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Secondary cohomology operations

Secondary cohomology operations arise from relations between
primary cohomology operations.

Setup: X is a spectrum, A, B, C, are finite products of
Eilenberg–MacLane spectra.

X
x //

0

""
KS

A
a //

==

0

��
B

b // C

Toda bracket 〈b, a, x〉 ⊆ [ΣX,C].

Can reduce the indeterminacy by fixing the nullhomotopy ba⇒ 0.
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Example

Adem relation Sq3Sq1 + Sq2Sq2 = 0. Write H = HF2.

X
x // ΣnH

[
Sq1

Sq2

]
// Σn+1H × Σn+2H

[ Sq3 Sq2 ]// Σn+4H

〈
[ Sq3 Sq2 ],

[
Sq1

Sq2

]
, x

〉
⊆ [ΣX,Σn+4H] ∼= Hn+3(X;F2)

〈
[ Sq3 Sq2 ],

[
Sq1

Sq2

]
,−

〉
is a secondary operation defined on classes x

with Sq1x = 0 and Sq2x = 0, taking values in a quotient of
Hn+3(X;F2).
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Maps and homotopies

Upshot

Secondary operations are encoded by maps between (finite products
of) Eilenberg–MacLane spectra along with nullhomotopies.

Definition. Let EM be the topologically enriched category with
objects

A = Σn1HFp × · · · × ΣnkHFp

and mapping spaces between them.

Taking the fundamental groupoid of all mapping spaces yields a
groupoid-enriched category Π1EM which encodes secondary
operations.
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Algebra or category?

Remark. The homotopy category π0EM encodes primary
operations.

More precisely, π0EM is the (multi-sorted Lawvere) theory of
modules over the Steenrod algebra A∗ = HF∗pHFp.

An = [HFp,ΣnHFp] = π0 Map(HFp,ΣnHFp)

What should the “secondary Steenrod algebra” be?

Naive attempt: a graded gadget having in degree n the groupoid

Π1 Map(HFp,ΣnHFp).
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Secondary Steenrod algebra

Theorem (Baues 2006). Complete structure of the secondary
Steenrod algebra as a “secondary Hopf algebra” over Z/p2.

Theorem (Nassau 2012). A smaller model weakly equivalent to
that of Baues.

One important step: strictification. Replace the naive structure
by one where composition is strictly bilinear.

Theorem (Baues 2006). Π1EM is weakly equivalent to a
1-truncated DG-category over Z/p2.
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This project

Streamline the strictification result. Really a fact about
coherence in track categories.

Get a more general result.

Different method: no use of Baues–Wirsching cohomology of
categories.

Approach that can be adapted to tertiary operations (longer
term goal).
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Failure of bilinearity

Problem
Composition in EM is bilinear up to homotopy, but not strictly
bilinear.

Eilenberg–MacLane spectra are abelian group objects in spectra.
Addition is pointwise in the target.

This makes composition left linear (strictly):

X
x // A

a // B

(a+ a′)x = ax+ a′x

a(x+ y) ∼ ax+ ay.

The same is true in Π1EM. Let us describe the structure found in
Π1EM.
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Track categories

Definition. A track category T is a category enriched in
groupoids.

The 2-morphisms are called tracks, denoted α : f ⇒ g.

Denote the composition of 2-morphisms by β�α, depicted as

X g //

f

���� α

FF

h

�� β
Y

or as a diagram of tracks

f
α +3 g

β +3 h.
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Left linear track categories

Definition. A track category T is left linear if:

1. T is enriched in pointed groupoids (i.e., strict zero morphisms).

2. Each mapping groupoid T (A,B) is an abelian group object in
groupoids (with basepoint 0).

3. Composition in T is left linear.

Example. Π1EM.

Example. Π1EMZ, where we replace HFp by HZ.

Definition. A linearity track is a track of the form

Γx,ya : a(x+ y)⇒ ax+ ay.
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Linearity tracks

How do linearity tracks in T = Π1EM arise? From the stability of
spectra.

Products are weak coproducts:

T (A×B,Z)
(i∗A,i

∗
B)

'
// T (A,Z)× T (B,Z)

is an equivalence of groupoids for every object Z.

X
(x,y) //

x+y
##

A×A
+A

��

a×a // B ×B
+B

��
A

a // B.

AIΓa

where Γa is defined by {
i∗1Γa = id�

a

i∗2Γa = id�
a .

13 / 25



Linearity track equations

Proposition (Baues 2006). The linearity tracks Γx,ya constructed
above satisfy the following linearity track equations.

1. Precomposition:

a(xz + yz)
Γxz,yz
a +3 axz + ayz

a(x+ y)z
Γx,y
a z
+3 (ax+ ay)z.

2. Postcomposition:

ba(x+ y)

bΓx,y
a

��

Γx,y
ba +3 bax+ bay

b(ax+ ay).

Γax,ay
b

3;
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Linearity track equations, cont’d

3. Symmetry: Γx,ya = Γy,xa .

4. Left linearity: Γx,ya+a′ = Γx,ya + Γx,ya′ .

5. Associativity:

a(x+ y + z)

Γx,y+z
a

��

Γx+y,z
a +3 a(x+ y) + az

Γx,y
a +az

��
ax+ a(y + z)

ax+Γy,z
a

+3 ax+ ay + az.
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Linearity track equations, cont’d

6. Naturality in x and y: Given tracks G : x⇒ x′ and H : y ⇒ y′,

a(x+ y)

a(G+H)
��

Γx,y
a +3 ax+ ay

aG+aH
��

a(x′ + y′)
Γx′,y′
a

+3 ax′ + ay′.

7. Naturality in a: Given a track α : a⇒ a′,

a(x+ y)

α(x+y)
��

Γx,y
a +3 ax+ ay

αx+αy

��
a′(x+ y)

Γx,y

a′

+3 a′x+ a′y.
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Truncated Dold-Kan

Lemma. There is an equivalence of categories

Gpdab
∼= Ch≤1(Z)

sending a groupoid G = (G1 ⇒ G0) to the 1-truncated chain
complex

ker(d1)
d0| // G0.

Lemma. A left linear track category which is also right linear can
be identified with a 1-truncated DG-category.

Remark. The equivalence Gpdab
∼= Ch≤1(Z) is not monoidal, but

close enough.
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Strictification theorem

Theorem (Baues, F.). Let T be a left linear track category
admitting linearity tracks that satisfy the linearity track equations.
Then T is weakly equivalent to a 1-truncated DG-category.

If moreover every morphism in T is p-torsion, then T is weakly
equivalent to a 1-truncated DG-category over Z/p2.

This recovers Baues’ previous result about strictifying Π1EM.

Corollary. Π1EMZ is weakly equivalent to a 1-truncated
DG-category. In other words, the secondary integral Steenrod
algebra is strictifiable.
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Sketch of proof

Construct a certain pseudo-functor s : B0 → T .

Jazz up B0 to a 1-truncated DG-category B.

Get a pseudo-DK-equivalence s : B → F . By 2-categorical
nonsense, induces a weak equivalence. (Adaptation of an
argument due to Lack.)

In particular, no cocycle computation in Baues–Wirsching
cohomology.
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A different generalization

Theorem (Baues, Pirashvili 2006). Let T be an additive track
theory. If the hom abelian groups in the homotopy category π0T
are 2-torsion or if 2 acts invertibly on them, then T is strictifiable.

This argument does not work for Π1EMZ.

Their work relies on computations in Hochschild and Shukla
cohomology, along with Baues–Wirsching cohomology.
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Massey products

Using a strictification of T , we can compute 3-fold Massey
products in π0T .

In particular, the (strictified) secondary Steenrod algebra can be
used to compute 3-fold Massey products in the Steenrod algebra
A∗.

Example. Writing in the Milnor basis:

Sq(0, 1, 2) ∈ 〈Sq(0, 2),Sq(0, 2),Sq(0, 2)〉 .
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Adams differential d2

Using the secondary Steenrod algebra, one can compute the
differential d2 in the classical Adams spectral sequence [Baues,
Jibladze 2011].

Idea: Resolve the secondary cohomology of X as a module over the
secondary Steenrod algebra.

The expression for d2 is a certain representative of a 3-fold Toda
bracket involving two primary operations.
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Thank you!
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