The DG-category of secondary cohomology operations

Martin Frankland University of Regina

Joint with Hans-Joachim Baues

Electronic Computational Homotopy Theory Seminar February 28, 2019

Outline

Secondary Steenrod algebra

Track categories and linearity tracks

Strictification

Computational aspects

Secondary cohomology operations

Secondary cohomology operations arise from relations between primary cohomology operations.

Setup: X is a spectrum, A, B, C, are finite products of Eilenberg–MacLane spectra.

Toda bracket $\langle b, a, x \rangle \subseteq [\Sigma X, C].$

Can reduce the indeterminacy by fixing the nullhomotopy $ba \Rightarrow 0$.

Example

Adem relation $Sq^3Sq^1 + Sq^2Sq^2 = 0$. Write $H = H\mathbb{F}_2$.

$$X \xrightarrow{x} \Sigma^n H \xrightarrow{\begin{bmatrix} \operatorname{Sq}^1 \\ \operatorname{Sq}^2 \end{bmatrix}} \Sigma^{n+1} H \times \Sigma^{n+2} H \xrightarrow{[\operatorname{Sq}^3 \operatorname{Sq}^2]} \Sigma^{n+4} H$$

$$\left\langle \left[\operatorname{Sq}^{3} \operatorname{Sq}^{2} \right], \left[\operatorname{Sq}^{1} \atop \operatorname{Sq}^{2} \right], x \right\rangle \subseteq \left[\Sigma X, \Sigma^{n+4} H \right] \cong H^{n+3}(X; \mathbb{F}_{2})$$

 $\left\langle \begin{bmatrix} \mathrm{Sq}^3 \ \mathrm{Sq}^2 \end{bmatrix}, \begin{bmatrix} \mathrm{Sq}^1 \\ \mathrm{Sq}^2 \end{bmatrix}, - \right\rangle$ is a secondary operation defined on classes x with $\mathrm{Sq}^1 x = 0$ and $\mathrm{Sq}^2 x = 0$, taking values in a quotient of $H^{n+3}(X; \mathbb{F}_2)$.

Maps and homotopies

Upshot

Secondary operations are encoded by maps between (finite products of) Eilenberg–MacLane spectra along with nullhomotopies.

Definition. Let \mathcal{EM} be the topologically enriched category with objects

$$A = \Sigma^{n_1} H \mathbb{F}_p \times \dots \times \Sigma^{n_k} H \mathbb{F}_p$$

and mapping spaces between them.

Taking the fundamental groupoid of all mapping spaces yields a groupoid-enriched category $\Pi_1 \mathcal{EM}$ which encodes secondary operations.

Algebra or category?

Remark. The homotopy category $\pi_0 \mathcal{EM}$ encodes primary operations.

More precisely, $\pi_0 \mathcal{EM}$ is the (multi-sorted Lawvere) theory of modules over the Steenrod algebra $\mathcal{A}^* = H\mathbb{F}_p^* H\mathbb{F}_p$.

$$\mathcal{A}^n = [H\mathbb{F}_p, \Sigma^n H\mathbb{F}_p] = \pi_0 \operatorname{Map}(H\mathbb{F}_p, \Sigma^n H\mathbb{F}_p)$$

What should the "secondary Steenrod algebra" be?

Naive attempt: a graded gadget having in degree n the groupoid

 $\Pi_1 \operatorname{Map}(H\mathbb{F}_p, \Sigma^n H\mathbb{F}_p).$

Secondary Steenrod algebra

Theorem (Baues 2006). Complete structure of the secondary Steenrod algebra as a "secondary Hopf algebra" over \mathbb{Z}/p^2 .

Theorem (Nassau 2012). A smaller model weakly equivalent to that of Baues.

One important step: **strictification**. Replace the naive structure by one where composition is strictly bilinear.

Theorem (Baues 2006). $\Pi_1 \mathcal{EM}$ is weakly equivalent to a 1-truncated DG-category over \mathbb{Z}/p^2 .

This project

- Streamline the strictification result. Really a fact about *coherence in track categories.*
- Get a more general result.
- Different method: no use of Baues–Wirsching cohomology of categories.
- Approach that can be adapted to tertiary operations (longer term goal).

Secondary Steenrod algebra

Track categories and linearity tracks

Strictification

Computational aspects

Failure of bilinearity

Problem

Composition in \mathcal{EM} is bilinear up to homotopy, but not strictly bilinear.

Eilenberg–MacLane spectra are abelian group objects in spectra. Addition is pointwise in the target.

This makes composition left linear (strictly):

$$X \xrightarrow{x} A \xrightarrow{a} B$$

$$(a + a')x = ax + a'x$$
$$a(x + y) \sim ax + ay.$$

The same is true in $\Pi_1 \mathcal{EM}$. Let us describe the structure found in $\Pi_1 \mathcal{EM}$.

Track categories

Definition. A track category \mathcal{T} is a category enriched in groupoids.

The 2-morphisms are called **tracks**, denoted $\alpha \colon f \Rightarrow g$.

Denote the composition of 2-morphisms by $\beta \Box \alpha$, depicted as

or as a diagram of tracks

$$f \xrightarrow{\alpha} g \xrightarrow{\beta} h.$$

Left linear track categories

Definition. A track category \mathcal{T} is left linear if:

- 1. \mathcal{T} is enriched in pointed groupoids (i.e., strict zero morphisms).
- 2. Each mapping groupoid $\mathcal{T}(A, B)$ is an abelian group object in groupoids (with basepoint 0).
- 3. Composition in \mathcal{T} is left linear.

Example. $\Pi_1 \mathcal{EM}$.

Example. $\Pi_1 \mathcal{EM}_{\mathbb{Z}}$, where we replace $H\mathbb{F}_p$ by $H\mathbb{Z}$.

Definition. A linearity track is a track of the form

$$\Gamma_a^{x,y} \colon a(x+y) \Rightarrow ax + ay.$$

Linearity tracks

How do linearity tracks in $\mathcal{T} = \prod_1 \mathcal{EM}$ arise? From the stability of spectra.

Products are weak coproducts:

$$\mathcal{T}(A \times B, Z) \xrightarrow[\simeq]{(i_A^*, i_B^*)}{\simeq} \mathcal{T}(A, Z) \times \mathcal{T}(B, Z)$$

is an equivalence of groupoids for every object Z.

where Γ_a is defined by

$$\begin{cases} i_1^* \Gamma_a = \mathrm{id}_a^{\square} \\ i_2^* \Gamma_a = \mathrm{id}_a^{\square}. \end{cases}$$

Linearity track equations

Proposition (Baues 2006). The linearity tracks $\Gamma_a^{x,y}$ constructed above satisfy the following **linearity track equations**.

1. *Precomposition*:

$$a(xz+yz) \xrightarrow{\Gamma_a^{xz,yz}} axz + ayz$$
$$\| \qquad \| \\ a(x+y)z \xrightarrow{\Gamma_a^{x,yz}} (ax+ay)z.$$

2. Postcomposition:

Linearity track equations, cont'd

- 3. Symmetry: $\Gamma_a^{x,y} = \Gamma_a^{y,x}$. 4. Left linearity: $\Gamma_{a+a'}^{x,y} = \Gamma_a^{x,y} + \Gamma_{a'}^{x,y}$.
- 5. Associativity:

$$\begin{array}{c} a(x+y+z) \xrightarrow{\Gamma_{a}^{x+y,z}} a(x+y) + az \\ \Gamma_{a}^{x,y+z} \\ x+a(y+z) \xrightarrow{} ax + \Gamma_{a}^{y,z} ax + ay + az. \end{array}$$

Linearity track equations, cont'd

6. Naturality in x and y: Given tracks $G: x \Rightarrow x'$ and $H: y \Rightarrow y'$,

7. Naturality in a: Given a track $\alpha : a \Rightarrow a'$,

Secondary Steenrod algebra

Track categories and linearity tracks

Strictification

Computational aspects

Truncated Dold-Kan

Lemma. There is an equivalence of categories

 $\mathbf{Gpd}_{\mathrm{ab}}\cong\mathbf{Ch}_{\leq 1}(\mathbb{Z})$

sending a groupoid $G = (G_1 \rightrightarrows G_0)$ to the 1-truncated chain complex

$$\ker(d_1) \xrightarrow{d_0|} G_0.$$

Lemma. A left linear track category which is also right linear can be identified with a 1-truncated DG-category.

Remark. The equivalence $\mathbf{Gpd}_{ab} \cong \mathbf{Ch}_{\leq 1}(\mathbb{Z})$ is not monoidal, but close enough.

Strictification theorem

Theorem (Baues, F.). Let \mathcal{T} be a left linear track category admitting linearity tracks that satisfy the linearity track equations. Then \mathcal{T} is weakly equivalent to a 1-truncated DG-category.

If moreover every morphism in \mathcal{T} is *p*-torsion, then \mathcal{T} is weakly equivalent to a 1-truncated DG-category over \mathbb{Z}/p^2 .

This recovers Baues' previous result about strictifying $\Pi_1 \mathcal{EM}$.

Corollary. $\Pi_1 \mathcal{EM}_{\mathbb{Z}}$ is weakly equivalent to a 1-truncated DG-category. In other words, the secondary **integral** Steenrod algebra is strictifiable.

Sketch of proof

- Construct a certain pseudo-functor $s: \mathcal{B}_0 \to \mathcal{T}$.
- Jazz up \mathcal{B}_0 to a 1-truncated DG-category \mathcal{B} .
- Get a pseudo-DK-equivalence $s: \mathcal{B} \to \mathcal{F}$. By 2-categorical nonsense, induces a weak equivalence. (Adaptation of an argument due to Lack.)

In particular, no cocycle computation in Baues–Wirsching cohomology.

Secondary Steenrod algebra

Track categories and linearity tracks

Strictification

Computational aspects

A different generalization

Theorem (Baues, Pirashvili 2006). Let \mathcal{T} be an additive track theory. If the hom abelian groups in the homotopy category $\pi_0 \mathcal{T}$ are 2-torsion or if 2 acts invertibly on them, then \mathcal{T} is strictifiable.

This argument does *not* work for $\Pi_1 \mathcal{EM}_{\mathbb{Z}}$.

Their work relies on computations in Hochschild and Shukla cohomology, along with Baues–Wirsching cohomology.

Massey products

Using a strictification of \mathcal{T} , we can compute 3-fold Massey products in $\pi_0 \mathcal{T}$.

In particular, the (strictified) secondary Steenrod algebra can be used to compute 3-fold Massey products in the Steenrod algebra \mathcal{A}^* .

Example. Writing in the Milnor basis:

 $Sq(0,1,2)\in \left\langle Sq(0,2),Sq(0,2),Sq(0,2)\right\rangle.$

Adams differential d_2

Using the secondary Steenrod algebra, one can compute the differential d_2 in the classical Adams spectral sequence [Baues, Jibladze 2011].

Idea: Resolve the secondary cohomology of X as a module over the secondary Steenrod algebra.

The expression for d_2 is a certain representative of a 3-fold Toda bracket involving two primary operations.

Thank you!