A note on the thick subcategory theorem

Alain Jeanneret University of Bern CH-3012 Bern jeanner@math-stat.unibe.ch

Peter S. Landweber * Rutgers University New Brunswick, New Jersey 08903 USA landwebe@lagrange.rutgers.edu

Douglas C. Ravenel[†] University of Rochester Rochester, New York 14627 USA drav@troi.cc.rochester.edu

July 14, 1994

1 Introduction

In this paper we will discuss an algebraic version (Theorem 1.6) of the thick subcategory theorem of Hopkins-Smith [HS] (Theorem 1.4). The former is stated as Theorem 3.4.3 in [Rav92], but the proof given there is incorrect. (A list of errata for [Rav92] can be obtained by email from the third author.)

First we recall the nilpotence theorem in its p-local version. Let BP be the Brown-Peterson spectrum at the prime p, which satisfies:

$$\pi_*(BP) \cong BP_* \cong \mathbf{Z}_{(p)}[v_1, v_2, \cdots], \ |v_i| = 2(p^i - 1).$$

Theorem 1.1 (Nilpotence theorem) [DHS88]

(i) Let R be a p-local ring spectrum. The kernel of the BP Hurewicz homomorphism $BP_*: \pi_*(R) \longrightarrow BP_*(R)$ consists of nilpotent elements.

[†]Partially supported by the National Science Foundation

^{*}Partially supported by the National Science Foundation

- (ii) Let $f: F \longrightarrow X$ be a map from a p-local finite spectrum to an arbitrary spectrum. If $BP \wedge f$ is null homotopic, then f is smash nilpotent; i.e. the *i*-fold smash product $f^{(i)} = f \wedge \cdots \wedge f$ is null for *i* sufficiently large.
- (iii) Let $\cdots \longrightarrow X_n \xrightarrow{f_n} X_{n+1} \xrightarrow{f_{n+1}} X_{n+2} \longrightarrow \cdots$ be a sequence of p-local spectra with X_n c_n-connected. Suppose that $c_n \ge mn + b$ for some m and b. If $BP_*f_n = 0$ for all n then hocolim X_n is contractible.

The Baas-Sullivan theory of bordism with singularities allows one to define ring spectra K(n) and P(n) for $0 < n < \infty$ satisfying [Rav86]:

$$\pi_*(K(n)) \cong K(n)_* \cong \mathbf{F}_p[v_n, v_n^{-1}]$$
$$\pi_*(P(n)) \cong P(n)_* \cong \mathbf{F}_p[v_n, v_{n+1}, \cdots]$$

as BP_* -algebras. We also set P(0) = BP and $K(0) = H\mathbf{Q}$, the rational Eilenberg-Mac Lane spectrum. K(n) is known as the n^{th} Morava K-theory at the prime p. The following corollary of the nilpotence theorem will be proved in §2. This is stated in [Rav92] as Corollary 5.1.5, but again the proof given there is incorrect.

Corollary 1.2 Let W, X and Y be p-local finite spectra and $f : X \longrightarrow Y$. Then $W \wedge f^{(k)}$ is null homotopic for $k \gg 0$ if $K(n)_*(W \wedge f) = 0$ for all $n \ge 0$.

Now let \mathcal{CP}_0 be the homotopy category of finite *p*-local spectra and let $\mathcal{CP}_n \subset \mathcal{CP}_0$ be the full subcategory of $K(n-1)_*$ -acyclics. In [Rav84] it was shown that the \mathcal{CP}_n fit into a sequence:

$$\cdots \subset \mathcal{CP}_{n+1} \subset \mathcal{CP}_n \subset \cdots \subset \mathcal{CP}_0.$$

Moreover all the inclusions are strict [Mit85].

Definition 1.3 A full subcategory C of CP_0 is thick if:

- (i) An object weakly equivalent to an object in C is in C.
- (ii) If $X \longrightarrow Y \longrightarrow Z$ is a cofibration in \mathcal{CP}_0 and two of $\{X, Y, Z\}$ are in \mathcal{C} then so is the third.
- (iii) A retract of an object in C is in C.

Corollary 1.2 is the form of the nilpotence theorem needed to prove the thick subcategory theorem (see §5.3 of [Rav92]):

Theorem 1.4 (Thick subcategory theorem) If C is a thick subcategory of CP_0 , then there exists an integer k such that $C = CP_k$.

Before we state an algebraic version of Theorem 1.4 let us fix some notation. Let \mathcal{BP}_0 be the abelian category of $BP_*(BP)$ -comodules finitely presented as BP_* -module [Lan76]. A typical object in \mathcal{BP}_0 is $BP_*(X)$ for X in \mathcal{CP}_0 . We denote by \mathcal{BP}_k the full subcategory of \mathcal{BP}_0 whose objects M satisfy $v_{k-1}^{-1}M = 0$ (we set $v_0 = p$). Results of Johnson-Yosimura [JY80] (see also [Lan79] for a more algebraic proof) show that:

$$\cdots \subset \mathcal{BP}_{k+1} \subset \mathcal{BP}_k \subset \cdots \subset \mathcal{BP}_0.$$

Definition 1.5 Let \mathcal{A} be an abelian category. A full subcategory \mathcal{C} of \mathcal{A} is **thick** if it satisfies the following condition:

If

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

is a short exact sequence in \mathcal{A} , M belongs to \mathcal{C} if and only if M' and M'' belong to \mathcal{C} . (It means that \mathcal{C} is stable under subobjects, quotient objects and extensions.)

The classification of the thick subcategories of \mathcal{BP}_0 is now the following; see §3 for the proof.

Theorem 1.6 (Algebraic thick subcategory theorem) If C is a thick subcategory of \mathcal{BP}_0 , then there exists an integer k such that $C = \mathcal{BP}_k$.

Let us conclude the introduction with some remarks.

- Theorem 3.4.2 of [Rav92] is the analog of Theorem 1.6 stated in a different category, $C\Gamma$, which is defined in terms of MU rather than BP.
- The *BP*-homology functor, $BP_*(\cdot) : \mathcal{CP}_0 \longrightarrow \mathcal{BP}_0$ sends the category \mathcal{CP}_k into \mathcal{BP}_k . This comes from the fact [Rav84] that if $X \in \mathcal{CP}_0$ then

$$K(n)_*(X) = 0 \iff v_n^{-1}BP_*(X) = 0.$$

• Theorem 1.6 can be generalized to the abelian category of $P(n)_*(P(n))$ comodules, finitely presented over $P(n)_*$, which we denote by $\mathcal{P}(n)$. Similarly as for \mathcal{BP}_0 we can define the subcategories $\mathcal{P}(n)_k$ and prove the
following.

Theorem 1.7 If C is a thick subcategory of $\mathcal{P}(n)$, then there exists an integer $k \geq n$ such that $C = \mathcal{P}(n)_k$.

A further generalization of Theorem 1.6 can be obtained in the following setting. Let E_* be a commutative $P(n)_*$ -algebra such that $E_* \otimes_{P(n)_*} -$ is an exact functor on $\mathcal{P}(n)$. In [Lan76] the second author gave sufficient conditions for exactness. (The necessity of these conditions was shown by Rudyak in [Rud86].) Define

$$E_*(E) = E_* \otimes_{P(n)_*} P(n)_*(P(n)) \otimes_{P(n)_*} E_*;$$

It can be made into a Hopf algebroid by extending the structure maps for $P(n)_*(P(n))$. Moreover $E_*(E)$ is a flat E_* -module because $P(n)_*(P(n))$ is a flat $P(n)_*$ -module and if N is a E_* -module then

$$E_*(E) \otimes_{E_*} N \cong E_* \otimes_{P(n)_*} \left(P(n)_*(P(n)) \otimes_{P(n)_*} N \right).$$

If M is an object of $\mathcal{P}(n)$ then $E_* \otimes_{P(n)_*} M$ is an $E_*(E)$ -comodule via the E_* -extension of the composite:

$$\begin{array}{ccc} M \longrightarrow & P(n)_*(P(n)) \otimes_{P(n)_*} M \\ & \downarrow \\ & E_*(E) \otimes_{P(n)_*} M & \longrightarrow E_*(E) \otimes_{E_*} \left(E_* \otimes_{P(n)_*} M \right). \end{array}$$

Let \mathcal{E} be the category whose objects are $E_* \otimes_{P(n)_*} M$ with $M \in \mathcal{P}(n)$ and morphisms $E_* \otimes f : E_* \otimes M_1 \longrightarrow E_* \otimes M_2$ with $f : M_1 \longrightarrow M_2$ in $\mathcal{P}(n)$; then \mathcal{E} is an abelian category equipped with an exact functor:

$$E_* \otimes_{P(n)_*} - : \mathcal{P}(n) \longrightarrow \mathcal{E}.$$

The image of the subcategory $\mathcal{P}(n)_k$, written \mathcal{E}_k , satisfies:

$$\cdots \subset \mathcal{E}_{k+1} \subset \mathcal{E}_k \subset \cdots \subset \mathcal{E}_n = \mathcal{E}.$$

We are no longer claiming that the inclusions are strict. The thick subcategories of \mathcal{E} can be described as follow:

Theorem 1.8 If C is a thick subcategory of \mathcal{E} , then there exists an integer $k \geq n$ such that $C = \mathcal{E}_k$.

It should be emphasized that under the above assumption on E_* , the functor $E_* \otimes_{P(n)_*} P(n)_*(\cdot)$ is a homology theory [Lan76] taking its values in the category \mathcal{E} as far as finite spectra are concerned.

2 The proof of Corollary 1.2

Let $D : \mathcal{CP}_0 \longrightarrow \mathcal{CP}_0$ be the anti-equivalence induced by the Spanier-Whitehead duality [Ada74]. If $X \in \mathcal{CP}_0$ and Y is any spectrum, the graded group $[X, Y]_*$ is isomorphic to $\pi_*(DX \wedge Y)$. We say that the maps $f : \Sigma^n X \longrightarrow Y$ and $\hat{f} : S^n \longrightarrow DX \wedge Y$ are adjoint if they correspond to each other under the above isomorphism of groups. In particular the adjoint of the identity $X \longrightarrow X$ is a map $e : S^0 \longrightarrow DX \wedge X$. Recall that $X^{(i)}$ is a notation for the *i*-fold smash product $X \wedge \cdots \wedge X$.

Set $R = DW \wedge W$, a ring spectrum whose unit is e and whose multiplication is the composite

$$R \wedge R = DW \wedge W \wedge DW \wedge W \xrightarrow{DW \wedge De \wedge W} DW \wedge S^0 \wedge W = R$$

The map $f: X \longrightarrow Y$ is adjoint to $\widehat{f}: S^0 \longrightarrow DX \wedge Y$ and $W \wedge f$ is adjoint to the composite

$$S^0 \xrightarrow{\widehat{f}} DX \wedge Y \xrightarrow{e \wedge DX \wedge Y} R \wedge DX \wedge Y,$$

which we denote by g. Set $F = R \wedge DX \wedge Y$. The map $W \wedge f^{(i)}$ is adjoint to the composite

$$S^0 \xrightarrow{g^{(i)}} F^{(i)} = R^{(i)} \wedge DX^{(i)} \wedge Y^{(i)} \longrightarrow R \wedge DX^{(i)} \wedge Y^{(i)},$$

the latter map being induced by the multiplication in R.

We want to show that $W \wedge f^{(k)}$ is null for large k; by adjointness it suffices to prove that $g^{(k)}$ is null for large k. The second statement of Theorem 1.1 implies that we only need to show that $BP \wedge g^{(i)}$ is null for large i, so we can take k to be an appropriate multiple of i. Let $T_i = R \wedge DX^{(i)} \wedge Y^{(i)}$ and let T be the direct limit of

$$S^0 \xrightarrow{g} T_1 \xrightarrow{T_1 \wedge \widehat{f}} T_2 \xrightarrow{T_2 \wedge \widehat{f}} T_3 \longrightarrow \cdots$$

The desired conclusion will follow from showing that $BP \wedge T$ is contractible.

At this point we need to use the theory of Bousfield classes. Recall that the Bousfield class of a spectrum X (denoted $\langle X \rangle$) is the collection of spectra Z for which $X \wedge Z$ is not contractible. In [Rav84] it was shown that

$$\langle BP \rangle = \langle K(0) \rangle \lor \langle K(1) \rangle \lor \cdots \lor \langle K(n) \rangle \lor \langle P(n+1) \rangle.$$

By assumption, $K(n) \wedge T$ is contractible for all n. Therefore it suffices to show that $P(m) \wedge T$ is contractible for large m.

Since we are concerned only with finite spectra, we have for large enough $m{:}$

$$\begin{split} K(m)_*(W \wedge f) &= K(m)_* \otimes_{\mathbf{F}_p} H_*(W \wedge f; \mathbf{F}_p) \\ P(m)_*(W \wedge f) &= P(m)_* \otimes_{\mathbf{F}_p} H_*(W \wedge f; \mathbf{F}_p). \end{split}$$

Our hypothesis implies that both of these homomorphisms are trivial, so the smash product $P(m) \wedge T$ is contractible as required.

3 The proof of Theorem 1.6

The proof of Theorem 1.6 is a consequence of the filtration theorem of Landweber, namely

Theorem 3.1 [Lan73] Each object $M \in \mathcal{BP}_0$ has a filtration

$$0 = M_s \subset \cdots \subset M_1 \subset M_0 = M$$

in the category \mathcal{BP}_0 , so that for $0 \leq i \leq s-1$ the quotient M_i/M_{i+1} is stably isomorphic to BP_*/I_{n_i} in \mathcal{BP}_0 , where $I_{n_i} = (p, v_1, \cdots, v_{n_i-1})$ are invariant prime ideals of BP*. (Stably isomorphic means isomorphic after a dimension shift.)

For $M \in \mathcal{BP}_0$ define $\operatorname{Spec}(M) = \{m \ge 1: v_{m-1}^{-1}M = 0\} \bigcup \{0\}$ (set as usual $v_0 = p$). If $M \neq 0$ then $\operatorname{Spec}(M)$ is a finite subset of **N** and is of the form:

$$Spec(M) = \{0, 1, \cdots, N_M\}$$

with $N_M \geq 0$.

Let \mathcal{C} be a thick subcategory of \mathcal{BP}_0 . Define an integer k by:

$$\bigcap_{M \in \mathcal{C}} \operatorname{Spec}(M) = \{0, 1, \cdots, k\}.$$

From the definition of k, one has $\mathcal{C} \subset \mathcal{BP}_k$ and $\mathcal{C} \not\subset \mathcal{BP}_{k+1}$. Let M in \mathcal{C} be such that

$$v_{k-1}^{-1}M = 0$$
 and $v_k^{-1}M \neq 0$,

and let

$$0 = M_s \subset \cdots \subset M_1 \subset M_0 = M$$

be a Landweber filtration of M. As C is thick and $M \in C$, all the M_i 's belong

to C as well as all the quotients $M_i/M_{i+1} \cong BP_*/I_{n_i}$. Localization being an exact functor, all the $v_{k-1}^{-1}M_i$ are null and hence $v_{k-1}^{-1}M_i/M_{i+1} \cong v_{k-1}^{-1}BP_*/I_{n_i} = 0.$ Therefore

$$n_i \ge k \quad \text{for} \quad 0 \le i \le s - 1. \tag{3.2}$$

On the other hand, $v_k^{-1}M \neq 0$ implies the existence of a j for which $v_k^{-1}BP_*/I_{n_j} \neq 0$, which forces

$$n_j \le k \text{ for some } j, \ 0 \le j \le s - 1.$$
 (3.3)

From (3.2) and (3.3) we obtain that $n_j = k$ for some $j, 0 \le j \le s-1$, hence $BP_*/I_k \in \mathcal{C}$. Now it is fairly easy to prove by induction that $BP_*/I_{k+l} \in \mathcal{C}$ for all $l \geq 0$. Consider the exact sequence in \mathcal{BP}_0

$$0 \longrightarrow BP_*/I_{k+l} \xrightarrow{v_{k+l}} BP_*/I_{k+l} \longrightarrow BP_*/I_{k+l+1} \longrightarrow 0$$

where the first morphism is multiplication by v_{k+l} . The subcategory \mathcal{C} being thick, $BP_*/I_{k+l} \in \mathcal{C}$ implies $BP_*/I_{k+l+1} \in \mathcal{C}$.

We are now ready to show the inclusion $\mathcal{BP}_k \subset \mathcal{C}$. Let N be an object in \mathcal{BP}_k and $0 = N_s \subset \cdots \subset N_1 \subset N_0 = N$ be a Landweber filtration of N. We have seen that $v_{k-1}^{-1}N = 0$ implies $n_i \geq k$ for all $0 \leq i \leq s-1$ with, as usual, n_i such that $N_i/N_{i+1} \cong BP_*/I_{n_i}$. By downward induction on i we prove that $N_i \in \mathcal{C}$. This works as follows.

First $N_s = 0 \in \mathcal{C}$. Second, the short exact sequence in \mathcal{BP}_0

$$0 \longrightarrow N_{i+1} \longrightarrow N_i \longrightarrow BP_*/I_{n_i} \longrightarrow 0$$

is such that $N_{i+1} \in \mathcal{C}$ (by the inductive assumption) and $BP_*/I_{n_i} \in \mathcal{C}$ as $n_i \geq k$. From the thickness of \mathcal{C} we obtain that $N_i \in \mathcal{C}$. For i = 0 we have $N \in \mathcal{C}$ and so $\mathcal{BP}_k = \mathcal{C}$, as required.

References

- [Ada74] J. F. Adams. Stable Homotopy and Generalised Homology. University of Chicago Press, Chicago, 1974.
- [DHS88] E. Devinatz, M. J. Hopkins, and J. H. Smith. Nilpotence and stable homotopy theory. Annals of Mathematics, 128:207–242, 1988.
- [HS] M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory II. To appear in *Annals of Mathematics*.
- [JY80] D. C. Johnson and Z. Yosimura. Torsion in Brown-Peterson homology and Hurewicz homomorphisms. Osaka Journal of Mathematics, 17:117–136, 1980.
- [Lan73] P. S. Landweber. Associated prime ideals and Hopf algebras. Journal of Pure and Applied Algebra, 3:175–179, 1973.
- [Lan76] P. S. Landweber. Homological properties of comodules over $MU_*(MU)$ and $BP_*(BP)$. American Journal of Mathematics, 98:591–610, 1976.
- [Lan79] P. S. Landweber. New applications of commutative algebra to Brown-Peterson homology. In P. Hoffman and V. Snaith, editors, *Algebraic Topology, Waterloo 1978*, pages 449–460, Springer-Verlag, New York, 1979.
- [Mit85] S. A. Mitchell. Finite complexes with A(n)-free cohomology. *Topology*, 24:227–248, 1985.
- [Rav84] D. C. Ravenel. Localization with respect to certain periodic homology theories. American Journal of Mathematics, 106:351–414, 1984.

- [Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986.
- [Rav92] D. C. Ravenel. Nilpotence and periodicity in stable homotopy theory. Volume 128 of Annals of Mathematics Studies, Princeton University Press, Princeton, 1992.
- [Rud86] Yu. B. Rudyak. Exactness theorems for the cohomology theories MU, BP and P(n). Mat. Zametki, 40:115–126, 1986. English translation in Math. Notes 40:562–569, 1986.