A note on the thick subcategory theorem

Alain Jeanneret
University of Bern
CH-3012 Bern
jeanner@math-stat.unibe.ch
Peter S. Landweber *
Rutgers University
New Brunswick, New Jersey 08903 USA
landwebe@lagrange.rutgers.edu

Douglas C. Ravenel ${ }^{\dagger}$
University of Rochester
Rochester, New York 14627 USA
drav@troi.cc.rochester.edu
July 14, 1994

1 Introduction

In this paper we will discuss an algebraic version (Theorem 1.6) of the thick subcategory theorem of Hopkins-Smith [HS] (Theorem 1.4). The former is stated as Theorem 3.4.3 in [Rav92], but the proof given there is incorrect. (A list of errata for [Rav92] can be obtained by email from the third author.)

First we recall the nilpotence theorem in its p-local version. Let $B P$ be the Brown-Peterson spectrum at the prime p, which satisfies:

$$
\pi_{*}(B P) \cong B P_{*} \cong \mathbf{Z}_{(p)}\left[v_{1}, v_{2}, \cdots\right],\left|v_{i}\right|=2\left(p^{i}-1\right) .
$$

Theorem 1.1 (Nilpotence theorem) [DHS88]
(i) Let R be a p-local ring spectrum. The kernel of the BP Hurewicz homomorphism $B P_{*}: \pi_{*}(R) \longrightarrow B P_{*}(R)$ consists of nilpotent elements.

[^0](ii) Let $f: F \longrightarrow X$ be a map from a p-local finite spectrum to an arbitrary spectrum. If $B P \wedge f$ is null homotopic, then f is smash nilpotent; i.e. the i-fold smash product $f^{(i)}=f \wedge \cdots \wedge f$ is null for i sufficiently large.
(iii) Let $\cdots \longrightarrow X_{n} \xrightarrow{f_{n}} X_{n+1} \xrightarrow{f_{n+1}} X_{n+2} \longrightarrow \cdots$ be a sequence of p-local spectra with $X_{n} c_{n}$-connected. Suppose that $c_{n} \geq m n+b$ for some m and b. If $B P_{*} f_{n}=0$ for all n then hocolim X_{n} is contractible.

The Baas-Sullivan theory of bordism with singularities allows one to define ring spectra $K(n)$ and $P(n)$ for $0<n<\infty$ satisfying [Rav86]:

$$
\begin{gathered}
\pi_{*}(K(n)) \cong K(n)_{*} \cong \mathbf{F}_{p}\left[v_{n}, v_{n}^{-1}\right] \\
\pi_{*}(P(n)) \cong P(n)_{*} \cong \mathbf{F}_{p}\left[v_{n}, v_{n+1}, \cdots\right]
\end{gathered}
$$

as $B P_{*}$-algebras. We also set $P(0)=B P$ and $K(0)=H \mathbf{Q}$, the rational Eilenberg-Mac Lane spectrum. $K(n)$ is known as the $n^{\text {th }}$ Morava K-theory at the prime p. The following corollary of the nilpotence theorem will be proved in $\S 2$. This is stated in [Rav92] as Corollary 5.1.5, but again the proof given there is incorrect.

Corollary 1.2 Let W, X and Y be p-local finite spectra and $f: X \longrightarrow Y$. Then $W \wedge f^{(k)}$ is null homotopic for $k \gg 0$ if $K(n)_{*}(W \wedge f)=0$ for all $n \geq 0$.

Now let $\mathcal{C} \mathcal{P}_{0}$ be the homotopy category of finite p-local spectra and let $\mathcal{C} \mathcal{P}_{n} \subset \mathcal{C} \mathcal{P}_{0}$ be the full subcategory of $K(n-1)_{*}$-acyclics. In [Rav84] it was shown that the $\mathcal{C P}{ }_{n}$ fit into a sequence:

$$
\cdots \subset \mathcal{C} \mathcal{P}_{n+1} \subset \mathcal{C} \mathcal{P}_{n} \subset \cdots \subset \mathcal{C} \mathcal{P}_{0}
$$

Moreover all the inclusions are strict [Mit85].
Definition 1.3 A full subcategory \mathcal{C} of $\mathcal{C} \mathcal{P}_{0}$ is thick if:
(i) An object weakly equivalent to an object in \mathcal{C} is in \mathcal{C}.
(ii) If $X \longrightarrow Y \longrightarrow Z$ is a cofibration in $\mathcal{C} \mathcal{P}_{0}$ and two of $\{X, Y, Z\}$ are in \mathcal{C} then so is the third.
(iii) A retract of an object in \mathcal{C} is in \mathcal{C}.

Corollary 1.2 is the form of the nilpotence theorem needed to prove the thick subcategory theorem (see $\S 5.3$ of [Rav92]):

Theorem 1.4 (Thick subcategory theorem) If \mathcal{C} is a thick subcategory of $\mathcal{C} \mathcal{P}_{0}$, then there exists an integer k such that $\mathcal{C}=\mathcal{C} \mathcal{P}_{k}$.

Before we state an algebraic version of Theorem 1.4 let us fix some notation. Let $\mathcal{B} \mathcal{P}_{0}$ be the abelian category of $B P_{*}(B P)$-comodules finitely presented as $B P_{*}$-module [Lan76]. A typical object in $\mathcal{B} \mathcal{P}_{0}$ is $B P_{*}(X)$ for X in $\mathcal{C} \mathcal{P}_{0}$. We denote by $\mathcal{B} \mathcal{P}_{k}$ the full subcategory of $\mathcal{B} \mathcal{P}_{0}$ whose objects M satisfy $v_{k-1}^{-1} M=0$ (we set $v_{0}=p$). Results of Johnson-Yosimura [JY80] (see also [Lan79] for a more algebraic proof) show that:

$$
\cdots \subset \mathcal{B} \mathcal{P}_{k+1} \subset \mathcal{B} \mathcal{P}_{k} \subset \cdots \subset \mathcal{B} \mathcal{P}_{0}
$$

Definition 1.5 Let \mathcal{A} be an abelian category. A full subcategory \mathcal{C} of \mathcal{A} is thick if it satisfies the following condition:
If

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

is a short exact sequence in \mathcal{A}, M belongs to \mathcal{C} if and only if M^{\prime} and $M^{\prime \prime}$ belong to \mathcal{C}. (It means that \mathcal{C} is stable under subobjects, quotient objects and extensions.)

The classification of the thick subcategories of $\mathcal{B} \mathcal{P}_{0}$ is now the following; see $\S 3$ for the proof.

Theorem 1.6 (Algebraic thick subcategory theorem) If \mathcal{C} is a thick subcategory of $\mathcal{B} \mathcal{P}_{0}$, then there exists an integer k such that $\mathcal{C}=\mathcal{B} \mathcal{P}_{k}$.

Let us conclude the introduction with some remarks.

- Theorem 3.4.2 of [Rav92] is the analog of Theorem 1.6 stated in a different category, $C \Gamma$, which is defined in terms of $M U$ rather than $B P$.
- The $B P$-homology functor, $B P_{*}(\cdot): \mathcal{C} \mathcal{P}_{0} \longrightarrow \mathcal{B} \mathcal{P}_{0}$ sends the category $\mathcal{C} \mathcal{P}_{k}$ into $\mathcal{B} \mathcal{P}_{k}$. This comes from the fact [Rav84] that if $X \in \mathcal{C} \mathcal{P}_{0}$ then

$$
K(n)_{*}(X)=0 \Longleftrightarrow v_{n}^{-1} B P_{*}(X)=0
$$

- Theorem 1.6 can be generalized to the abelian category of $P(n)_{*}(P(n))$ comodules, finitely presented over $P(n)_{*}$, which we denote by $\mathcal{P}(n)$. Similarly as for $\mathcal{B} \mathcal{P}_{0}$ we can define the subcategories $\mathcal{P}(n)_{k}$ and prove the following.

Theorem 1.7 If \mathcal{C} is a thick subcategory of $\mathcal{P}(n)$, then there exists an integer $k \geq n$ such that $\mathcal{C}=\mathcal{P}(n)_{k}$.

A further generalization of Theorem 1.6 can be obtained in the following setting. Let E_{*} be a commutative $P(n)_{*}$-algebra such that $E_{*} \otimes_{P(n)_{*}}$ - is an exact functor on $\mathcal{P}(n)$. In [Lan76] the second author gave sufficient conditions for exactness. (The necessity of these conditions was shown by Rudyak in [Rud86].) Define

$$
E_{*}(E)=E_{*} \otimes_{P(n)_{*}} P(n)_{*}(P(n)) \otimes_{P(n)_{*}} E_{*} ;
$$

It can be made into a Hopf algebroid by extending the structure maps for $P(n)_{*}(P(n))$. Moreover $E_{*}(E)$ is a flat E_{*}-module because $P(n)_{*}(P(n))$ is a flat $P(n)_{*}$-module and if N is a E_{*}-module then

$$
E_{*}(E) \otimes_{E_{*}} N \cong E_{*} \otimes_{P(n)_{*}}\left(P(n)_{*}(P(n)) \otimes_{P(n)_{*}} N\right)
$$

If M is an object of $\mathcal{P}(n)$ then $E_{*} \otimes_{P(n) *} M$ is an $E_{*}(E)$-comodule via the E_{*}-extension of the composite:

$$
\begin{aligned}
M \longrightarrow & P(n)_{*}(P(n)) \otimes_{P(n)_{*}} M \\
& \downarrow \\
& E_{*}(E) \otimes_{P(n)_{*}} M \quad \longrightarrow E_{*}(E) \otimes_{E_{*}}\left(E_{*} \otimes_{P(n)_{*}} M\right) .
\end{aligned}
$$

Let \mathcal{E} be the category whose objects are $E_{*} \otimes_{P(n)_{*}} M$ with $M \in \mathcal{P}(n)$ and morphisms $E_{*} \otimes f: E_{*} \otimes M_{1} \longrightarrow E_{*} \otimes M_{2}$ with $f: M_{1} \longrightarrow M_{2}$ in $\mathcal{P}(n)$; then \mathcal{E} is an abelian category equipped with an exact functor:

$$
E_{*} \otimes_{P(n)_{*}}-: \mathcal{P}(n) \longrightarrow \mathcal{E} .
$$

The image of the subcategory $\mathcal{P}(n)_{k}$, written \mathcal{E}_{k}, satisfies:

$$
\cdots \subset \mathcal{E}_{k+1} \subset \mathcal{E}_{k} \subset \cdots \subset \mathcal{E}_{n}=\mathcal{E}
$$

We are no longer claiming that the inclusions are strict. The thick subcategories of \mathcal{E} can be described as follow:

Theorem 1.8 If \mathcal{C} is a thick subcategory of \mathcal{E}, then there exists an integer $k \geq n$ such that $\mathcal{C}=\mathcal{E}_{k}$.

It should be emphasized that under the above assumption on E_{*}, the functor $E_{*} \otimes_{P(n) *} P(n)_{*}(\cdot)$ is a homology theory [Lan76] taking its values in the category \mathcal{E} as far as finite spectra are concerned.

2 The proof of Corollary 1.2

Let $D: \mathcal{C P} \mathcal{P}_{0} \longrightarrow \mathcal{C} \mathcal{P}_{0}$ be the anti-equivalence induced by the spanierWhitehead duality [Ada74]. If $X \in \mathcal{C} \mathcal{P}_{0}$ and Y is any spectrum, the graded group $[X, Y]_{*}$ is isomorphic to $\pi_{*}(D X \wedge Y)$. We say that the maps $f: \Sigma^{n} X \longrightarrow$ Y and $\widehat{f}: S^{n} \longrightarrow D X \wedge Y$ are adjoint if they correspond to each other under the above isomorphism of groups. In particular the adjoint of the identity $X \longrightarrow X$ is a map $e: S^{0} \longrightarrow D X \wedge X$. Recall that $X^{(i)}$ is a notation for the i-fold smash product $X \wedge \cdots \wedge X$.

Set $R=D W \wedge W$, a ring spectrum whose unit is e and whose multiplication is the composite

$$
R \wedge R=D W \wedge W \wedge D W \wedge W \xrightarrow{D W \wedge D e \wedge W} D W \wedge S^{0} \wedge W=R
$$

The map $f: X \longrightarrow Y$ is adjoint to $\widehat{f}: S^{0} \longrightarrow D X \wedge Y$ and $W \wedge f$ is adjoint to the composite

$$
S^{0} \xrightarrow{\widehat{f}} D X \wedge Y \xrightarrow{e \wedge D X \wedge Y} R \wedge D X \wedge Y,
$$

which we denote by g. Set $F=R \wedge D X \wedge Y$. The map $W \wedge f^{(i)}$ is adjoint to the composite

$$
S^{0} \xrightarrow{g^{(i)}} F^{(i)}=R^{(i)} \wedge D X^{(i)} \wedge Y^{(i)} \longrightarrow R \wedge D X^{(i)} \wedge Y^{(i)},
$$

the latter map being induced by the multiplication in R.
We want to show that $W \wedge f^{(k)}$ is null for large k; by adjointness it suffices to prove that $g^{(k)}$ is null for large k. The second statement of Theorem 1.1 implies that we only need to show that $B P \wedge g^{(i)}$ is null for large i, so we can take k to be an appropriate multiple of i. Let $T_{i}=R \wedge D X^{(i)} \wedge Y^{(i)}$ and let T be the direct limit of

$$
S^{0} \xrightarrow{g} T_{1} \xrightarrow{T_{1} \wedge \widehat{f}} T_{2} \xrightarrow{T_{2} \wedge \widehat{f}} T_{3} \longrightarrow \cdots .
$$

The desired conclusion will follow from showing that $B P \wedge T$ is contractible.
At this point we need to use the theory of Bousfield classes. Recall that the Bousfield class of a spectrum X (denoted $\langle X\rangle)$ is the collection of spectra Z for which $X \wedge Z$ is not contractible. In [Rav84] it was shown that

$$
\langle B P\rangle=\langle K(0)\rangle \vee\langle K(1)\rangle \vee \cdots \vee\langle K(n)\rangle \vee\langle P(n+1)\rangle .
$$

By assumption, $K(n) \wedge T$ is contractible for all n. Therefore it suffices to show that $P(m) \wedge T$ is contractible for large m.

Since we are concerned only with finite spectra, we have for large enough m :

$$
\begin{aligned}
K(m)_{*}(W \wedge f) & =K(m)_{*} \otimes_{\mathbf{F}_{p}} H_{*}\left(W \wedge f ; \mathbf{F}_{p}\right) \\
P(m)_{*}(W \wedge f) & =P(m)_{*} \otimes_{\mathbf{F}_{p}} H_{*}\left(W \wedge f ; \mathbf{F}_{p}\right)
\end{aligned}
$$

Our hypothesis implies that both of these homomorphisms are trivial, so the smash product $P(m) \wedge T$ is contractible as required.

3 The proof of Theorem 1.6

The proof of Theorem 1.6 is a consequence of the filtration theorem of Landweber, namely

Theorem 3.1 [Lan73] Each object $M \in \mathcal{B} \mathcal{P}_{0}$ has a filtration

$$
0=M_{s} \subset \cdots \subset M_{1} \subset M_{0}=M
$$

in the category $\mathcal{B} \mathcal{P}_{0}$, so that for $0 \leq i \leq s-1$ the quotient M_{i} / M_{i+1} is stably isomorphic to $B P_{*} / I_{n_{i}}$ in $\mathcal{B} \mathcal{P}_{0}$, where $I_{n_{i}}=\left(p, v_{1}, \cdots, v_{n_{i}-1}\right)$ are invariant prime ideals of $B P_{*}$. (Stably isomorphic means isomorphic after a dimension shift.)

For $M \in \mathcal{B} \mathcal{P}_{0}$ define $\operatorname{Spec}(M)=\left\{m \geq 1: v_{m-1}^{-1} M=0\right\} \bigcup\{0\}$ (set as usual $v_{0}=p$). If $M \neq 0$ then $\operatorname{Spec}(M)$ is a finite subset of \mathbf{N} and is of the form:

$$
\operatorname{Spec}(M)=\left\{0,1, \cdots, N_{M}\right\}
$$

with $N_{M} \geq 0$.
Let \mathcal{C} be a thick subcategory of $\mathcal{B} \mathcal{P}_{0}$. Define an integer k by:

$$
\bigcap_{M \in \mathcal{C}} \operatorname{Spec}(M)=\{0,1, \cdots, k\} .
$$

From the definition of k, one has $\mathcal{C} \subset \mathcal{B} \mathcal{P}_{k}$ and $\mathcal{C} \not \subset \mathcal{B} \mathcal{P}_{k+1}$. Let M in \mathcal{C} be such that

$$
v_{k-1}^{-1} M=0 \text { and } v_{k}^{-1} M \neq 0
$$

and let

$$
0=M_{s} \subset \cdots \subset M_{1} \subset M_{0}=M
$$

be a Landweber filtration of M. As \mathcal{C} is thick and $M \in \mathcal{C}$, all the M_{i} 's belong to \mathcal{C} as well as all the quotients $M_{i} / M_{i+1} \cong B P_{*} / I_{n_{i}}$.

Localization being an exact functor, all the $v_{k-1}^{-1} M_{i}$ are null and hence $v_{k-1}^{-1} M_{i} / M_{i+1} \cong v_{k-1}^{-1} B P_{*} / I_{n_{i}}=0$. Therefore

$$
\begin{equation*}
n_{i} \geq k \text { for } 0 \leq i \leq s-1 \tag{3.2}
\end{equation*}
$$

On the other hand, $v_{k}^{-1} M \neq 0$ implies the existence of a j for which $v_{k}^{-1} B P_{*} / I_{n_{j}} \neq 0$, which forces

$$
\begin{equation*}
n_{j} \leq k \text { for some } j, \quad 0 \leq j \leq s-1 \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we obtain that $n_{j}=k$ for some $j, 0 \leq j \leq s-1$, hence $B P_{*} / I_{k} \in \mathcal{C}$. Now it is fairly easy to prove by induction that $B P_{*} / I_{k+l} \in \mathcal{C}$ for all $l \geq 0$. Consider the exact sequence in $\mathcal{B} \mathcal{P}_{0}$

$$
0 \longrightarrow B P_{*} / I_{k+l} \xrightarrow{v_{k+l}} B P_{*} / I_{k+l} \longrightarrow B P_{*} / I_{k+l+1} \longrightarrow 0
$$

where the first morphism is multiplication by v_{k+l}. The subcategory \mathcal{C} being thick, $B P_{*} / I_{k+l} \in \mathcal{C}$ implies $B P_{*} / I_{k+l+1} \in \mathcal{C}$.

We are now ready to show the inclusion $\mathcal{B} \mathcal{P}_{k} \subset \mathcal{C}$. Let N be an object in $\mathcal{B} \mathcal{P}_{k}$ and $0=N_{s} \subset \cdots \subset N_{1} \subset N_{0}=N$ be a Landweber filtration of N. We have seen that $v_{k-1}^{-1} N=0$ implies $n_{i} \geq k$ for all $0 \leq i \leq s-1$ with, as usual, n_{i} such that $N_{i} / N_{i+1} \cong B P_{*} / I_{n_{i}}$. By downward induction on i we prove that $N_{i} \in \mathcal{C}$. This works as follows.

First $N_{s}=0 \in \mathcal{C}$. Second, the short exact sequence in $\mathcal{B} \mathcal{P}_{0}$

$$
0 \longrightarrow N_{i+1} \longrightarrow N_{i} \longrightarrow B P_{*} / I_{n_{i}} \longrightarrow 0
$$

is such that $N_{i+1} \in \mathcal{C}$ (by the inductive assumption) and $B P_{*} / I_{n_{i}} \in \mathcal{C}$ as $n_{i} \geq k$. From the thickness of \mathcal{C} we obtain that $N_{i} \in \mathcal{C}$. For $i=0$ we have $N \in \mathcal{C}$ and so $\mathcal{B} \mathcal{P}_{k}=\mathcal{C}$, as required.

References

[Ada74] J. F. Adams. Stable Homotopy and Generalised Homology. University of Chicago Press, Chicago, 1974.
[DHS88] E. Devinatz, M. J. Hopkins, and J. H. Smith. Nilpotence and stable homotopy theory. Annals of Mathematics, 128:207-242, 1988.
[HS] M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory II. To appear in Annals of Mathematics.
[JY80] D. C. Johnson and Z. Yosimura. Torsion in Brown-Peterson homology and Hurewicz homomorphisms. Osaka Journal of Mathematics, 17:117-136, 1980.
[Lan73] P. S. Landweber. Associated prime ideals and Hopf algebras. Journal of Pure and Applied Algebra, 3:175-179, 1973.
[Lan76] P. S. Landweber. Homological properties of comodules over $M U_{*}(M U)$ and $B P_{*}(B P)$. American Journal of Mathematics, 98:591-610, 1976.
[Lan79] P. S. Landweber. New applications of commutative algebra to BrownPeterson homology. In P. Hoffman and V. Snaith, editors, Algebraic Topology, Waterloo 1978, pages 449-460, Springer-Verlag, New York, 1979.
[Mit85] S. A. Mitchell. Finite complexes with $A(n)$-free cohomology. Topology, 24:227-248, 1985.
[Rav84] D. C. Ravenel. Localization with respect to certain periodic homology theories. American Journal of Mathematics, 106:351-414, 1984.
[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986.
[Rav92] D. C. Ravenel. Nilpotence and periodicity in stable homotopy theory. Volume 128 of Annals of Mathematics Studies, Princeton University Press, Princeton, 1992.
[Rud86] Yu. B. Rudyak. Exactness theorems for the cohomology theories MU, BP and $\mathrm{P}(n)$. Mat. Zametki, 40:115-126, 1986. English translation in Math. Notes 40:562-569, 1986.

[^0]: *Partially supported by the National Science Foundation
 ${ }^{\dagger}$ Partially supported by the National Science Foundation

