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Outline

Secondary Steenrod algebra
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Secondary cohomology operations
Secondary cohomology operations arise from relations between
primary cohomology operations.

Setup: X is a spectrum, A, B, C, are finite products of
Eilenberg—MacLane spectra.

Toda bracket (b,a,z) C [EX,C].

Can reduce the indeterminacy by fixing the nullhomotopy ba = 0.
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Example

Adem relation Sq*Sq' 4+ Sq?Sq? = 0. Write H = HIF,.
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< Sq® Sq? | Z } > is a secondary operation defined on classes x
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with Sqlz =
H™3(X;Fy).

nd Sq?z = 0, taking values in a quotient of
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Maps and homotopies

Upshot

Secondary operations are encoded by maps between (finite products
of) Eilenberg—MacLane spectra along with nullhomotopies.

Definition. Let EM be the topologically enriched category with
objects
A=Y"HF, x--- x ¥"*HF),

and mapping spaces between them.

Taking the fundamental groupoid of all mapping spaces yields a
groupoid-enriched category II;EM which encodes secondary
operations.
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Algebra or category?

Remark. The homotopy category mpE M encodes primary
operations.

More precisely, mpEM is the (multi-sorted Lawvere) theory of
modules over the Steenrod algebra A* = HF, HF,,.

A" = [HF,, S"HF,) = mo Map(HTF,, S HF,)

What should the “secondary Steenrod algebra” be?

Naive attempt: a graded gadget having in degree n the groupoid

11, Map(HF,, 5" HF,).
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Secondary Steenrod algebra

Theorem (Baues 2006). Complete structure of the secondary
Steenrod algebra as a “secondary Hopf algebra” over Z/p?.
Theorem (Nassau 2012). A smaller model weakly equivalent to
that of Baues.

One important step: strictification. Replace the naive structure

by one where composition is strictly bilinear.

Theorem (Baues 2006). II;EM is weakly equivalent to a
I-truncated DG-category over Z/p?.
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This project

Streamline the strictification result. Really a fact about
coherence in track categories.

o Get a more general result.

o Different method: no use of Baues—Wirsching cohomology of
categories.

Approach that can be adapted to tertiary operations (longer
term goal).
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Outline

Track categories and linearity tracks
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Failure of bilinearity

Problem

Composition in €M is bilinear up to homotopy, but not strictly
bilinear.

Eilenberg—MacLane spectra are abelian group objects in spectra.
Addition is pointwise in the target.

This makes composition left linear (strictly):
X—*>A-"~B
(a+d)r=ax+dx
a(z +y) ~ ar + ay.
The same is true in II{EM. Let us describe the structure found in

I EM.
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Track categories

Definition. A track category T is a category enriched in
groupoids.

The 2-morphisms are called tracks, denoted «: f = g.

Denote the composition of 2-morphisms by SU«, depicted as

/
SN

X —9=Y
\ b/
h
or as a diagram of tracks
a B
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Left linear track categories

Definition. A track category 7 is left linear if:

1. T is enriched in pointed groupoids (i.e., strict zero morphisms).

2. Each mapping groupoid 7 (A, B) is an abelian group object in
groupoids (with basepoint 0).

3. Composition in T is left linear.
Example. I[[{EM.
Example. 1I,EMgz, where we replace HIF, by HZ.

Definition. A linearity track is a track of the form

I'oY:a(x +y) = ax + ay.
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Linearity tracks

How do linearity tracks in 7 = II;EM arise? From the stability of
spectra.

Products are weak coproducts:
T(Ax B, 2) 2L 714, 7) x T(B, 7)

is an equivalence of groupoids for every object Z.

]

where I', is defined by
T, = id;
3T, = idY.

><
AN
AN
Sy
Sy
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Linearity track equations

Proposition (Baues 2006). The linearity tracks I'q’¥ constructed
above satisfy the following linearity track equations.

1. Precomposition:

Tz, Yz

a(zz + yz) =—= axz + ayz

alxr+y z:>(a:v+ay

2. Postcomposition:

Z,Y

r
ba(z + y) === bax + bay

brgvyﬂ %

b(az + ay).
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Linearity track equations, cont’d

3. Symmetry: Tg¥ =T457.
4. Left linearity: TV, =TV + T,

5. Associativity:

z+y z

(J:+y+z):>a(x+y)+az

Fﬁ’y+zﬂ ﬂFg’y+az

ax + a(y + z) ﬁgaw—l—ay—&-az
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Linearity track equations, cont’d

6. Naturality in x and y: Given tracks G: x = 2’ and H: y = v/,

T
a(r +y) —=ar+ay

a(G-ﬁ-H)ﬂ ﬂ/aG—I—aH

a(z' +v') == az’ + ay’.
re’

7. Naturality in a: Given a track a: a = d’,

re
a(z +y) =——=azr +ay

a(x+y)ﬂ ﬂ/aw-‘ray

a(z+y) ﬁa’x +d'y.
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Outline

Strictification
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Truncated Dold-Kan

Lemma. There is an equivalence of categories
Gpd,;, = Ch<(Z)

sending a groupoid G = (G1 == Gy) to the 1-truncated chain
complex

ker(dy) 2L~ .

Lemma. A left linear track category which is also right linear can
be identified with a 1-truncated DG-category.

Remark. The equivalence Gpd,;, = Ch<;(Z) is not monoidal, but
close enough.
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Strictification theorem

Theorem (Baues, F.). Let 7 be a left linear track category
admitting linearity tracks that satisfy the linearity track equations.
Then T is weakly equivalent to a 1-truncated DG-category.

If moreover every morphism in 7 is p-torsion, then 7 is weakly
equivalent to a 1-truncated DG-category over Z/p?.
This recovers Baues’ previous result about strictifying IT;EM.

Corollary. II;EMy is weakly equivalent to a 1-truncated
DG-category. In other words, the secondary integral Steenrod
algebra is strictifiable.
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Sketch of proof

e Construct a certain pseudo-functor s: By — 7.
e Jazz up By to a 1-truncated DG-category B.

e Get a pseudo-DK-equivalence s: B — F. By 2-categorical
nonsense, induces a weak equivalence. (Adaptation of an
argument due to Lack.)

In particular, no cocycle computation in Baues—Wirsching
cohomology.
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Computational aspects
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A different generalization

Theorem (Baues, Pirashvili 2006). Let 7 be an additive track
theory. If the hom abelian groups in the homotopy category mo7T
are 2-torsion or if 2 acts invertibly on them, then T is strictifiable.

This argument does not work for 1I; E M.

Their work relies on computations in Hochschild and Shukla
cohomology, along with Baues—Wirsching cohomology.
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Massey products

Using a strictification of T, we can compute 3-fold Massey
products in w7 .

In particular, the (strictified) secondary Steenrod algebra can be
used to compute 3-fold Massey products in the Steenrod algebra
A*.

Example. Writing in the Milnor basis:

Sq(0,1,2) € (Sq(0,2),Sq(0,2),Sq(0,2)) .
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Adams differential ds

Using the secondary Steenrod algebra, one can compute the
differential dg in the classical Adams spectral sequence [Baues,
Jibladze 2011].

Idea: Resolve the secondary cohomology of X as a module over the
secondary Steenrod algebra.

The expression for ds is a certain representative of a 3-fold Toda
bracket involving two primary operations.
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Thank you!
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