on the set of objects sends an object y ∈ T to the complex T (x,y). For
two objects y and z in T we define a morphism

fy,z : T (y,z) −→C(k)( f (y), f (x)) = Hom∗(T (x,y),T (x,z)),

which by definition is the adjoint to the composition morphism

mx,y,z : T (x,y)⊗T (y,z) −→ T (x,z).

The associativity and unit condition on composition of morphisms in T imply
that this defines a morphism of dg-categories

hx : T −→C(k).

Dually, we can also define a morphism of dg-categories

hx : T op −→C(k)

by sending y to T (y,x).
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(b) For any dg-category T there exists a dg-functor

T ⊗T op −→C(k),

sending a pair of objects (x,y) to the complex T (y,x). Here, T ⊗ T op denotes
the dg-category whose set of objects is Ob(T )×Ob(T ′), and whose complex of
morphisms are given by

(T ⊗T op)((x,y),(x′,y′)) := T (x,x′)⊗T (y′,y).

We refer to Exercise 2.3.4 and Sect. 3.2 for more details about the tensor product
of dg-categories.

(c) Let R and S be two associative and unital k-algebras, and f : R −→ S be a
k-morphism. The morphism f induces two functors

f ∗ : C(R)−→C(S) C(R)←−C(S) : f∗,

adjoint to each others. The functor f∗ sends a complex of S-modules to the
corresponding complex of R-modules obtained by restricting the scalars from
S to R by the morphism f . Its left adjoint f ∗ sends a complex of R-modules E
to the complex S⊗R E . It is not difficult to show that the functors f∗ and f ∗ are
compatible with the complex of morphisms Hom∗ and thus define morphisms
of dg-categories

f ∗ : C(R)−→C(S) C(R)←−C(S) : f∗.

More generally, if f : A −→B is any k-linear functor between Grothendieck
categories, there is an induced morphism of dg-categories

f : C(A )−→C(B).

(d) Let f : X −→ Y be a C ∞-morphism between two differential manifolds. Then,
the pull-back for flat bundles and differential forms defines a morphism of
dg-categories constructed in our example 8

f ∗ : TDR(Y )−→ TDR(X).

In the same way, if now f is a holomorphic morphism between two complex
varieties, then there is a dg-functor

f ∗ : TDol(Y )−→ TDol(X)

ontained by pulling-back the holomorphic vector bundles and differential forms.

DG-functors can be composed in an obvious manner, and dg-categories together
with dg-functors form a category denoted by dg− catk (or dg− cat if the base ring k
is clear).
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For a dg-category T , we define a category H0(T ) in the following way. The set
of objects of H0(T ) is the same as the set of objects of T . For two objects x and y the
set of morphisms in H0(T ) is defined by

H0(T )(x,y) := H0(T (x,y)).

Finally, the composition of morphisms in H0(T ) is defined using the natural
morphisms

H0(T (x,y))⊗H0(T (y,z)) −→ H0(T (x,y)⊗T (y,z))

composed with the morphism

H0(μx,y,z) : H0(T (x,y)⊗T (y,z)) −→ H0(T (x,z)).

Definition 2.3.1 The category H0(T ) is called the homotopy category of T .

Examples:

(a) If C is a k-linear category considered as a dg-category as explained in our
example 6 above, then H0(C) is naturally isomorphic to C itself.

(b) We have H0(T op) = H0(T )op for any dg-category T .
(c) For a k-algebra R, the homotopy category H0(C(R)) is usually denoted by K(R),

and is called the homotopy category of complexes of R-modules. More generally,
if A is a Grothendieck category, H0(C(A )) is denoted by K(A ), and is called
the homotopy category of complexes in A .

(d) If X is a differentiable manifold, then H0(TDR(X)) coincides with Z0(TDR(X))
and is isomorphic to the category of flat bundles and flat maps between them. As
we already mentioned, this last category is equivalent by the Riemann–Hilbert
correspondence to the category of local systems on X .
When X is a complex manifold, we also have that H0(TDol(X)) coincides with
Z0(TDol(X)) and is isomorphic to the category of holomorphic vector bundles
and holomorphic maps between them.

(e) The category H0(dgTop) is the category whose objects are topological spaces
and whose set of morphisms between X and Y is the free k-module over the set
of homotopy classes of maps from X to Y .

One of the most important notions in dg-category theory is the notion of
quasi-equivalences, a mixture in between quasi-isomorphisms and categorical
equivalences.

Definition 2.3.2 Let f : T −→ T ′ be a dg-functor between dg-categories

(a) The morphism f is quasi-fully faithful if for any two objects x and y in T the
morphism fx,y : T (x,y)−→ T ′( f (x), f (y)) is a quasi-isomorphism of complexes.

(b) The morphism f is quasi-essentially surjective if the induced functor H0( f ) :
H0(T )−→H0(T ′) is essentially surjective.

(c) The morphism f is a quasi-equivalence if it is quasi-fully faithful and quasi-
essentially surjective.
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We will be mainly interested in dg-categories up to quasi-equivalences. We
therefore introduce the following category.

Definition 2.3.3 The homotopy category of dg-categories is the category dg− cat
localized along quasi-equivalences. It is denoted by Ho(dg− cat). Morphisms in
Ho(dg− cat) between two dg-categories T and T ′ will often be denoted by

[T,T ′] := HomHo(dg−cat)(T,T ′).

Note that the construction T �→ H0(T ) provides a functor H0(−) : dg− cat −→
Cat, which descends as a functor on homotoy categories

H0(−) : Ho(dg− cat)−→ Ho(Cat).

Remark 1. In the last section we have seen that the localization construction is not
well behaved, but in the definition above we consider Ho(dg−cat) which is obtained
by localization. Therefore, the category Ho(dg−cat) will not be well behaved itself.
In order to get the most powerful approach the category dg− cat should have been
itself localized in a more refined maner (e.g. as a higher category, see [29, Sect. 2]).
We will not need such an evolved approach, and the category Ho(dg− cat) will be
enough for most of our purpose.

Examples:

(a) Let f : T −→ T ′ be a quasi-fully faithful dg-functor. We let T ′0 be the full (i.e.
with the same complexes of morphisms as T ′) sub-dg-category of T ′ consisting
of all objects x∈ T ′ such that x is isomorphic in H0(T ′) to an object in the image
of the induced functor H0( f ) : H0(T )−→H0(T ′). Then the induced dg-functor
T −→ T ′0 is a quasi-equivalence.

(b) Let f : R−→ S be a morphism of k-algebras. If the morphism of dg-categories

f ∗ : C(R)−→C(S)

is quasi-fully faithful then the morphism f is an isomorphism. Indeed, if f ∗ is
quasi-fully faithful we have that

Hom∗(R,R)−→Hom∗(S,S)

is a quasi-isomorphism. Evaluating this morphism of complexes at H0 we find
that the induced morphism

R� H0(Hom∗(R,R))−→H0(Hom∗(S,S))� S

is an isomorphism. This last morphism being f itself, we see that f is an
isomorphism.

(c) Suppose that T is a dg-category such that for all objects x and y we have
Hi(T (x,y)) = 0 for all i �= 0. We are then going to show that T and H0(T ) are
isomorphic in Ho(dg− cat). We first define a dg-category T≤0 in the following
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way. The dg-category T≤0 possesses the same set of objects as T itself. For two
objects x and y we let

T≤0(x,y)n := T (x,y) i f n < 0 T≤0(x,y)n := 0 i f n > 0

and
T≤0(x,y)0 := Z0(T (x,y)) = Ker(d : T (x,y)0→ T (x,y)1).

The differential on T≤0(x,y) is simply induced by the one on T (x,y). It is
not hard to see that the composition morphisms of T induces composition
morphisms

T≤0(x,y)n×T≤0(y,z)m −→ T≤0(x,z)n+m

which makes these data into a dg-category T≤0 (this is because the composition
of two 0-cocycles is itself a 0-cocycle). Moreover, there is a natural dg-functor

T≤0 −→ T

which is the identity on the set of objects and the natural inclusions of
complexes

T≤0(x,y)⊂ T (x,y)

on the level of morphisms. Now, we consider the natural dg-functor (here,
as always, the k-linear category H0(T ) is considered as a dg-category in the
obvious way)

T≤0 −→ H0(T )

which is the identity on the set of objects and the natural projection

T≤0(x,y)−→H0(T (x,y)) = H0(T≤0(x,y)) = T≤0(x,y)0/Im(T (x,y)−1→ T≤0(x,y)0)

on the level of morphisms. We thus have a diagram of dg-categories and
dg-functors

H0(T ) T≤0 ���� T,

which by assumptions on T are all quasi-equivalences. This implies that T and
H0(T ) becomes isomorphic as objects in Ho(dg− cat).

(d) Suppose that f : X −→ Y is a C ∞ morphism between differentiable manifolds,
such that there exists another C ∞ morphism g : Y −→X and two C ∞ morphisms

h : X×R−→ X k : Y ×R−→ Y

with
hX×{0} = g f , hX×{1} = id kY×{0} = f g, kY×{1} = id.

Then the dg-functor
f ∗ : TDR(Y )−→ TDR(X)

is a quasi-equivalence. Indeed, we know that H0(TDR(X)) is equivalent to the
category of linear representations of the fundamental group of X . Therefore,
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as the morphism f is in particular a homotopy equivalence it induces an
isomorphisms on the level of the fundamental groups, and thus the induced
functor

f ∗ : H0(TDR(Y ))−→ H0(TDR(X))

is an equivalence of categories. The fact that the dg-functor f ∗ is also quasi-
fully faithful follows from the homotopy invariance of de Rham cohomology,
and more precisely from the fact that the projection p : X ×R−→ X induces a
quasi-equivalence of dg-categories

p∗ : TDR(X)−→ TDR(X×R).

We will not give more details in these notes.
As particular case of the above statement we see that the projection R

n −→ ∗
induces a quasi-equivalence

TDR(∗)−→ TDR(Rn).

As TDR(∗) is itself isomorphic to the category of finite dimensional real vector
spaces, we see that TDR(Rn) is quasi-equivalent to the category of finite dimen-
sional vector spaces.

(e) Let now X be a connected complex manifold and p : X −→ ∗ be the natural
projection. Then the induced dg-functor

p∗ : TDol(∗)−→ TDol(X)

is quasi-fully faithful if and only if Hi(X ,OX) = 0 for all i �= 0 (here OX is the
sheaf of holomorphic functions on X). Indeed, all the vector bundles are trivial
on ∗. Moreover, for 1r and 1s two trivial vector bundles of rank r and s on ∗ we
have

TDol(X)(p∗(1r), p∗(1s))� TDol(X)(1,1)rs,

where 1 also denotes the trivial holomorphic bundle on X . Therefore, p∗ is
quasi-fully faithful if and only if Hi(TDol(X))(1,1) = 0 for all i �= 0. As we
have

Hi(TDol(X)(1,1)) = Hi
Dol(X ,1) = Hi(X ,OX )

this implies the statement. As an example, we see that

TDol(∗)−→ TDol(Pn)

is quasi-fully faithful (here P
n denotes the complex projective space), but

TDol(∗)−→ TDol(E)

is not for any complex elliptic curve E .
More generally, if f : X −→ Y is any proper holomorphic morphism between
complex manifolds, then the dg-functor

f ∗ : TDol(Y )−→ TDol(X)
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is quasi-fully faithful if and only if we have

R
i f∗(OX ) = 0 ∀ i > 0,

where R
i f∗(OX ) denotes the higher direct images of the coherent sheaf OX of

holomorphic functions on X (see e.g. [11]). We will not prove this statement
in these notes. As a consequence we see that f ∗ is quasi-fully faithful if it is
a blow-up along a smooth complex sub-manifold of Y , or if it is a bundle in
complex projective spaces.

(f) For more quasi-equivalences between dg-categories in the context of non-
abelian Hodge theory see [26].

Exercise 2.3.4 (a) Let T and T ′ be two dg-categories. Show how to define a
dg-category T ⊗ T ′ whose set of objects is the product of the sets of objects
of T and T ’, and for any two pairs (x,y) and (x′,y′)

(T ⊗T ′)((x,y),(x′,y′)) := T (x,y)⊗T ′(x′,y′).

(b) Show that the construction (T,T ′) �→ T ⊗ T ′ defines a symmetric monoidal
structure on the category dg− cat.

(c) Show that the symmetric monoidal structure⊗ on dg−cat is closed (i.e. that for
any two dg-categories T and T ′ there exists a dg-category Hom(T,T ′) together
with functorial isomorphisms

Hom(T ′′,Hom(T,T ′))� Hom(T ′′ ⊗T,T ′).

Exercise 2.3.5 Let k→ k′ be a morphism of commutative rings, and dg−catk (resp.
dg− catk′) the categories of dg-categories over k (resp. over k′).

(a) Show that there exists a forgetful functor

dg− catk′ −→ dg− catk

which consists of seing complexes over k′ as complexes over k using the
morphism k→ k′.

(b) Show that this forgetful functor admits a left adjoint

−⊗k k′ : dg− catk −→ dg− catk′.

(c) Let 1k′ be the dg-category over k with a single object and with k′ as k-algebra
of endomorphisms of this object. Show that for any dg-category T over k, there
exists a natural isomorphism of dg-categories over k

T ⊗k k′ � T ⊗1k′ ,

where the tensor product on the right is the one of dg-categories over k as
defined in exercise 2.3.4, and the left hand side is considered as an object in
dg− catk throught the forgetful functor.
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(d) Show that the forgetful functor

dg− catk′ −→ dg− catk

also possesses a right adjoint

(−)k′/k : dg− catk −→ dg− catk′

(show that for any T ∈ dg− catk the dg-category Hom(1k′ ,T ) can be naturally
endowed with a structure of dg-category over k′).

Exercise 2.3.6 Let T be a dg-category and u ∈ Z0(T (x,y)) a morphism in its
underlying category. Show that the following four conditions are equivalent.

(a) The image of u in H0(T (x,y)) is an isomorphism in H0(T ).
(b) There exists v ∈ Z0(T (y,x)) and two elements h ∈ T (x,x)−1, k ∈ T (y,y)−1 such

that
d(h) = vu− ex d(k) = uv− ey.

(c) For any object z ∈ T , the composition with u

u ◦− : T (z,x) −→ T (z,y)

is a quasi-isomorphism of complexes.
(d) For any object z ∈ T , the composition with u

−◦ u : T (y,z)−→ T (x,z)

is a quasi-isomorphism of complexes.

Exercise 2.3.7 We denote by B the commutative k-dg-algebra whose underlying
graded k-algebra is a (graded commutative) polynomial algebra in two variables
k[X ,Y ], with X in degree 0, Y in degree −1 and d(Y ) = X2. We consider B as a
dg-category with a unique object.

(a) Show that there exists a natural quasi-equivalence

p : B−→ k[X ]/(X2) =: k[ε],

where k[ε] is the commutative algebra of dual numbers, considered as a dg-
category with a unique object.

(b) Show that p does not admit a section in dg− cat. Deduce from this that unlike
the case of categories, there are quasi-equivalences T −→ T ′ in dg− cat such
that the inverse of f in Ho(dg− cat) can not be represented by a dg-functor
T ′ −→ T in dg− cat (i.e. quasi-inverses do not exist in general).

Exercise 2.3.8 Show that two k-linear categories are equivalent (as k-linear cate-
gories) if and only if they are isomorphic in Ho(dg− cat).
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2.4 Localizations as a dg-Category

For a k-algebra R, the derived category D(R) is defined as a localization of the
category C(R), and thus has a universal property in Ho(Cat). The purpose of this
series of lectures is to show that C(R) can also be localized as a dg-category C(R) in
order to get an object L(R) satisfying a universal property in Ho(dg− cat). The two
objects L(R) and D(R) will be related by the formula

H0(L(R)) � D(R),

and we will see that the extra information encoded in L(R) is enough in order to solve
all the problems mentioned in Sect. 1.2.

Let T be any dg-category, S be a subset of morphisms in the category H0(T ), and
let us define a subfunctor FT,S of the functor [T,−], corepresented by T ∈ Ho(dg−
cat). We define

FT,S : Ho(dg− cat)−→Ho(Cat)

by sending a dg-category T ′ to the subset of morphisms [T,T ′] consisting of all
morphism f whose induced functor H0( f ) : H0(T )−→H0(T ′) sends morphisms of
S to isomorphisms in H0(T ′). Note that the functor H0( f ) is only determined as a
morphism in Ho(Cat), or in other words up to isomorphism. However, the property
that H0( f ) sends elements of S to isomorphisms is preserved under isomorphisms of
functors, and thus only depends on the class of H0( f ) as a morphism in Ho(Cat).

Definition 2.4.1 For T and S as above, a localization of T along S is a dg-category
LST corepresenting the functor FT,S.

To state the previous definition in more concrete terms, a localization is the data
of a dg-category LST and a dg-functor l : T −→ LST , such that for any dg-category
T ′ the induced map

l∗ : [LST,T ′]−→ [T,T ′]

is injective and identifies the left hand side with the subset FT,S(T ′)⊂ [T,T ′].

An important first question is the existence of localization as above. We will see
that like localizations of categories they always exist. This, of course, requires to
know how to compute the set [T,T ′] of morphisms in Ho(dg− cat). As the category
Ho(dg− cat) is itself defined by localization this is not an easy problem. We will
give a solution to this question in the next lectures, based on an approach using
model category theory.

3 Lecture 2: Model Categories and dg-Categories

The purpose of this second lecture is to study in more details the category Ho(dg−
cat). Localizations of categories are very difficult to describe in general. The purpose
of model category theory is precisely to provide a general tool to describe localized
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categories. By definition, a model category is a category together with three classes of
morphisms, fibrations, cofibrations and (weak) equivalences satisfying some axioms
mimicking the topological notions of Serre fibrations, cofibrations and weak homo-
topy equivalences. When M is a model category, with W as equivalences, then the
localized category W−1M possesses a very nice description in terms of homotopy
classes of morphisms between objects belonging to a certain class of nicer objects
called fibrant and cofibrant. A typical example is when M = Top is the category
of topological spaces and W is the class of weak equivalences (see example 5 of
Sect. 2.1). Then all objects are fibrant, but the cofibrant objects are the retracts of
CW-complexes. It is well known that the category W−1Top is equivalent to the cate-
gory of CW-complexes and homotopy classes of continuous maps between them.

In this lecture, I will start by some brief reminders on model categories. I will
then explain how model category structures appear in the context of dg-categories
by describing the model category of dg-categories (due to G. Tabuada, [27]) and
the model category of dg-modules. We will also see how model categories can be
used in order to construct interesting dg-categories. In the next lecture these model
categories will be used in order to understand maps in Ho(dg−cat), and to prove the
existence of several important constructions such as localization and internal Homs.

3.1 Reminders on Model Categories

In this section we use the conventions of [13] for the notion of model category. We
also refer the reader to this book for the proofs of the statements we will mention.

We let M be a category with arbitrary limits and colimits. Recall that a (closed)
model category structure on M is the data of three classes of morphisms in M, the
fibrations Fib, the cofibrations Co f and the equivalences W , satisfying the following
axioms (see [13]).

(a) If X
f �� Y

g �� Z are morphisms in M, then f , g and g f are all in W if
and only if two of them are in W .

(b) The fibrations, cofibrations and equivalences are all stable by retracts.
(c) Let

A
f ��

i
��

X

p

��
B g

�� Y

be a commutative square in M with i ∈Co f and p ∈ Fib. If either i or p is also
in W then there is a morphism h : B−→ X such that ph = g and hi = f .

(d) Any morphism f : X −→Y can be factorized in two ways as f = pi and f = q j,
with p ∈ Fib, i ∈Co f ∩W , q ∈ Fib∩W and j ∈Co f . Moreover, the existence
of these factorizations are required to be functorial in f .
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The morphisms in Co f ∩W are usually called trivial cofibrations and the
morphisms in Fib∩W trivial fibrations. Objects x such that /0 −→ x is a cofibra-
tion are called cofibrant. Dually, objects y such that y −→ ∗ is a fibration are called
fibrant. The factorization axiom (4) implies that for any object x there is a diagram

Qx
i �� x

p �� Rx,

where i is a trivial fibration, p is a trivial cofibration, Qx is a cofibrant object and Rx
is a fibrant object. Moreover, the functorial character of the factorization states that
the above diagram can be, and will always be, chosen to be functorial in x.

Exercise 3.1.1 Let M be a model category and i : A−→ B a morphism. We assume
that for every commutative square

A
f ��

i
��

X

p

��
B g

�� Y,

with p a fibration (resp. a trivial fibration) there is a morphism h : B−→ X such that
ph = g and hi = f . Then i is a trivial cofibration (resp. a cofibration). (Hint: factor i
using axiom (4) and use the stability of Co f and W by retracts). As a consequence,
the class Fib is determined by W and Co f , and similarly the class Co f is determined
by W and Fib.

By definition, the homotopy category of a model category M is the localized
category

Ho(M) := W−1M.

A model category structure is a rather simple notion, but in practice it is never
easy to check that three given classes Fib, Co f and W satisfy the four axioms above.
This can be explained by the fact that the existence of a model category structure
on M has a very important consequence on the localized category W−1M. For this,
we introduce the notion of homotopy between morphisms in M in the following
way. Two morphisms f ,g : X −→ Y are called homotopic if there is a commutative
diagram in M

X

i
��

f

���
��

��
��

��

C(X) h �� Y

X

j

��

g

�����������
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satisfying the following two properties:

(a) There exists a morphism p : C(X) −→ X , which belongs to Fib∩W , such that
pi = p j = id.

(b) The induced morphism

i
⊔

j : X
⊔

X −→C(X)

is a cofibration.

When X is cofibrant and Y is fibrant in M (i.e. /0 −→ X is a cofibration and
Y −→ ∗ is a fibration), it can be shown that being homotopic as defined above is an
equivalence relation on the set of morphisms from X to Y . This equivalence relation
is shown to be compatible with composition, which implies the existence of a ca-
tegory Mc f / ∼, whose objects are cofibrant and fibrant objects and morphisms are
homotopy classes of morphisms.

It is easy to see that if two morphisms f and g are homotopic in M then they are
equal in W−1M. Indeed, in the diagram above defining the notion of being homoto-
pic, the image of p in Ho(M) is an isomorphism. Therefore, so are the images of i
and j. Moreover, the inverses of the images of i and j in Ho(M) are equal (because
equal to the image of p), which implies that i and j have the same image in Ho(M).
This implies that the image of f and of g are also equal. From this, we deduce that
the localization functor

M −→Ho(M)

restricted to the sub-category of cofibrant and fibrant objects Mc f induces a well
defined functor

Mc f /∼−→Ho(M).

The main statement of model category theory is that this last functor is an equivalence
of categories.

Our first main example of a model category will be C(k), the category of
complexes over some base commutative ring k. The fibrations are taken to be the
degree-wise surjective morphisms, and the equivalences are taken to be the quasi-
isomorphisms. This determines the class of cofibrations as the morphisms having the
correct lifting property. It is an important theorem that this defines a model category
structure on C(k) (see [13]). The homotopy category of this model category is by
definition D(k) the derived category of k. Therefore, maps in D(k) can be described
as homotopy classes of morphisms between fibrant and cofibrant complexes. As the
cofibrant objects in C(k) are essentially the complexes of projective modules (see
[13] or Exercise 3.1.2 below) and that every object is fibrant, this gives back essen-
tially the usual way of describing maps in derived categories.

Exercise 3.1.2 (a) Prove that if E is a cofibrant object in C(k) then for any n ∈ Z

the k-module En is projective.
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(b) Prove that if E is a complex which is bounded above (i.e. there is an n0 such
that En = 0 for all n ≥ n0), and such that En is projective for all n, then E is
cofibrant.

(c) Contemplate the example in [13, Rem. 2.3.7] of a complex of projective modules
which is not a cofibrant object in C(k).

Here are few more examples of model categories.

Examples:

(a) The category Top of topological spaces is a model category whose equiva-
lences are the weak equivalences (i.e. continuous maps inducing isomorphisms
on all homotopy groups) and whose fibrations are the Serre fibrations (see
[13, Def. 2.3.4]). All objects are fibrant for this model category, and the ty-
pical cofibrant objects are the CW-complexes. Its homotopy category Ho(Top)
is also equivalent to the category of CW-complexes and homotopy classes of
continuous maps between them.

(b) For any model category M and any (small) category I we consider MI the cate-
gory of I-diagrams in M (i.e. of functors from I to M). We define a morphism
f : F −→ G in MI to be a fibration (resp. an equivalence) if for all i ∈ I the
induced morphism fi : F(i) −→ G(i) is a fibration (resp. an equivalence) in M.
When M satisfies a technical extra condition, precisely when M is cofibrantly
generated (see [13, Sect. 2.1]), then these notions define a model category struc-
ture on MI . The construction M �→ MI is very useful as it allows to construct
new model categories from old ones.

(c) Let Cat be the category of categories. We define a morphism in Cat to be an
equivalence if it is a categorical equivalence, and a cofibration if it is injective
on the set of objects. This defines a model category structure on Cat (see [15]).

(d) Let A be any Grothendieck category and M = C(A ) be its category of com-
plexes. Then it can be shown that there exists a model category structure on
M whose equivalences are the quasi-isomorphisms and the cofibrations are the
monomorphisms (see [14]).

Exercise 3.1.3 Let M be a model category and Mor(M) be the category of mor-
phisms in M (objects are morphisms and morphisms are commutative squares in M).
We define a morphism ( f ,g) : u−→ v

A
f ��

u

��

A′

v

��
B g

�� B′,

to be an equivalence (resp. a fibration) if both f and g are equivalences (resp.
fibrations) in M. Show that this defines a model category structure on Mor(M). Show
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moreover that a morphism ( f ,g) a cofibration if and only if f is cofibration and the
induced morphism

B
⊔

A

A′ −→ B′

are cofibrations in M.

Before going back to dg-catgeories we will need a more structured notion of a
model category structure, the notion of a C(k)-model category structure. Suppose
that M is a model category. A C(k)-model category structure on M is the data of a
functor

−⊗− : C(k)×M −→M

satisfying the following two conditions.

(a) The functor ⊗ above defines a closed C(k)-module structure on M (see [13,
Sect. 4]). In other words, we are given functorial isomorphisms in M

E⊗ (E ′ ⊗X)� (E⊗E ′)⊗X k⊗X � X

for any E,E ′ ∈ C(k) and X ∈ M (satisfying the usual associativity and unit
conditions, see [13, Sect. 4]). We are also given for two objects X and Y in
M a complex Hom(X ,Y ) ∈ C(k), together with functorial isomorphisms of
complexes

Hom(E,Hom(X ,Y ))� Hom(E⊗X ,Y)

for E ∈C(k), and X ,Y ∈M.
(b) For any cofibration i : E −→ E ′ in C(k), and any cofibration j : A −→ B in M,

the induced morphism

E⊗B
⊔

E⊗A

E ′ ⊗A−→ E ′ ⊗B

is a cofibration in M, which is moreover an equivalence if i or j is so.

Condition (1) above is a purely categorical stucture, and simply asserts the
existence of an enrichement of M into C(k) in a rather strong sense. The second
condition is a compatibility condition between this enrichement and the model struc-
tures on C(k) and M (which is the non trivial part to check in practice).

Examples:

(a) The category C(k) can be considered as enriched over itself by using the tensor
product of complexes −⊗− : C(k)×C(k) −→ C(k). For this tensoring it is a
C(k)-model category (this is another way to state that C(k) is a monoidal model
category in the sense of [13, Def. 4.2.6]).

(b) Let X be a topological space. We let Sh(X ,k) be the category of sheaves
of k-modules and C(Sh(X ,k)) be the category of complexes in Sh(X ,k). As
Sh(X ,k) is a Grothendieck category, the category C(Sh(X ,k)) can be en-
dowed with a model category structure for which the equivalences are the
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quasi-isomorphisms and the cofibrations are the monomorphisms of complexes.
The category Sh(X ,k) has a natural tensoring over the category of k-modules,
and this structure extends to a tensoring of C(Sh(X ,k)) over the category C(k).
Explicitely, if F is any sheaf of complexes of k-modules over X and E ∈C(k),
we let E⊗F to be the sheaf associated with the presheaf U �→ E⊗F (U) ∈
C(k). It can be shown that this tensoring makes C(Sh(X ,k)) into a C(k)-model
category.

One main consequence for a model category M to be a C(k)-model category is
that its homotopy category Ho(M) comes equipped with a natural enrichment over
D(k) = Ho(C(k)). Explicitely, for two objects x and y in M we set

RHom(x,y) := Hom(Qx,Ry),

where Qx is a cofibrant replacement of x and Ry is a fibrant replacement of y. The
object RHom(x,y) ∈ D(k) can be seen to define an enrichment of Ho(M) into D(k)
(see [13, Thm. 4.3.4] for details). A direct consequence of this is the important
formula

H0(RHom(x,y))� HomHo(M)(x,y).

Therefore, we see that if x and y are cofibrant and fibrant, then set of morphisms
between x and y in Ho(M) can be identified with H0(RHom(x,y)).

Exercise 3.1.4 Let f : M −→ N be a functor between two model categories.

(a) Show that if f preserves cofibrations and trivial cofibrations then it also
preserves equivalences between cofibrant objects.

(b) Assume that f preserves cofibrations and trivial cofibrations and that it does
admit a right adjoint g : N −→M. Show that g preserves fibrations and trivial
fibrations.

(c) Under the same conditions as in (2), define

L f : Ho(M)−→Ho(N)

by sending an object x to f (Qx) where Qx is a cofibrant replacement of x. In the
same way, define

Rg : Ho(M)−→Ho(N)

by sending an object y to g(Ry) where Ry is a fibrant replacement of y. Show
that L f and Rg are adjoint functors.

3.2 Model Categories and dg-Categories

We start by the model category of dg-categories itself. The equivalences for this
model structure are the quasi-equivalences. The fibrations are defined to be the mor-
phisms f : T −→ T ′ satisfying the following two properties. The cofibrations are then
defined to be the morphisms with the correct lifting property.
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(a) For any two objects x and y in T , the induced morphism

fx,y : T (x,y)−→ T ′(( f (x), f (y))

is a fibration in C(k) (i.e. is surjective).
(b) For any isomorphism u′ : x′ → y′ in H0(T ′), and any y∈H0(T ) such that f (y) =

y′, there is an isomorphism u : x→ y in H0(T ) such that H0( f )(u) = u′.

Theorem 3.2.1 (see [27]) The above definitions define a model category structure
on dg− cat.

This is a key statement in the homotopy theory of dg-categories, and many results
in the sequel will depend in an essential way from the existence of this model struc-
ture. We will not try to describe its proof in these notes, this would lead us too far.

The theorem 3.2.1 is of course very useful, even though it is not very easy to
find cofibrant dg-categories and also to describe the homotopy equivalence relation
in general. However, we will see in the next lecture that this theorem implies another
statement which provide a very useful way to described maps in Ho(dg− cat). It is
this last description that will be used in order to check that localizations in the sense
of dg-categories (see definition 2.4.1) always exist.

Exercise 3.2.2 (a) Let 1 be the dg-category with a unique object and k as endomor-
phism of this object (this is also the unit for the monoidal structure on dg−cat).
Show that 1 is a cofibrant object.

(b) Let Δ 1
k be the k-linear category with two objects 0 and 1 and with (all k’s are

here placed in degree 0)

Δ 1
k (0,0) = k Δ 1

k (0,1) = k Δ 1
k (1,1) = k Δ 1

k (1,0) = 0

and obvious compositions (Δ 1
k is the k-linearization of the category with two

objects and a unique non trivial morphism between them). Show that Δ 1
k is a

cofibrant object.
(c) Use exercice 2.3.7 in order to show that k[ε] is not a cofibrant dg-category

(when considered as a dg-category with a unique object).
(d) Let T be the dg-category with four objects x, x′, y and y′ and with the following

non trivial complex of morphisms (here we denote by k < x > the rank 1 free
k-module with basis x)

T (x,x′)0=k< f> T (x,y)0=k<u> T (x′,y′)0 = k<u′> T (y,y′)0 = k<g>

T (x,y′)0=k<u′ f>⊕ k<gu> T (x,y′)−1 = k<h> T (x,y′)i=0 f or i �= 0,−1

such that d(h) = u′ f − gu. In other words, T is freely generated by four mor-
phisms of degree 0, u, u′, f and g, one morphism of degre −1, h, and has a
unique relation d(h) = u′ f −gu. Show that there exists a trivial fibration

T −→ Δ 1
k ⊗Δ 1

k .

Show moreover that this trivial fibration possesses no section, and conclude
that Δ 1

k ⊗Δ 1
k is not a cofibrant dg-category.
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Let now T be a dg-category. A T -dg-module is the data of a dg-functor F : T −→
C(k). In other words a T -dg-module F consists of the data of complexes Fx ∈ C(k)
for each object x of T , together with morphisms

Fx⊗T(x,y)−→ Fy

for each objects x and y, satisfying the usual associativity and unit conditions.
A morphism of T -dg-module consists of a natural transformation between
dg-functors (i.e. families of morphisms Fx −→ F ′x commuting with the maps Fx⊗
T (x,y)−→ Fy and F ′x ⊗T (x,y)−→ F ′y ).

We let T −Mod be the category of T -dg-modules. We define a model category
structure on T −Mod by defining equivalences (resp. fibrations) to be the morphisms
f : F −→ F ′ such that for all x ∈ T the induced morphism fx : Fx −→ F ′x is an equi-
valence (resp. a fibration) in C(k). It is known that this defines a model category
structure (see [28]). This model category is in a natural way a C(k)-model category,
for which the C(k)-enrichment is defined by the formula (E⊗F)x := E⊗Fx.

Definition 3.2.3 The derived category of a dg-category T is

D(T ) := Ho(T −Mod).

The previous definition generalizes the derived categories of rings. Indeed, if R is
a k-algebra it can also be considered as a dg-category, sometimes denoted by BR, with
a unique object and R as endomorphism of this object (considered as a complex of
k-modules concentrated in degree 0). Then D(BR)� D(R). Indeed, a BR-dg-module
is simply a complex of R-modules.

Exercise 3.2.4 Let T be a dg-category.

(a) Let x ∈ T be an object in T and hx : T op −→C(k) the T-dg-module represented
by x (the one sending y to T (y,x)). Prove that hx is cofibrant and fibrant as an
object in T op−Mod.

(b) Prove that x �→ hx defines a functor

H0(T )−→D(T op).

(c) Show that for any F ∈ D(T op) there is a functorial bijection

HomD(T op)(hx,F)� H0(Fx).

(d) Show that the above functor H0(T )−→ D(T op) is fully faithful.

Any morphism of dg-categories f : T −→ T ′ induces an adjunction on the
corresponding model categories of dg-modules

f! : T −Mod −→ T ′ −Mod T −Mod←− T ′ −Mod : f ∗,
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for which the functor f ∗ is defined by composition with f , and f! is its left adjoint.
This adjunction is a Quillen adjunction, i.e. f ∗ preserves fibrations and trivial
fibrations, and therefore can be derived into an adjunction on the level of homotopy
categories (see exercice 3.1.4 and [13, Lem. 1.3.10])

L f! : D(T )−→ D(T ′) D(T )←− D(T ′) : f ∗ = R f ∗.

It can be proved that when f is a quasi-equivalence then f ∗ and L f! are equivalences
of categories inverse to each others (see [28, Prop. 3.2]).

Exercise 3.2.5 Let f : T −→ T ′ be a dg-functor. Prove that for any x ∈ T we have

L f!(hx)� hf (x)

in D(T ′) (recall that hx is the T -dg-module corepresented by x, sending y to T (x,y)).

For a C(k)-model category M we can also define a notion of T-dg-modules
with coefficients in M as being dg-functors T −→ M (where M is considered as a
dg-category using its C(k)-enrichment). This category is denoted by MT (so that
T −Mod = C(k)T ). When M satisfies some mild assumptions (e.g. being cofibrantly
generated, see [13, Sect. 2.1]) we can endow MT with a model category structure
similar to T −Mod, for which equivalences and fibrations are defined levelwise in
M. The existence of model categories as MT will be used in the sequel to describe
morphisms in Ho− (dg− cat).

Exercise 3.2.6 Let T and T ′ be two dg-categories. Prove that there is an equivalence
of categories

M(T⊗T ′) � (MT )T ′ .

Show moreover that this equivalence of categories is compatible with the two model
category structures on both sides.

We finish this second lecture by describing a way to construct many examples of
dg-categories using model categories. For this, let M be a C(k)-enriched model cate-
gory. Using the C(k)-enrichment M can also be considered as a dg-category whose
set of objects is the same as the set of objects of M and whose complexes of mor-
phisms are Hom(x,y). This dg-category will sometimes be denoted by M, but it turns
out not to be the right dg-category associated to the C(k)-model category M (at least
it is not the one we will be interested in the sequel). Instead, we let Int(M) be the full
sub-dg-category of M consisting of fibrant and cofibrant objects in M. From the ge-
neral theory of model categories it can be easily seen that the category H0(Int(M))
is naturally isomorphic to the category of fibrant and cofibrant objects in M and
homotopy classes of morphisms between them. In particular there exists a natural
equivalence of categories

H0(Int(M))� Ho(M).

The dg-category Int(M) is therefore a dg-enhancement of the homotopy category
Ho(M). Of course, not every dg-category is of form Int(M). However, we will
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see that any dg-catgeory can be, up to a quasi-equivalence, fully embedded into
some dg-category of the form Int(M). This explains the importance of C(k)-model
categories in the study of dg-categories.

Remark 2. The construction M �→ Int(M) is an ad-hoc construction, and does not
seem very intrinsic (e.g. as it is defined it depends on the choice of fibrations and cofi-
brations in M, and not only on equivalences). However, we will see in the next lecture
that Int(M) can also be characterized by as the localization of the dg-category M
along the equivalences in M, showing that it only depends on the dg-category M and
the subset W (and not of the classes Fib and Co f )

Let T be a dg-category. We can consider the C(k)-enriched Yoneda embedding

h− : T −→ T op−Mod,

which is a dg-functor when T op −Mod is considered as a dg-category using its
natural C(k)-enrichment. It turns out that for any x ∈ T , the T op-dg-module hx is co-
fibrant (see exercice 3.2.4) and fibrant (avery T op-dg-module if fibrant by definition).
We therefore get a natural dg-functor

h : T −→ Int(T op−Mod).

It is easy to check that h is quasi-fully faithful (it even induces isomorphisms on
complexes of morphisms).

Definition 3.2.7 For a dg-category T the morphism

h : T −→ Int(T op−Mod)

is called the Yoneda embedding of the dg-category T.

4 Lecture 3: Structure of the Homotopy Category
of dg-Categories

In this lecture we will truly start to go into the heart of the subject and describe the ca-
tegory Ho(dg−cat). I will start by a theorem describing the set of maps between two
objects in Ho(dg− cat). This fundamental result has two important consequences:
the existence of localizations of dg-categories, and the existence of dg-categories of
morphisms between two dg-categories, both characterized by universal properties in
Ho(dg− cat). At the end of this lecture, I will introduce the notion of Morita equi-
valences and triangulated dg-categories, and present a refine version of the category
Ho(dg− cat), better suited for many purposes.
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4.1 Maps in the Homotopy Category of dg-Categories

We start by computing the set of maps in Ho(dg− cat) from a dg-category T to a
dg-category of the form Int(M). As any dg-category can be fully embedded into
some Int(M) this will be enough to compute maps in Ho(dg−cat) between any two
objects.

Let M be a C(k)-model category. We assume that M satisfies the following three
technical conditions (they will always be satisfied for the applications we have in
mind).

(a) M is cofibrantly generated, and the domain and codomain of the generating
cofibrations are cofibrant objects in M.

(b) For any cofibrant object X in M, and any quasi-isomorphism E −→ E ′ in C(k),
the induced morphism E⊗X −→ E ′ ⊗X is an equivalence.

(c) Infinite sums preserve weak equivalences in M.

Exercise 4.1.1 Let R be a k-algebra considered as a dg-category. Show that the
C(k)-model category R−Mod = C(R) does not satisfy condition (2) above if R is
not flat over k.

Condition (1) this is a very mild condition, as almost all model categories en-
countered in real life are cofibrantly generated. Condition (2) is more serious, as it
states that cofibrant objects of M are flat in some sense, which is not always the
case. For example, to be sure that the model category T −Mod satisfies (2) we
need to impose the condition that all the complexes T (x,y) are flat (e.g. cofibrant
in C(k)). Conditions (3) is also rather mild and is often satisfied for model catego-
ries of algebraic nature. The following proposition is the main result concerning the
description of the set of maps in Ho(dg− cat), and almost all the further results are
consequences of it. Note that it is wrong if condition (2) above is not satisfied.

Proposition 4.1.2 Let T be any dg-category and M be a C(k)-model category
satisfying conditions (1), (2) and (3) above. Then, there exists a natural bijection

[T, Int(M)]� Iso(Ho(MT ))

between the set of morphisms from T to Int(M) in Ho(dg− cat) and the set of iso-
morphism classes of objects in Ho(MT ).

Ideas of proof (see [28] for details): Let Q(T )−→ T be a cofibrant model for T .
The pull-back functor on dg-modules with coefficients in M induces a functor

Ho(MT )−→Ho(MQ(T )).

Condition (2) on M insures that this is an equivalence of categories, as shown by the
following lemma.



Lectures on DG-Categories 277

Lemma 4.1.3 Let f : T ′ −→ T be a quasi-equivalence between dg-categories and
M be a C(k)-model category satisfying conditions (1), (2) and (3) as above. Then
the Quillen adjunction

f! : Ho(MT ′)−→Ho(MT ) Ho(MT ′)←− Ho(MT ) : f ∗

is a Quillen equivalence.

Idea of a proof of the lemma: We need to show that the two natural trans-
formations

L f! f ∗ ⇒ id id⇒ f ∗L f!

are isomorphism. For this, we first check that this is the case when evaluated at a
certain kind of objects. Let x ∈ T and X ∈M be a cofibrant object. We consider the
object hx⊗X ∈Ho(MT ), sending y ∈ T to T (x,y)⊗X ∈M. Let x′ ∈ T ′ be an object
such that f (x′) and x are isomorphic in H0(T ′). Because of our condition (2) on M it
is not hard to show that hx⊗X and hf (x′)⊗X are isomorphic in Ho(MT ). Therefore,
we have

f ∗(hx⊗X)� f ∗(h f (x′)⊗X).

Moreover, f ∗(h f (x′)⊗X) ∈ Ho(MT ′) sends an object y′ ∈ T ′ to T ( f (x′), f (y′))⊗X .
Because f is quasi-fully faithful (and because of our assumption (2) on M) we
see that f ∗(hf (x′) ⊗ X) is isomorphic in Ho(MT ′) to hx′ ⊗ X which sends y′ to
T ′(x′,y′)⊗X . Finally, it is not hard to see that hx′ ⊗X is a cofibrant object and that

L f!(hx′ ⊗X)� f!(hx′ ⊗X)� hf (x′)⊗X .

Thus, we have

L f! f ∗(hx⊗X)� L f!(hx′ ⊗X)� hf (x′)⊗X � hx⊗X ,

or in other words the adjunction morphism

L f! f ∗(hx⊗X)−→ hx⊗X

is an isomorphism. In the same way, we can see that for any x′ ∈ T ′ the adjunction
morphism

hx′ ⊗X −→ f ∗L f!(hx′ ⊗X)

is an isomorphism.
To conclude the proof of the lemma we use that the objects hx⊗X generate the

category Ho(MT ) be homotopy colimits and that f ∗ and L f! both commute with
homotopy colimits. To see that hx⊗X generates Ho(MT ) by homotopy colimits we
use the condition (1), and the small object argument, which shows that any object
is equivalent to a transfinite composition of push-outs along morphisms hx⊗X −→
hx ⊗Y for X → Y a cofibration between cofibrant objects in M. The fact that L f!

preserves homotopy colimits is formal and follows from the general fact that the left
derived functor of a left Quillen functor always preserves homotopy colimits. Finally,



278 Toën Bertrand

the fact that f ∗ preserves homotopy colimits uses the condition (3) (which up to now
has not been used). Indeed, we need to show that f ∗ preserves infinite homotopy
sums and homotopy push-outs. As infinite sums are also infinite homotopy sums
in MT (because of conditions (3)), the fact that f ∗ preserves infinite homotopy sums
follows from the fact that the functor f ∗ commutes with infinite sums. To show that
f ∗ commutes with homotopy push-outs we use that MT is a C(k)-model category,
and thus a stable model category in the sense of [13, Sect. 7]. This implies that
homotopy push-outs squares are exactly the homotopy pull-backs squares. As f ∗ is
right Quillen it preserves homotopy pull-backs squares, and thus homotopy push-
outs.

Therefore, we deduce from what we have seen that the adjunction morphism

L f! f ∗(E)−→ E

is an isomorphism for any E ∈ Ho(MT ). In the same we way we see that for any
E ′ ∈ Ho(MT ′) the adjunction morphism

E ′ −→ f ∗L f!(E ′)

is an isomorphism. This finishes the proof of the lemma. �

The above lemma imply that we can assume that T is a cofibrant dg-catgeory.
As all objects in dg− cat are fibrant [T, Int(M)] is then the quotient of the set of
morphisms in dg− cat by the homotopy relations. In particular, the natural map
[T, Int(M)]−→ Iso(Ho(MT )) is surjective (this uses that a cofibrant and fibrant ob-
ject in MT factors as T → Int(M)→ M, i.e. is levelwise fibrant and cofibrant). To
prove injectivity, we start with two morphisms u,v : T −→ Int(M) in dg− cat, and
we assume that the corresponding objects Fu and Fv in MT are equivalent. Using that
any equivalences can be factorized as a composition of trivial cofibrations and tri-
vial fibrations, we easily reduce the problem to the case where there exists a trivial
fibration Fu −→ Fv (the case of cofibration is somehow dual). This morphism can be
considered as a dg-functor T −→ Int(Mor(M)), where Mor(M) is the model cate-
gory of morphisms in M (note that fibrant objects in Mor(M) are fibrations between
fibrant objects in M). Moreover, this dg-functor factors throught T ′ ⊂ Int(Mor(M)),
the full sub-dg-category corresponding to equivalences in M. We therefore have a
commutative diagram in dg− cat

Int(M)

T

u
		��������� ��

v


��

��
��

��
� T ′

��

��
Int(M).

The two morphisms T ′ −→ Int(M) are easily seen to be quasi-equivalences, and to
possess a common section Int(M) −→ T ′ sending an object of M to the its iden-
tity morphism. Projecting this diagram in Ho(dg− cat), we see that [u] = [v] in
Ho(dg− cat). �
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We will now deduce from proposition 4.1.2 a description of the set of maps [T,T ′]
between two objects in Ho(dg− cat). For this we use the C(k)-enriched Yoneda
embedding

h : T ′ −→ Int((T ′)op−Mod),

sending an object x ∈ T ′ to the (T ′)op-dg-module defined by

hx : (T ′)op −→ C(k)
y �→ T ′(y,x).

The dg-module h is easily seen to be cofibrant and fibrant in (T ′)op−Mod, and thus
we have hx ∈ Int((T ′)op−Mod) as required. The enriched version of the Yoneda
lemma implies that h is a quasi-fully faithful dg-functor. More precisely, we can
show that the induced morphism of complexes

T ′(x,y)−→ Hom(hx,hy) = Int((T ′)op−Mod)((hx,hy)

is an isomorphims of complexes.
Using the description of maps in Ho(dg− cat) as being homotopy classes of

morphisms between cofibrant objects, we see that the morphism h induces a injective
map

[T,T ′] ↪→ [T, Int((T ′)op−Mod)]

whose image consists of morphisms T −→ Int((T ′)op − Mod) factorizing in
Ho(dg− cat) throught the quasi-essential image of h. We easily get this way the
following corollary (see Sect. 3.2 and exercice 2.3.4 for the definition of the tensor
product of two dg-categories).

Corollary 1. Let T and T ′ be two dg-categories, one of them having cofibrant com-
plexes of morphisms. Then, there exists a natural bijection between [T,T ′] and
the subset of Iso(Ho(T ⊗ (T ′)op−Mod)) consisting of T ⊗ (T ′)op-dg-modules F
such that for any x ∈ T , there is y ∈ T ′ such that Fx,− and hy are isomorphic in
Ho((T ′)op−Mod).

Exercise 4.1.4 Let T be a dg-category.

(a) Show that [1,T ] is in bijection with the set of isomorphism classes of objects in
the category H0(T ) (recall that 1 is the unit dg-category, with a unique object
and k as algebra of endormorphisms).

(b) Show that [Δ 1
k ,T ] is in bijection with the set of isomorphism classes of mor-

phisms in the category H0(T ) (recall that Δ 1
k is the dg-category with two object

and freely generated by a unique non trivial morphism).

Exercise 4.1.5 Let C and D be two k-linear categories, also considered as
dg-categories over k. Show that there exists a natural bijection between [C,D] and
the set of isomorphism classes of k-linear functors from C to D. Deduce from this
that there exists a fully faithful functor

Ho(k− cat)−→ Ho(dg− catk),
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from the homotopy category of k-linear categories (k-linear categories and
isomorphism classes of k-linear functors) and the homotopy category of
dg-categories.

Exercise 4.1.6 Let R be an associative and unital k-algebra, which is also
considered as dg-category with a unique object and R as endomorphisms of this
object. Show that there is a natural bijection between [R, Int(C(k))] and the set of
isomorphism classes of the derived category D(R).

4.2 Existence of Internal Homs

For two dg-catgeories T and T ′ we can construct their tensor product T ⊗T ′ in the
following way. The set of objects of T ⊗ T ′ is the product Ob(T )×Ob(T ′). For
(x,y) ∈ Ob(T )2 and (x′,y′) ∈Ob(T ′)2 we set

(T ⊗T ′)((x,x′),(y,y′)) := T (x,y)⊗T (x′,y′),

with the obvious compositions and units. When k is not a field the functor⊗ does not
preserves quasi-equivalences. However, it can be derived by the following formula

T ⊗L T ′ := Q(T )⊗Q(T ′),

where Q is a cofibrant replacement functor on dg− cat. This defines a symmetric
monoidal structure

−⊗L− : Ho(dg− cat)×Ho(dg− cat)−→ Ho(dg− cat).

Proposition 4.2.1 The monoidal structure−⊗L− is closed. In other words, for two
dg-categories T and T ′ there is third dg-category RHom(T,T ′)∈Ho(dg−cat), such
that for any third dg-category U there exists a bijection

[U,RHom(T,T ′)]� [U⊗L T,T ′],

functorial in U ∈ Ho(dg− cat).

Idea of proof: As for the corollary 1 we can reduce the problem of showing that
RHom(T, Int(M)) exists for a C(k)-model category M satisfying the same conditions
as in proposition 4.1.2. Under the same hypothesis than corollary 1 it can be checked
(using proposition 4.1.2) that RHom(T, Int(M)) exists and is given by Int(MT ). �

For two dg-categories T and T ′, one of them having cofibrant complexes of
morphisms it is possible to show that RHom(T,T ′) is given by the full sub-dg-
category of Int(T ⊗ (T ′)op−Mod) consisting of dg-modules satifying the condition
of corollary 1.

Finally, note that when M = C(k) we have

RHom(T, Int(C(k)))� Int(T −Mod).
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In particular, we find a natural equivalence of categories

D(T )� H0(RHom(T, Int(C(k)))),

which is an important formula.

In the sequel we will use the following notations for a dg-category T

L(T ) := Int(T −Mod)� RHom(T, Int(C(k)))

T̂ := Int(T op−Mod)� RHom(T op, Int(C(k))).

Note that we have natural equivalences

H0(L(T ))� D(T ) H0(T̂ )� D(T op).

Therefore, L(T ) and T̂ are dg-enhancement of the derived categories D(T ) and
D(T op). Note also that the Yoneda embedding of definition 3.2.7 is now a dg-functor

h : T −→ T̂ .

Exercise 4.2.2 (a) Let R be an associative and unital k-algebra which is conside-
red as a dg-category with a unique object. Show that there is an isomorphism
in Ho(dg− cat)

RHom(R, Int(C(k)))� L(R).

(b) Show that for any two k-algebras R and R′, one of them being flat over k we
have

RHom(R,L(R′))� L(R⊗R′).

Exercise 4.2.3 Let T be a dg-category. We define the Hochschild cohomology of
T by

HH∗(T ) := H∗(RHom(T,T )(id, id)).

Let R be an associative k-algebra, flat over k, and considered as a dg-category with
a unique object. Show that we have

HH∗(R) := Ext∗R⊗Rop(R,R),

where the right hand side are the ext-groups computed in the derived category of
R⊗Rop-modules.

4.3 Existence of Localizations

Let T be a dg-category and let S be subset of morphisms in H0(T ) we would like
to invert in Ho(dg− cat). For this, we will say that a morphism l : T −→ LST in
Ho(dg−cat) is a localization of T along S if for any T ′ ∈Ho(dg−cat) the induced
morphism

l∗ : [LST,T ′]−→ [T,T ′]
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is injective and its image consists of all morphisms T −→ T ′ in Ho(dg− cat) whose
induced functor H0(T ) −→ H0(T ′) sends all morphisms in S to isomorphisms in
H0(T ). Note that the functor H0(T ) −→ H0(T ′) is only well defined in Ho(Cat)
(i.e. up to isomorphism), but this is enough for the definition to makes sense as the
condition of sending S to isomorphisms is stable by isomorphism between functors.

Proposition 4.3.1 For any dg-category T and any set of maps S in H0(T ), a locali-
zation T −→ LST exists in Ho(dg− cat).

Idea of proof (see [28] for details): We start by the most simple example of a
localization. We first suppose that T := Δ 1

k is the dg-category freely generated by
two objects, 0 and 1, and a unique morphism u : 0→ 1. More concretely, T (0,1) =
T (0,0) = T (1,1) = k and T (1,0) = 0, together with the obvious compositions and
units. We let 1 be the dg-category with a unique object ∗ and 1(∗,∗) = k (with the
obvious composition). We consider the dg-foncteur T −→ 1 sending the non trivial
morphism of T to the identity of ∗ (i.e. k = T (0,1)→ 1(∗,∗) = k is the identity).
We claim that this morphism T −→ 1 is a localization of T along S consisting of the
morphism u : 0→ 1 of T = H0(T ). This in fact follows easily from our Proposition
4.1.2. Indeed, for a C(k)-model category M the model category MT is the model
category of morphisms in M. It is then easy to check that the functor Ho(M) −→
Ho(MT ) sending an object of M to the identity morphism in M is fully faithful and
that its essential image consists of all equivalences in M.

In the general case, let S be a subset of morphisms in H0(T ) for some dg-category
T . We can represent the morphisms S by a dg-functor

⊔

S

Δ 1
k −→ T,

sending the non trivial morphism of the component s to a representative of s in T .
We define LST as being the homotopy push-out (see [13] for this notion)

LST := (
⊔

S

1)
L⊔

⊔
S Δ 1

k

T.

The fact that each morphism Δ 1
k −→ 1 is a localization and the universal properties of

homotopy push-outs imply that the induced morphism T −→ LST defined as above
is a localization of T along S. �

Exercise 4.3.2 Let Δ 1
k be the dg-category with two objects and freely generated by

a non trivial morphism u between these two objects. We let S := {u} be the image of
u in H0(Δ 1

k ). Show that LSΔ 1
k � 1.

Exercise 4.3.3 Let T and T ′ be two dg-categories and S and S′ be two sets of mor-
phisms in H0(T ) and H0(T ′) that contain all the identities. Prove that there is a
natural isomorphism in Ho(dg− cat)

LST ⊗L LS′T
′ � LS⊗LS′T ⊗L T ′.
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The following proposition describes Int(M) as a dg-localization of M.

Proposition 4.3.4 Let M be a cofibrantly generated C(k)-model category, conside-
red also as dg-category M. There exists a natural isomorphism in Ho(dg− cat)

Int(M)� LW M.

Idea of proof: We consider the natural inclusion dg-functor i : Int(M) −→ M.
This inclusion factors as

Int(M)
j �� M f k �� M,

where M f is the full sub-dg-category of M consisting of fibrant objects. Using that
M is cofibrantly generated we can construct dg-functors

r : M −→M f q : M f −→ Int(M)

together with morphisms

jq→ id q j→ id id→ ri id→ ir.

Moreover, these morphisms between dg-functors are levelwise in W . This can be
seen to imply that the induced morphisms on localizations

LW Int(M)−→ LW M f −→ LW M

are isomorphisms in Ho(dg−cat). Finally, as morphisms in W are already invertible
in H0(Int(M))� Ho(M), we have LW Int(M)� Int(M). �

Finally, one possible way to understand localizations of dg-categories is by the
following proposition.

Proposition 4.3.5 Let T be a dg-category and S be a subset of morphisms in H0(T ).
Then, the localization morphism l : T −→ LST induces a fully faithful functor

l∗ : D(LST )−→ D(T )

whose image consists of all T -dg-modules F : T −→C(k) sending all morphisms of
S to quasi-isomorphisms in C(k).

Idea of proof: This follows from the existence of internal Homs and localizations,
as well as the formula

D(T )� H0(RHom(T, Int(C(k)))) D(LST )� H0(RHom(LST, Int(C(k)))).

Indeed, the universal properties of localizations and internal Homs implies
that RHom(LST, Int(C(k))) can be identified full the full sub-dg-category of
RHom(T, Int(C(k))) consisting of dg-functors sending S to quasi-isomorphisms in
C(k). �
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Exercise 4.3.6 Let l : T −→ LST be a localization of a dg-category with respect to
set of morphisms S in H0(T ), and let

Ll! : D(T op)−→ D(LST op)

be the induced functor in the corresponding derived categories of modules. Let WS

be the subset of morphisms u in D(T op) such that Ll!(u) is an isomorphism in
D(LST op).

(a) Show that a morphism u : E −→ F of D(T op) is in WS if and only if for any
G ∈ D(T op) such that Gx −→ Gy is a quasi-isomorphism for all x→ y in S, the
induced map

u∗ : HomD(Top)(F,G)−→ HomD(Top)(E,G)

is bijective.
(b) Show that the induced functor

W−1
S D(T op)−→ D(LST op)

is an equivalence of categories.

4.4 Triangulated dg-Categories

In this section we will introduce a class of dg-categories called triangulated. The no-
tion of being triangulated is the dg-analog of the notion of being Karoubian for linear
categories. We will see that any dg-category has a triangulated hull, and this will al-
low us to introduce a notion of Morita equivalences which is a dg-analog of the usual
notion of Morita equivalences between linear categories. The homotopy category of
dg-categories up to Morita equivalences will then be introduced and shown to have
better properties than the category Ho(dg− cat). We will see in the next lecture
that many invariants of dg-categories (K-theory, Hochschild homology . . . ) factor
throught Morita equivalences.

Let T be a dg-category. We recall the existence of the Yoneda embedding (see
definition 3.2.7)

T −→ T̂ = Int(Top−Mod),

which is quasi-fully faithful. Passing to homotopy categories we get a fully faithful
morphism

h : H0(T )−→D(T op).

An object in the essential image of this functor will be called quasi-representable.
Recall that an object x ∈ D(T op) is compact if the functor

[x,−] : D(T op)−→ k−Mod

commutes with arbitrary direct sums. It is easy to see that any quasi-representable
object is compact (see exercice 3.2.4). The converse is not true and we set the
following definition.
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Definition 4.4.1 A dg-category T is triangulated if and only if every compact object
in D(T op) is quasi-representable.

Remark 3. When T is triangulated we have an equivalence of categories H0(T ) �
D(T op)c, where D(T op)c is the full sub-category of D(T ) of compact objects. The
category D(T ) has a natural triangulated structure which restricts to a triangulated
structure on compact objects (see [22] for more details on the notion of triangulated
categories). Therefore, when T is triangulated dg-category its homotopy category
H0(T ) comes equiped with a natural triangulated structure. This explains the termi-
nology of triangulated dg-category. For more about the relations between the notions
of triangulated dg-categories and the notions of triangulated categories we refer to
[4]. However, it is not necessary to know the theory of triangulated categories in or-
der to understand triangulated dg-categories, and thus we will not study in details the
precise relations between triangulated dg-categories and triangulated categories.

We let Ho(dg− cattr) ⊂ Ho(dg− cat) be the full sub-category of triangulated
dg-categories. Note that the notation Ho(dg−cattr) suggests that this category is the
homotopy category of some model category. We will see that it is, equivalent to, the
localization of the category dg−cat along the class of Morita equivalences, that will
be introduced later on in this section.

Proposition 4.4.2 The natural inclusion

Ho(dg− cattr)−→ Ho(dg− cat)

has a left adjoint. In other words, any dg-category has a triangulated hull.

Idea of proof: Let T be a dg-category. We consider the Yoneda embedding (see
definition 3.2.7)

h : T −→ T̂ .

This is a quasi-fully faithful dg-functor. We consider T̂pe ⊂ T̂ , the full sub-dg-
category consisting of all objects which are compact in D(T op) (these objects will
simply be called compact). The dg-category T̂pe will be called the dg-category of
perfect T op-dg-modules, or equivalently of compact T op-dg-modules. As any quasi-
representable object is compact, the Yoneda embedding factors as a full embedding

h : T −→ T̂pe.

Let now T ′ be a triangulated dg-category. By definition, the natural morphism

T ′ −→ T̂ ′pe

is an isomorphism in Ho(dg− cat). We can then consider the induced morphism

[T̂pe, T̂ ′pe]−→ [T, T̂ ′pe],

induced by the resytiction along the morphism T −→ T̂pe. The hard point is to show
that this map in bijective and that T̂pe is a triangulated dg-category. These two facts
can be deduced from the following lemma and the Proposition 4.1.2.
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Lemma 4.4.3 Let T be a dg-category, and h : T −→ T̂pe be the natural inclusion.
Let M be a C(k)-model category which satisfies the conditions (1), (2) and (3) of
Sect. 3.1. Then the Quillen adjunction

h! : MT −→MT̂pe MT ←−MT̂pe : h∗

is a Quillen equivalence.

The proof of the above lemma can be found in [28, Lem. 7.5]. It is based on
the fundamental fact that the quasi-representable objects in D(T op) generate the sub-
category of compact objects by taking a finite number of finite homotopy colimits,
shifts and retracts, together with the fact that Lh! and h∗ both preserve these finite
homotopy colimits, shifts and retracts. �

The proof of the proposition shows that the left adjoint to the inclusion is given
by

(̂−)pe : Ho(dg− cat)−→ Ho(dg− cattr),

sending a dg-category T to the full sub-dg-category T̂pe of T̂ consisting of all com-
pact objects.

For example, if R is a k-algebra, considered as a dg-category with a unique object
BR, B̂Rpe is the dg-category of cofibrant and perfect complexes of R-modules. In
particular

H0(B̂Rpe)� Dpar f (R)

is the perfect derived category of R. This follows from the fact that compact objects
in D(R) are precisely the perfect complexes (this is a well known fact which can
also be deduced from the general result [32, Prop. 2.2]). Therefore, we see that the
dg-category of perfect complexes over some ring R is the triangulated hull of R.

Definition 4.4.4 A morphism T −→ T ′ in Ho(dg− cat) is called a Morita equiva-
lence if the induced morphism in the triangulated hull

T̂pe −→ T̂ ′pe

is an isomorphism in Ho(dg− cat).

It follows formally from the existence of the left adjoint T �→ T̂pe that Ho(dg−
cattr) is equivalent to the localized category W−1

mordg− cat, where Wmor is the subset
of Morita equivalences in dg− cat as defined above.

Exercise 4.4.5 Prove the above assertion: the functor

(̂−)pe : Ho(dg− cat)−→Ho(dg− cattr)

induces an equivalence of categories

W−1
morHo(dg− cat)� Ho(dg− cattr).
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We can characterize the Morita equivalences in the following equivalent ways.

Proposition 4.4.6 Let f : T −→ T ′ be a morphism of dg-categories. The following
are equivalent.

(a) The morphism f is a Morita equivalence.
(b) For any triangulated dg-category T0, the induced map

[T ′,T0]−→ [T,T0]

is bijective.
(c) The induced functor

f ∗ : D(T ′)−→D(T )

is an equivalence of categories.
(d) The functor

L f! : D(T )−→ D(T ′)

induces an equivalence between the full sub-category of compact objects.

Exercise 4.4.7 Prove the proposition 4.4.6.

We finish this section by a description of morphisms in Ho(dg− cattr) in terms
of derived categories of bi-dg-modules.

Proposition 4.4.8 Let T and T ′ be two dg-categories. Then, there exists a natural
bijection between [T̂pe, T̂ ′pe] and the subset of Iso(D(T ⊗L (T ′)op)) consisting of
T ⊗L (T ′)op-dg-modules F such that for any x ∈ T , the (T ′)op-dg-module Fx,− is
compact.

Exercise 4.4.9 Give a proof of proposition 4.4.8.

Exercise 4.4.10 (a) Show that the full sub-category Ho(dg− cattr) ⊂ Ho(dg−
cat) is not stable by finite coproducts (taken inside Ho(dg− cat)).

(b) Show that the category Ho(dg− cattr) has finite sums and finite products.
(c) Show that in the category Ho(dg− cattr), the natural morphism

T
⊔

T ′ −→ T ×T ′,

for any T and T ′ objects in Ho(dg−cattr). Note that the symbols
⊔

and× refer
here to the categorical sum and product in the category Ho(dg− cattr).

(d) Deduce from this that the set of morphisms Ho(dg− cattr) are endowed with
natural structure of commutative monoids such that the composition is bilinear.
Identify this monoid structure with the direct sum on the level of bi-dg-modules
throught the bijection of corollary 1.

Exercise 4.4.11 Let T −→ T ′ be a Morita equivalence and T0 be a dg-category.
Show that the induced morphism

T ⊗L T0 −→ T ′ ⊗L T0

is again a Morita equivalence (use the lemma 4.4.3).
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Exercise 4.4.12 Let T and T ′ be two triangulated dg-catgeory, and define

T ⊗̂L
T ′ := T̂ ⊗L T ′pe.

(a) Show that (T,T ′) �→ T ⊗̂L
T ′ defines a symmetric monoidal structure on

Ho(dg− cattr) in such a way that the functor

(̂−)pe : Ho(dg− cat)−→ Ho(dg− cattr)

is a symmetric monoidal functor.

(b) Show that the monoidal structure ⊗̂L
is closed on Ho(dg− cattr).

Exercise 4.4.13 (a) Let T and T ′ be two dg-categories. Prove that the Yoneda
embedding h : T ↪→ T̂pe induces an isomorphism in Ho(dg− cat)

RHom(T̂pe, T̂ ′pe)−→RHom(T, T̂ ′pe).

(b) Deduce from this that for any dg-category T there is a morphism in Ho(dg−
cat)

RHom(T,T )−→RHom(T̂pe, T̂pe)

which is quasi-fully faithful.
(c) Deduce from this that for any dg-category T there exist isomorphisms

HH∗(T )�HH∗(T̂pe).

5 Lecture 4: Some Applications

In this last lecture I will present some applications of the homotopy theory of dg-
categories. We will see in particular how the problems mentioned in Sect.1.2 can
be solved using dg-categories. The very last section will be some discussions on
the notion of saturated dg-categories and their use in the definition of a secondary
K-theory functor.

5.1 Functorial Cones

One of the problem encountered with derived categories is the non existence of
functorial cones. In the context of dg-categories this problem can be solved as
follows.

Let T be a triangulated dg-category. We let Δ 1
k be the dg-category freely genera-

ted by two objects 0 and 1 and freely generated by one non trivial morphism 0→ y,
and 1 be the unit dg-category (with a unique object and k for its endomorphism).
There is a morphism

Δ 1
k −→ 1̂pe
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sending 0 to 0 and 1 to k. We get an induced morphism in Ho(dg− cat)

RHom(1̂pe,T )−→RHom(Δ 1
k ,T ).

As T is triangulated we have

RHom(1̂pe,T )� RHom(1,T )� T.

Therefore, we have defined a morphism in Ho(dg− cat)

f : T −→ RHom(Δ 1
k ,T ) =: Mor(T ).

The dg-category Mor(T ) is also the full sub-dg-category of Int(Mor(T op−Mod))
corresponding to quasi-representable dg-modules, and is called the dg-category of
morphisms in T . The morphism f defined above intuitively sends an object x ∈ T to
0→ x in Mor(T ) (note that 0 is an object in T because T is triangulated).

Proposition 5.1.1 There exists a unique morphism in Ho(dg− cat)

c : Mor(T )−→ T

such that the following two (T ⊗L Mor(T )op)-dg-modules

(z,u) �→Mor(T )(u, f (z)) (z,u) �→ T (c(u),z)

are isomorphic in D(T ⊗L Mor(T )op) (In other words, the morphism f admits a left
adjoint).

Idea of proof: We consider the following explicit models for T , Mor(T ) and f .
We let T ′ be the full sub-dg-category of T̂ consisting of quasi-representable objects
(or equivalentely of compact objects as T is triangulated). We let Mor(T )′ be the full
sub-dg-category of Int(Mor(T op−Mod)) consisting of morphisms between quasi-
representable objects (these are also the compact objects in Ho(Mor(T op−Mod))
because T is triangulated). We note that Mor(T )′ is the dg-category whose objects
are cofibrations between cofibrant and quasi-representable T op-dg-modules. To each
compact and cofibrant T op-dg-module z we consider 0→ z as an object in T ′. This
defines a dg-functor T ′ −→Mor(T )′ which is a model for f . We define c as being a
C(k)-enriched left adjoint to c (in the most naive sense), sending an object c : x−→ y
of Mor(T )′ to c(u) defined by the push-out in T op−Mod

x ��

��

y

��
0 �� c(u).

We note that the T op-module c(u) is compact and thus belongs to T ′. It is easy to
check that c, as a morphism in Ho(dg−cat) satisfies the property of the proposition.
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The unicity of c is proved formally, in the same way that one proves the unicity
of adjoints in usual category theory. �

The morphism c : Mor(T ) −→ T is a functorial cone construction for the trian-
gulated dg-category T . The important fact here is that there is a natural functor

H0(Mor(T ))−→Mor(H0(T )),

which is essentially surjective, full but not faithful in general. The functor

H0(c) : H0(Mor(T ))−→H0(T )

does not factor in general throught Mor(H0(T )).

To finish, proposition 5.1.1 becomes really powerful when combined with the
following fact.

Proposition 5.1.2 Let T be a triangulated dg-category and T ′ be any dg-category.
Then RHom(T ′,T ) is triangulated.

Exercise 5.1.3 Deduce proposition 5.1.2 from exercice 4.4.11.

One important feature of triangulated dg-categories is that any dg-functor f :
T −→ T ′ between triangulated dg-categories commutes with cones. In other words,
the diagram

Mor(T ) c ��

c( f )
��

T

f

��
Mor(T ′) c

�� T ′

commutes in Ho(dg− cat). This has to be understood as a generalization of the fact
that any linear functor between additive categories commutes with finite direct sums.
This property of triangulated dg-categories is very useful in practice, as then any
dg-functor T −→ T ′ automatically induces a triangulated functor H0(T )−→H0(T ′).

Exercise 5.1.4 Prove the above assertion, that

Mor(T ) c ��

c( f )
��

T

f

��
Mor(T ′) c

�� T ′

commutes in Ho(dg− cat) (here T and T ′ are triangulated dg-categories).
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5.2 Some Invariants

Another problem mentioned in Sect.1.2 is the fact that the usual invariants,
(K-theory, Hochschild homology and cohomology . . . ), are not invariants of deri-
ved categories. We will see here that these invariants can be defined on the level of
Ho(dg−cattr). We will treat the examples of K-theory and Hochschild cohomology.

(a) Let T be a dg-category. We consider T op −Modcc the full sub-category of
compact and cofibrant T op-dg-modules. We can endow T op−Modcc with a
structure of an exact complicial category (see [25]) whose equivalences are
quasi-isomorphisms and cofibrations are the cofibrations of the model category
structure on T op−Mod. This Waldhausen category defines a K-theory space
K(T ) (see [25]). We note that if T is triangulated we have

K0(T ) := π0(K(T ))� K0(H0(T )),

where the last K-group is the Grothendieck group of the triangulated category
H0(T ).
Now, let f : T −→ T ′ be a morphism between dg-categories. It induces a functor

f! : T op−Mod −→ (T ′)op−Mod.

This functor preserves cofibrations, compact cofibrant objects and push-outs.
Therefore, it induces a functor between Waldhausen categories

f! : T op−Modcc −→ (T ′)op−Modcc

and a morphism on the corresponding spaces

f! : K(T )−→ K(T ′).

This defines a functor
K : dg− cat −→ Sp

from dg-categories to spectra. It is possible to show that this functor sends Mo-
rita equivalences to stable equivalences, and thus defines a functor

K : Ho(dg− cattr)−→ Ho(Sp).

We see it particular that two dg-categories which are Morita equivalent have the
same K-theory.

(b) (See also exercice 4.4.13) Let T be a dg-category. We consider RHom(T,T ),
the dg-category of (derived) endomorphisms of T . The identity gives an object
id ∈ RHom(T,T ), and we can set

HH ·(T ) := RHom(T,T )(id, id),

the Hochschild complex of T . This is a well defined object in D(k), the deri-
ved category of complexes of k-modules, and the construction T �→ HH ·(T )
provides a functor of groupoids

Ho(dg− cat)iso−→ D(k)iso.
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Using the results of Sect.3.2 we can see that

HH∗(T )� Ext∗(T,T ),

where the Ext-group is computed in the derived category of T ⊗L T op-dg-
modules. In particular, when T is given by an associative flat k-algebra R we
find

HH∗(T )� Ext∗R⊗R(R,R),

which is usual Hochschild cohomology. The Yoneda embedding T −→ T̂pe,
provides an isomorphism in Ho(dg− cat)

RHom(T̂pe, T̂pe)� RHom(T, T̂pe),

and a quasi-fully faithful morphism

RHom(T,T )−→RHom(T, T̂pe).

Therefore, we get a quasi-fully faithful morphism in Ho(dg− cat)

RHom(T,T )−→RHom(T̂pe, T̂pe)

sending the identity to the indentity. Therefore, we obtain a natural isomorphism

HH ·(T )�HH ·(T̂pe).

We get that way that Hochschild cohomology is a Morita invariant.
(c) There also exists an interpretation of Hochschild homology purely in terms of

dg-categories in the following way. We consider two dg-categories T and T ′,
and the Yoneda embedding h : T ↪→ T̂ . We obtain an induced functor

h! : RHom(T, T̂ ′)−→RHom(T̂ , T̂ ′).

It is possible to show that this morphism is quasi-fully faithful and that its quasi-
essential image consists of all morphisms T̂ −→ T̂ ′ which are continuous (i.e.
commute with direct sums). We refer to [28, Thm. 7.2] for more details about
this statement. This implies that there is an isomorphism in Ho(dg− cat)

RHom(T, T̂ ′)� RHomc(T̂ , T̂ ′),

where RHomc denotes the full sub-dg-category of continuous dg-functors.
Let now T be a dg-category and consider the T⊗L T op-dg-module sending (x,y)
to T (y,x). This dg-module can be represented by an object in the dg-category

L(T ⊗L T op)� RHom(T ⊗L T op, 1̂)� RHomc( ̂T ⊗L T op, 1̂),

and thus by a continuous in Ho(dg− cat)

L(T ⊗L T op)−→ 1̂.
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The image of T , considered as a bi-module sending (x,y) to T (y,x), by this
morphism is denoted by HH·(T ) ∈D(k)� H0(1̂), and is called the Hochschild
homology complex of T . When T is a flat k-algebra R then we have

HH·(T )� R⊗L

R⊗Rop R ∈ D(k).

From its definition, it is not hard to show that T �→ HH·(T ) is invariant by
Morita equivalences.

5.3 Descent

In this section we will see how to solve the non-local nature of derived catego-
ries explained in Sect.1.2. For this, let X be a scheme. We have the Grothendieck
category C(OX ) of (unbounded) complexes of sheaves of OX -modules. This cate-
gory can be endowed with a model category structure for which the equivalences
are the quasi-isomorphisms (of complexes of sheaves) and the cofibrations are the
monomorphisms (see e.g. [14]). Moreover, when X is a k-scheme then the natural
C(k)-enrichment of C(OX ) makes it into a C(k)-model category. We let

L(OX ) := Int(C(OX)),

and we let Lpe(X) be the full sub-dg-category consisting of perfect complexes on X .
The K-theory of X can be defined as

K(X) := K(Lpe(X)),

using the definition of K-theory of dg-categories we saw in the last section.
When f : X −→ Y is a morphism of schemes, it is possible to define two mor-

phisms in Ho(dg− cat)

L f ∗ : L(OY )−→ L(OX ) L(OY )←− L(OX ) : R f∗,

which are adjoints (according to the model we chose L f ∗ is a bit tricky to define
explicitly). The morphism

L f ∗ : L(OY )−→ L(OX )

always preserves perfect complexes are induces a morphism

L f ∗ : Lpe(Y )−→ Lpe(X).

This construction provides a functor

Lpe : k−Schop−→Ho(dg− cattr),

from the (opposite of) category of k-schemes to the category of triangulated
dg-categories. The existence of this functor is the starting point of an extre-
melly rich source of questions about its behaviour. Following the philosophy of
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non-commutative geometry according to M. Kontsevich, Ho(dg− cattr) can be
considered as the category of non-commutative schemes, and the functor Lpe above
is simply passing from the commutative to the non-commutative setting. Contrary to
what this might suggest, at leas as first naive thoughts, the functor Lpe is far from
being an embedding and its general study leads to very interesting questions.

(a) A first observation is that two schemes X and Y can be such that Lpe(X) �
Lpe(Y ) without being isomorphic, as shown by many well known examples
of derived equivalences (see [23] for more about this). The fibers of the
functor Lpe, that is the set of schemes, up to isomorphisms, having the same
dg-categories of perfect complexes, is expected to be finite, at least when we
restrict to smooth and projective schemes. It is shown in [1] that these fibers are
discrete and countable.

(b) The functor Lpe sends direct product of k-schemes into tensor product in
Ho(dg− cattr), at least under reasonable conditions (see [28], [3]). In other
words, Lpe is a symmetric monoidal functor, when k− Sch is considered as a
symmetric monoidal category for the direct monoidal structure.

(c) The image of the smooth and proper k-schemes inside Ho(dg− cattr) has an
explicit description: its objects are smooth and projective k-schemes, and mor-
phisms between two such schemes X and Y are given by quasi-isomorphism
classes of perfect complexes on X×k Y (see 5.3.2 below). This category is very
close to the category of Chow motives, for which morphisms are rather corres-
pondences up to rationnal equivalences. By analogy, Ho(dg−cattr) can be used
in order to define a notion of non-commutative motives (see [18]). Construc-
ting realisations for these non-commutative motives has lead to the notion of
non-commutative Hodge structures (see [16]), and to the construction of the
non-commutative Gauss–Manin connexion (see [34]).

We now come back to the descent property. The following proposition will not be
proved in these notes. We refer to [12] for more details about the descent for perfect
complexes.

Proposition 5.3.1 Let X = U ∪V , where U and V are two Zariski open subschemes.
Then the following square

Lpe(X) ��

��

Lpe(U)

��
Lpe(V ) �� Lpe(U ∩V )

is homotopy cartesian in the model category dg− cat.

Let us also mention the following related statement.

Proposition 5.3.2 Let X and Y be two smooth and proper schemes over Speck. Then,
there exists a natural isomorphism in Ho(dg− cat)

RHom(Lpe(X),Lpe(Y ))� Lpe(X ×k Y ).
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For a proof we refer the reader to [28]. It should be emphasised here that the
corresponding statement is false on the level of derived categories. More precisely,
let E ∈ Dpar f (X ×k Y ) and let

φE : Dpar f (X) −→ Dpar f (Y )
F �→ R(pY )∗(E⊗L p∗X(F))

be the corresponding functor. The construction E �→ φE defines a functor

φ− : Dpar f (X×k Y )−→ Funtr(Dpar f (X),Dpar f (Y )),

where the right hand side is the category of triangulated functors from Dpar f (X)
to Dpar f (Y ). When X and Y are projective over Speck (and that k is field) then it is
known that this functor is essentially surjective (see [23]). In general it is not known if
φ− is essentially surjective or not. In any case, even for very simple X and Y the func-
tor φ− is not faithful, and thus is not an equivalence of categories in general. Suppose
for instance that X = Y = E and elliptic curve over k = C, and let Δ ∈Dpar f (X×k X)
be the structure sheaf of the diagonal. The image by φ− of the objects Δ and Δ [2]
are respectively the identity functor and the shift by 2 functor. Because X is of coho-
mological dimension 1 we have Hom(id, id[2]) = 0, where this hom is computed in
Funtr(Dpar f (X),Dpar f (X)). However, Hom(Δ ,Δ [2])� HH2(X)� H1(E,OE)� k.

5.4 Saturated dg-Categories and Secondary K-Theory

We arrive at the last section of these lectures. We have seen that dg-categories can
be used in order to replace derived categories, and that they can be used in order to
define K-theory. In this section we will see that dg-categories can also be considered
as coefficients that can themselves be used in order to define a secondary version of
K-theory. For this I will present an analogy between the categories Ho(dg− cattr)
and k−Mod. Throught this analogy projective k-modules of finite rank correspond
to the notion of saturated dg-categories. I will then show how to define secondary K-
theory spectrum K(2)(k) using saturated dg-categories, and give some ideas of how
to define analogs of the rank and chern character maps in order to see that this secon-
dary K-theory K(2)(k) is non-trivial. I will also mention a relation between K(2)(k)
and the Brauer group, analog to the well known relation between K-theory and the
Picard group.

We start by the analogies between the categories k−Mod of k-modules and
Ho(dg− cattr). The true analogy is really between k−Mod and the homotopy
theory of triangulated dg-categories, e.g. the simplicial category Ldg− cattr obtai-
ned by simplicial localization (see [29]). The homotopy category Ho(dg− cattr) is
sometimes too coarse to see the analogy. We will however restrict ourselves with
Ho(dg− cattr), even though some of the facts below about Ho(dg− cattr) are not
completely intrinsic and requires to lift things to the model category of dg-categories.



296 Toën Bertrand

(a) The category k−Mod is a closed symmetric monoidal category for the usual
tensor product. In the same way, Ho(dg− cattr) has a closed symmetric mono-
idal structure induced from the one of Ho(dg− cat) (see Sect.3.2). Explicitly,
if T and T ′ are two triangulated dg-category we form T ⊗L T ′ ∈ Ho(dg− cat).
This is not a triangulated dg-category anymore and we set

T ⊗̂L
T ′ := ̂(T ⊗L T ′)pe ∈ Ho(dg− cattr).

The unit of this monoidal structure is the triangulated hull of 1, i.e. the
dg-category of cofibrant and perfect complexes of k-modules. The corres-
ponding internal Homs is the one of Ho(dg− cat), as we already saw that
RHom(T,T ′) is triangulated if T and T ′ are.

(b) The category k−Mod has a zero object and finite sums are also finite products.
This is again true in Ho(dg− cattr). The zero dg-category (with one object and
0 as endomorphism ring of this object) is a zero object in Ho(dg− cattr). Also,
for two triangulated dg-categories T and T ′ their sum T

⊔
T ′ as dg-categories is

not triangulated anymore. Their direct sum in Ho(dg−cattr) is the triangulated
hull of T

⊔
T ′ , that is

̂T
⊔

T ′
pe
� T̂pe× T̂ ′pe � T ×T ′.

We note that this second remarkable property of Ho(dg− cattr) is not satisfied
by Ho(dg− cat) itself. We can say that Ho(dg− cattr) is semi-additive, which
is justified by the fact that the Homs in Ho(dg− cattr) are abelian monoids (or
abelian semi-groups).

(c) The category k−Mod has arbitrary limits and colimits. The corresponding
statement is not true for Ho(dg− cattr). However, we have homotopy limits
and homotopy colimits in Ho(dg− cattr), whose existence are insured by the
model category structure on dg− cat.

(d) There is a natural notion of short exact sequences in k−Mod. In the same way,
there is a natural notion of short exact sequences in Ho(dg− cattr). These are
the sequences of the form

T0
j �� T

p �� (̂T/T0)pe,

where i is a quasi-fully faithful functor between triangulated dg-categories, and

(̂T/T0)pe is the quotient defined as the triangulated hull of the homotopy push-
out of dg-categories

T0 ��

��

T

��
0 �� T/T0.

These sequences are natural in terms of the homotopy theory of triangulated dg-
categories as it can be shown that quasi-fully faithful dg-functors are precisely
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the homotopy monomorphisms in dg− cat, i.e. the morphisms T −→ T ′ such
that the diagonal map

T −→ T ×h
T ′ T

is a quasi-equivalence (the right hand side is a homotopy pull-back). This de-
fines a dual notion of homotopy epimorphisms of triangulated dg-categories as
being the morphism T −→ T ′ such that for any triangulated dg-categories T ′′
the induced morphism

RHom(T ′,T ′′)−→RHom(T,T ′′)

is a homotopy monomorphisms (i.e. is quasi-fully faithful). In the exact se-
quences above j is a homotopy monomorphism, p is a homotopy epimorphism,
p is the cokernel of j and j is the kernel of p. The situation is therefore really
close to the situation in k−Mod.

If k−Mod and Ho(dg− cattr) are so analoguous then we should be able to say
what is the analog property of being projective of finite rank, and to define a K-group
or even a K-theory spectrum of such objects. It turns that this can be done and that
the theory can actually be pushed rather far. Also, we will see that this new K-theory
might have some geometric and arithmetic significance.

It is well know that the projective modules of finite rank over k are precisely the
dualizable (also called rigid) objects in the closed monoidal category k−Mod. Recall
that any k-module M has a dual M∨ := Hom(M,k), and that there always exists an
evaluation map

M∨ ⊗M −→ Hom(M,M).

The k-module M is dualizable if this evaluation map is an isomorphism, and this is
known to be equivalent to the fact that M is projective of finite rank.

We will take this as a definition of projective triangulated dg-categories of fi-
nite rank. The striking fact is that these dg-categories have already been studied for
other reasons under the name of saturated dg-categories, or smooth and proper dg-
categories.

Definition 5.4.1 A triangulated dg-category T is saturated if it is dualizale in
Ho(dg− cattr), i.e. if the evaluation morphism

RHom(T, 1̂pe)⊗̂L
T −→ RHom(T,T )

is an isomorphism in Ho(dg− cattr).

The saturated triangulated dg-categories can be characterized nicely using the
notion of smooth and proper dg-algebras (see [19, 30, 32]). Recall that a dg-algebra
B is smooth if B is a compact object in D(B⊗L Bop). Recall also that such a dg-
algebra is proper if its underlying complex if perfect (i.e. if B is compact in D(k)).
The following proposition can be deduced from the results of [32]. We omit the proof
in these notes (see however [32] for some statements about saturated dg-categories).
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Proposition 5.4.2 A triangulated dg-category is saturated if and only if it is Morita
equivalent to a smooth and proper dg-algebra.

This proposition is interesting as it allows us to show that there are many
examples of saturated dg-categories. The two main examples are the following.

(a) Let X be a smooth and proper k-scheme. Then Lpe(X) is a saturated dg-category
(see [32]).

(b) For any k-algebra, which is projective of finite rank as a k-module and which
is of finite global cohomlogical dimension, the dg-category Âpe of perfect com-
plexes of A-modules is saturated.

The symmetric monoidal category Ho(dg− catsat) of saturated dg-categories is
rigid. Note that any object T has a dual T∨ := RHom(T, 1̂pe). Moroever, it can be
shown that T∨ � T op is simply the opposite dg-category (this is only true when T
is saturated). In particular, for T and T ′ two saturated dg-categories we have the
following important formula

T op⊗̂L
T ′ � RHom(T,T ′).

We can now define the secondary K-group. We start by Z[sat], the free abelian
group on isomorphism classes (in Ho(dg− cattr)) of satuared dg-categories. We

define K(2)
0 (k) to be the quotient of Z[sat] by the relation

[T ] = [T0]+ [(̂T/T0)pe]

for any full saturated sub-dg-category T0 ⊂ T with quotient (̂T/T0)pe.
More generally, we can consider a certain Waldhausen category Sat, whose

objects are cofibrant dg-categories T such that T̂pe is saturated, whose morphisms are
morphisms of dg-categories, whose equivalences are Morita equivalences, and whose
cofibrations are cofibrations of dg-categories which are also fully faithful. From this
we can construct a spectrum, denoted by K(2)(k) by applying Waldhausen’s construc-
tion, called the secondary K-theory spectrum of k. We have

π0(K(2)(k))� K(2)
0 (k).

We no finish with some arguments that K(2)(k) to show that is non trivial and
interesting.

First of all, we have the following two basic properties.

(a) k �→ K(2)(k) defines a functor from the category of commutative rings to the
homotopy category of spectra. To a map of rings k→ k′ we associate the base
change −⊗L

k k′ from saturated dg-categories over k to saturated dg-categories
over k′, which induces a functor of Waldhausen categories and thus a morphism
on the corresponding K-theory spectra.
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(b) If k = colimiki is a filtered colimit of commutative rings then we have

K(2)(k) � colimiK
(2)(ki).

This follows from the non trivial statement that the homotopy theory of satu-
rated dg-categories over k is the filtered colimit of the homotopy theories of
saturated dg-categories over the ki (see [31]).

(c) The monoidal structure on Ho(dg−cattr) induces a commutative ring structure

on K(2)
0 (k). I guess that this monoidal structure also induces a E∞-multiplication

on K(2)(k).

Our next task is to prove that K(2)(k) is non zero. For this we construct a rank
map

rk(2)
0 : K(2)

0 (k)−→ K0(k)

which an analog of the usual rank map (also called the trace map)

rk0 : K0(k)−→HH0(k) = k.

Let T be a saturated dg-category. As T is dualizable in Ho(dg− cattr) there exists a
trace map

RHom(T,T )� T op⊗̂L
T −→ 1̂pe,

which is the dual of the identity map

id : 1̂pe −→ T op⊗̂L
T.

The image of the identity provides a perfect complex of k-modules, and thus an
element

rk(2)
0 (T ) ∈ K0(k).

This defines the map

rk(2)
0 : K(2)

0 (k)−→ K0(k).

It can be shown that rk(2)
0 (T ) is in fact HH·(T ), the Hochschild homology complex

of T .

Lemma 5.4.3 For any saturated dg-category T we have

rk(2)
0 (T ) = [HH·(T )] ∈ K0(k),

where HH·(T ) is the (perfect) complex of Hochschild homology of T .

In particular we see that for X a smooth and proper k-scheme we have

rk(2)
0 (Lpe(X)) = [HH·(X)] ∈ K0(k).

When k = C then HH∗(X) can be identified with Hodge cohomology H∗(X ,Ω ∗X),
and thus rk(2)

0 (Lpe(X)) is then the euler characteristic of X . In other words, we can

say that the rank of Lpe(X) is χ(X). The map rk(2)
0 shows that K(2)

0 (k) is non zero.
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The usual rank rk0 : K0(k)−→ HH0(k) = k is only the zero part of a rank map

rk∗ : K∗(k)−→HH∗(k).

In the same way, it is possible to define a secondary rank map

rk(2)
∗ : K(2)

∗ (k)−→ K∗(S1⊗L k),

where S1⊗L k is a simplicial ring that can be defined as

S1⊗L k = k⊗L

k⊗L

Z
k

k.

Note that by definition of Hochschild homology we have

HH·(k)� S1⊗L k,

so we can also write
rk(2)
∗ : K(2)

∗ (k)−→ K∗(HH·(k)).

Using this map I guess it could be possible to check that the higher K-groups K(2)
i (k)

are also non zero in general. Actually, I think it is possible to construct an analog of
the Chern character

Ch : K∗(k)−→HC∗(k)

as a map

Ch(2) : K(2)
∗ (k)−→ HC(2)

∗ (k) := KS1

∗ (S1⊗L k),

where the right hand side is the S1-equivariant K-theory of S1⊗L k (note that S1 acts
on S1⊗L k), which we take as a definition of secondary cyclic homology (see [33,34]
for more details about this construction).

To finish we show that K(2)
0 (k) has a relation with the Brauer group, analog to

the relation between K0(k) and the Picard group. For this, we define Brdg(k) to be
the group of isomorphism classes of invertible objects (for the monoidal structure)
in Ho(dg− cattr). As being invertible is stronger than being dualizable we have a
natural map

Brdg(k) −→ K(2)
0 (k)

analog to the natural map
Pic(k)−→ K0(k).

Now, by definition Brdg(k) can also be described as the Morita equivalence classes
of Azumaya’s dg-algebras, that is of dg-algebras B satisfying the following two
properties

(a)
Bop⊗L B−→REndC(k)(B)

is a quasi-isomorphism.
(b) The underlying complex of B is a compact generator of D(k).
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In particular, a non-dg Azumaya’s algebra over k defines an element in Brdg(k),
and we thus get a map Br(k) −→ Brdg(k), from the usual Brauer group of k (see

[21]) to the dg-Brauer group of k. Composing with the map Brdg(k) −→ K(2)
0 (k) we

get a map

Br(k) −→ K(2)
0 (k),

from the usual Brauer group to the secondary K-group of k. I do not know if this map
is injective in general, but I guess it should be possible to prove that it is non zero in
some examples by using the Chern character mentioned above.

Acknowledgements: It is my pleasure to thank the referee for his detailed
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