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BACKGROUND: OPERATIONS AND REALIZATION PROBLEMS

My research interests lie in algebraic topology and homotopy theory, with a focus on opera-
tions. In particular, I have worked on homotopy operations, higher cohomology operations, power
operations in chromatic homotopy theory, and cohomology operations in motivic homotopy theory.

One of the main ideas of algebraic topology is to describe spaces by associating algebraic invari-
ants to them, such as homotopy groups m.X and cohomology groups H*X. The cohomology H*X
is more than a graded ring, as it comes equipped with an action of cohomology operations, i.e.,
natural transformations H"X — H"**X. For example, the mod p cohomology H*(X;F,) of a space
X 1s an unstable algebra over the Steenrod algebra, the algebra of (stable) cohomology operations.
J.F. Adams used the Steenrod algebra in an essential way in the Adams spectral sequence. To this
day, the Adams spectral sequence (along with its generalizations) remains one of the most power-
ful tools for computations in stable homotopy theory, in particular for computing stable homotopy
groups of spheres. Broadly speaking, my research addresses the following.

Question. How much information about a space is remembered by its algebraic invariants, taking
into account the operations?

The classic Steenrod problem asks which unstable algebras over the Steenrod algebra can be
realized as the mod p cohomology of a space. This is an example of realization problem.

Table 1 provides an overview of my research, listed by theme and by timeline. Here is a summary
of each theme, including some future directions I want to investigate. More details are provided
afterwards in Sections 1 through 5.

1. Homotopy operations. My earlier work was focused on the realization of Il-algebras, an alge-
braic structure encoding operations on the homotopy groups of a space. Given a space X, one has
an associated II-algebra 7. X, and the realization problem asks the converse: Given a II-algebra A,
does there exist a space which gives rise to it? Each such choice of space is called a realization
of A. Using obstruction theory, I described the moduli space of realizations of certain I1-algebras
concentrated in two degrees. In joint work with H.J. Baues, we provided necessary and sufficient
conditions for the realizability of a II-algebra concentrated in two degrees. We also provided infi-
nite families of [1-algebras that are not realizable. In ongoing work with D. Isaksen, we are relating
obstructions to realizability to higher homotopy operations.

2. Homotopical and homological algebra. The aforementioned obstruction theory has obstruc-
tion classes in Quillen cohomology. Motivated by this, I studied some properties of Quillen coho-
mology via simplicial model categories, and computed some explicit obstruction groups.
Triangulated categories are another useful tool to encode operations and obstructions. With
D. Christensen, we showed that the Adams differentials in a triangulated category are given by spe-
cific higher Toda brackets, and described applications to computing maps between module spectra
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over aring spectrum. In current work with K. Szumito, we are studying properties of the underlying

derivator of a model category, which remembers more information than a triangulated category.
Future goal: Prove the Moss convergence theorem in a general triangulated category. This theo-

rem allows the computation of Toda brackets with the Adams spectral sequence.

3. Higher comohology operations. In ongoing work with H.J. Baues, we are studying the algebra
of higher order operations in mod p cohomology. The main goal is to compute the differential ds
in the Adams spectral sequence, using tertiary operations. We have described a certain algebraic
structure that determines d;. We have shown that higher cohomology operations satisfy higher
distributivity laws.

Future goals: Prove a strictification theorem for higher cohomology operations. Compute the

Adams differential d, via secondary cohomology operations.

4. Chromatic homotopy theory. I have also worked on power operations in chromatic homotopy
theory. At chromatic height 1, these operations are related to A-rings. Examples of A-rings include
the topological K-theory K°(X) of a space, with the A-structure induced by exterior powers of vector
bundles, or the representation ring R(G) of a group, with the A-structure induced by exterior powers
of representations. C. Rezk provided a construction that encodes the algebraic structure found in
the homotopy of a K(n)-local algebra over Morava E-theory at chromatic height n. In joint work
with T. Barthel, we improved the construction to better deal with completions (Theorem 4.1).
Future goals: Use Theorem 4.1 to calculate power operations for Morava E-theory and topolog-
ical André—Quillen homology.

5. Motivic homotopy theory. More recently, I started working on cohomology operations in
motivic homotopy theory, a branch of homotopy theory applied to algebraic geometry. In motivic
homotopy theory, one can associate algebraic invariants not only to spaces, but also to smooth
schemes. Together with M. Spitzweck, we are working on a conjecture about the mod p dual
motivic Steenrod algebra over a base field of characteristic p. The known theorem for mod ¢
cohomology with £ # p has been used successfully to compute the slice spectral sequence, which
relates motivic cohomology to algebraic K-theory [Spil2] [R@D16].
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1. HoMOTOPY OPERATIONS AND IT-ALGEBRAS

The homotopy groups ;X of a pointed space X are an important algebraic invariant of spaces
and have been studied extensively. They are a collection of groups (abelian for i > 1) that carry
additional structure: a mj-action on higher groups, Whitehead products n; X 7; — i, and
precomposition operations 7;(S") X m, — x; induced by maps between spheres. This algebraic
structure is known as a I1-algebra. The prototypical I1-algebra is the homotopy Il-algebra 7, X of
a pointed space X, which defines the functor x,: Top, — ITAlg.

Problem. Given a Il-algebra A, is there a space X satisfying A ~ n.X as [l-algebras? In other
words, can A be topologically realized, and if so, can we classify all realizations up to weak homo-
topy equivalence?

The simplest kind of I[T-algebra is one concentrated in one degree n; such a II-algebra is real-
izable by an Eilenberg—MacLane space K(A,, n), uniquely up to weak equivalence. However, the
analogous statement becomes false if there are two non-trivial homotopy groups A, and A, with
prescribed homotopy operations between them.

In [BDGO04], the moduli space T M(A) of all realizations of a II-algebra A is built as the limit
of a tower whose layers are controlled by Quillen cohomology groups of A. A similar Dwyer—
Kan-Stover obstruction theory had been successfully applied to problems about E,, ring spectra
[GHO4].

The moduli space 7 M(A) provides an improved classification. The set of path components
o7 M(A) recovers the usual classification: it is the set of all realizations of A (weak homotopy
types). Then m;7 M(A) based at a realization X corresponds to automorphisms of X, m,7 M(A)
corresponds to automorphisms of automorphisms, and so on.

1.1. Moduli spaces of realizations. Using the obstruction theory of [BDGO04], along with com-
putations of obstruction groups, I obtained classification results for some realizable II-algebras
concentrated in two degrees [Frall, Theorems 3.4 and 5.1]. More precisely, I provided a complete
description of the moduli space of realizations 7 M(A) for II-algebras A of the following form:

e The non simply-connected case: A is concentrated in degrees 1 and n for some n > 2.
e The connected stable 2-types: A is concentrated in degrees n and n + 1 for some n > 2.

1.2. Criterion for realizability. In [BF15, Theorem 4.2], H.J. Baues and I provided necessary
and sufficient conditions for the realizability of a Il-algebra concentrated in two degrees n and
n + k. The statement involves the homology of Eilenberg—MacLane spaces, an algebraic structure
that is known in principle. Using this criterion, we listed infinite families of such Il-algebras
that are not realizable, coming from known infinite families in stable homotopy groups of spheres
[BF15, Proposition 6.7].

1.3. Realization of 7.-modules. The stable analogue of the realization problem is to realize a «,-
module as the homotopy 7. X of a spectrum X, where 7, = 7.(S°) denotes the stable homotopy
ring. The homotopy groups m.X support higher homotopy operations, in the form of Toda brack-
ets involving classes in ., (primary operations) and a class in m.X. Following discussions with
D. Isaksen, we want to make precise the statement that these higher homotopy operations are the
only obstructions to realizability. Consider a m.-module concentrated in a range where only sec-
ondary operations could appear, i.e., 3-fold Toda brackets. Since the indeterminacy of 3-fold Toda
brackets behaves well, we expect a clean statement of the form: A m,-module concentrated in that
range is realizable if and only if it can be endowed with secondary homotopy operations, to be
described explicitly.
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2. HOMOTOPICAL AND HOMOLOGICAL ALGEBRA

While working on homotopy operations and cohomology operations, one comes across useful
tools from homotopical and homological algebra. I am particularly interested in Quillen coho-
mology, simplicial model categories, and triangulated categories. André—Quillen cohomology was
introduced in the 1960s as a tool to solve problems in commutative algebra using methods from
homotopy theory. Since then, it has found many applications in topology and in algebra [GSO7].

2.1. Obstruction classes in Quillen cohomology. Iproved that Quillen cohomology AQp(A; M)
of a I1-algebra A with coefficients in a module M can be computed in the category of n-truncated

[I-algebra if M is n-truncated, and in the category of n-connected Il-algebras if A is n-connected

[Fral5, Theorem 5.16] [Frall, Theorem 4.10]. These results lead to concrete calculations of some

obstruction groups. More generally, I described the comparison maps and spectral sequences in-

duced on Quillen (co)homology by an adjunction between two algebraic categories [Fral5, Theo-

rem 4.7].

2.2. Higher Toda brackets in triangulated categories. Triangulated categories appear in many
contexts in topology and in algebra, for example, the stable homotopy category and the derived
category of an abelian category. Given a stable model category C, its homotopy category Ho(C)
inherits a triangulated structure, with which one can do a lot. Notably, the Adams spectral sequence
is available in any triangulated category equipped with an injective (or projective) class. Higher
Toda brackets are also available in any triangulated category.

In [CF17], D. Christensen and I showed that the differential d, of the Adams spectral sequence in
a triangulated category is given by a certain (r+1)-fold Toda bracket involving primary cohomology
operations, generalizing a theorem of Maunder about the classical Adams spectral sequence [CF17,
Theorem 6.5]. We described applications to the universal coefficient spectral sequence

Ext " (m.M,n.N) = [M, N1z

computing maps in the homotopy category of R-module spectra, for a sufficiently sparse ring spec-
trum R [CF17, Theorem 7.14].

2.3. Homotopy theory of direct Reedy diagrams. The homotopy category Ho(C) equipped with
its triangulated structure does not remember the whole homotopy theory of C. There are examples
of triangulated categories which admit models that are not Quillen equivalent [DS09]. A result of
Renaudin guarantees that for nice enough C, the derivator of C determines the homotopy theory
of C. The derivator consists of all the homotopy categories Ho(C') of diagram categories C’ for
small categories /, together with restriction and extension functors between them.

In current work with K. Szumito [FS18a], we are investigating how much information about
the homotopy categories Ho(C’) can be recovered by considering only the case where [ is a direct
Reedy category. Examples of direct Reedy categories include the natural numbers N viewed as a
poset, or the category Ay, of finite ordinals and injective order-preserving maps. There is a natural
functor DI — [ that relates a small category [ to a direct Reedy category DI. We prove that the in-
duced restriction functor Ho(C’) — Ho(C??) is fully faithful, and describe some applications. One
application extends a result in [DS09] about the two non-equivalent derivators discussed therein.
Another application appears in [LNS17].

2.4. Homotopy theory of simplicial modules. In my work on Quillen cohomology [Fral5], I
studied some properties of simplicial modules over an object X of an algebraic category C. Here, a
Beck module over X is an abelian group object in the slice category over X. For some applications,
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one also needs simplicial modules over simplicial objects X, € sC. This is conveniently described
using the fibered category of Beck modules ModC — C, also known as tangent category of C,
whose fiber over an object X € C is the category (C/X),, of Beck modules over X. I studied some
properties of this construction in [Fral0].

In [Fral8], I show that for nice enough C, the category sModC of simplicial objects in ModC
admits a model structure which induces a model structure on each fiber category, i.e., the category
of Beck modules over each simplicial object X, € sC. This generalizes the work of Quillen on
simplicial modules over simplicial groups or simplicial commutative rings. The model structure on
sModC agrees after the fact with the integral model structure of [HP15].

2.5. Relative derived categories. Given a triangulated category 7~ with a projective class P, the
E, term of the P-relative Adams spectral sequence is given by P-relative Ext groups Ext;" (X, Y).
Following our work in [CF17] exhibiting the differentials as higher Toda brackets in 7°, we would
like to prove the Moss convergence theorem in this level of generality. This theorem, proved by
Moss for the classical Adams spectral sequence, relates the Massey product of permanent cycles
on the E; term to the Toda bracket of the maps that the cycles represent. Massey products are an
algebraic analogue of Toda brackets, defined in cohomology rather than in homotopy.

A priori, Toda brackets in 7 and Massey products of Ext classes are very different things. How-
ever, one can form the P-relative derived category Dp(7), a triangulated category such that the
groups Ext;;"(X,Y) are particular hom-groups in Dp(7"). From this point of view, Massey prod-
ucts of Ext classes are merely Toda brackets in this new triangulated category Dp(77). We want to
develop this machinery of relative derived categories in order to prove a generalized Moss conver-
gence theorem, using formal manipulations of Toda brackets in triangulated categories. H. Miller
pointed out that in order to construct the Moss pairing of spectral sequences, we may need an
enhancement of triangulated categories, such as higher triangulations or stable derivators.

3. HIGHER COHOMOLOGY OPERATIONS

The Il-algebra structure on the homotopy groups m.X encodes primary homotopy operations.
Likewise, the structure of the cohomology H*(X;F,) as an unstable algebra over the Steenrod alge-
bra encodes primary cohomology operations. The additional structure of higher order operations
is also useful. For example, H. Toda used higher order homotopy operations (Toda brackets) to
compute several homotopy groups of spheres. Given classes a, b, ¢ € n..S satisfying ab = 0, bc = 0,
the Toda bracket {a, b, ¢) C mg4p+ic+1S consists of classes built by choosing null-homotopies of ab
and bc. Also, J.F. Adams used secondary cohomology operations in his classic solution to the Hopf
Invariant One problem.

If one takes into account all higher cohomology operations on H*(X;F,), one can recover the
p-type of the space or spectrum X. The HF, based Adams spectral sequence is a computational
manifestation of that fact. Rather than using the triangulated structure as we do in [CF17], one can
study higher order cohomology operations via a topological enrichment. Consider the topologically
enriched category EM consisting of finite products of Eilenberg—Maclane spectra

Y"HF, x---xX"“HF,

and mapping spaces between them. This category &M encodes all higher order operations in mod p
cohomology. The homotopy category moEM encodes primary operations, i.e., the Steenrod algebra;
EM can be viewed as the “topological Steenrod algebra”. Taking the fundamental groupoid of
each mapping space yields a groupoid-enriched category (also known as track category) IT1,EM
which encodes secondary operations.
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In [Bau06], H.J. Baues proved a strictification result for the algebra of secondary cohomology
operations: they can be encoded by a certain 1-truncated differential (bi)graded algebra over Z/p?.
This was used in [BJ11] to algorithmically compute the differential d, of the Adams spectral se-
quence. In current work with H.J. Baues, we are pursuing the program one step further, aiming to
show that the algebra of tertiary cohomology operations can be encoded by a certain 2-truncated
DGe-algebra, and using this to compute the differential d5.

3.1. Two-track algebras and the Adams d;. In [BB15], H.J. Baues and D. Blanc described an
algebro-combinatorial structure which encodes just enough information to compute the differential
d,.1. In [BF16, Theorem 7.3], we specialized that work to the case n = 2 and described a more
concrete algebraic structure which encodes enough information to compute the differential ds.

3.2. Higher distributivity up to homotopy. One difficulty with higher order cohomology opera-
tions is that they do not form an algebra. In the “topological Steenrod algebra” EM, composition is
left linear (strictly) and right linear up to coherent homotopy. In [BF17], we introduced a hierarchy
of higher distributivity laws to describe this coherence data. A 1-distributor consists of a family of
paths in mapping spaces between a(x + y) and ax + ay; these paths witness that composition is right
linear up to homotopy. An n-distributor consists of a family of n-cubes in mapping spaces whose
extreme corners are a(xp + ...+ x,) and axg + . .. + ax,, satisfying certain compatibility conditions.
We proved that EM is co-distributive, in a more or less canonical way [BF17, Theorem 5.10].

3.3. The DG-category of secondary operations. In [BF18], we revisit the strictification theorem
for secondary operations from [Bau06]. We provide a streamlined argument which yields a more
general result, giving sufficient conditions for a track category to be equivalent to a 1-truncated DG-
category. The track category IT;EM satisfies said conditions; this yields the original strictification
theorem.

3.4. Strictification of near-rings. Operads have been used to tackle strictification problems for
algebraic structure up to homotopy, notably A, operads for higher associativity and E., operads
for higher commutativity. However, operads are not well suited to describe the higher distributivity
appearing in higher order cohomology operations. Algebraic theories (in the sense of Lawvere,
i.e., categories with finite products) are better suited for this purpose. Let 7y, denote the theory
of rings and 7 car—ring the theory of “near-rings”, where one drops the right linearity equation
a(x +y) = ax + ay. Restriction along the map of theories 7 car—ring — 7ring induces the forgetful
functor that views a ring as a special case of near-ring. Our work in [BF17] suggests that there is a
topologically enriched theory 7 of co-distributive rings, sitting in a diagram of theories

Tnear—ring TD 7—ring

)

where the second step is a Dwyer—Kan equivalence. As observed by N. Wahl [Wah02], this would
suffice to prove that every oco-distributive topological ring is equivalent to a (strict) topological ring.
This approach will provide a more conceptual explanation for the strictification results of [BF18],
obtained by a hands-on approach.

3.5. Calculations using secondary cohomology operations. Following an observation of
R. Bruner, the connective Im J spectrum has a manageable HF, based Adams spectral sequence.
I want to apply the Baues—Jibladze algorithm to calculate the Adams d, for that spectrum, both to
confirm known results and as a test case for the algorithm.
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4. CHROMATIC HOMOTOPY THEORY

Chromatic homotopy theory studies spectra by filtering them along the chromatic filtration,
where different stages see periodic phenomena of different periods. The simplest stage, at height 0,
is rational homotopy theory. Height 1 is controlled by K-theory. Height 2 is controlled by elliptic
cohomology and topological modular forms. Morava E-theory E, and Morava K-theory K(n) play
a central role at chromatic height n. In particular, one wishes to understand the algebraic struc-
ture found in the homotopy of commutative E-algebras, e.g., the E-cohomology of a space or the
E-homology of an infinite loop space. Such power operations are analogous to the Dyer—Lashof
operations acting on the homotopy of commutative HF,-algebras, e.g., the mod p homology of an
infinite loop space.

4.1. Completed power operations for Morava E-theory. Given a (commutative) E-algebra X,
its homotopy m.X is a commutative E,.-algebra with additional structure. Describing all the struc-
ture is difficult, even at height n = 1 as in the work of J. McClure on Dyer—Lashof operations in
K-theory. It is customary to focus on the K(n)-local subcategory, which is better understood. For
K(n)-local E-algebras, C. Rezk constructed in [Rez09] a monad

T: Modg, — Modg,

which encodes the algebraic structure present in x.X, i.e., such that 7. X is naturally a T-algebra.
However, this is not the best algebraic description, as it misses the property that 7. X is L-complete
in the sense of Greenlees—May and Hovey-Strickland. In [BF15], we proved the following.

Theorem 4.1. At every | height n and every prime p, the monad T: Modg, — Modg, canonically
induces a monad T ModE — ModE on the subcategory of L-complete modules.

If X is a K(n)-local E-algebra, then 7. X is naturally a T—algebra. This way, L-completeness is
built into the construction.

Atheight n = 1, Morava E-theory is p-completed K-theory: E; = K, where K denotes the com-
plex periodic K-theory spectrum. For E;-algebras, K(1)-localization is p-completion. Therefore,
Theorem 4.1 at height n = 1 is about the homotopy groups of p-complete K-algebras.

4.2. Calculations of power operations. The monad T comes with a decomposition T = @mZO T,
The functor T,, is related to the m™ extended power functor P, (M) := (M"E™),s, , the homo-
topy orbit with respect to the ¥,,-action, where M is any E-module. There is a comparison map
a: T,,,(n*M) — m.LguwPnM which is an isomorphism when M is a flat E-module. We want to
construct a spectral sequence of the form

= ((Lsﬁfm)(ﬂ*M))t = 7Ts+tLK(n)PmM

where LSTm: 1\713(15* - l\fo\dE* denotes the s left derived functor of the non-additive functor ﬁfm,
and the comparison map « is an edge morphism. Following an observation by C. Rezk, the fact
that T,, is a polynomial functor of degree m will provide vanishing lines in this spectral sequence.

4.3. Topological André—Quillen homology. One application of Theorem 4.1 is to compute André—
Quillen (co)homology in the category of ’T\—algebras. This in turn provides a way to compute topo-
logical André—Quillen (co)homology of a K(n)-local E-algebra X via the algebraic André—Quillen
(co)homology of its homotopy groups. More precisely, we propose to construct a spectral sequence
of the form

AQ,(7.X) = TAQ.(X)
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similar to the spectral sequences studied in [Ric02].

For my prospective graduate students, this area provides interesting topics. I will help them ac-
quire a solid background in homotopy theory, both unstable and stable, and then suggest directions
to explore, notably Goerss—Hopkins obstruction theory, chromatic homotopy theory, and topologi-
cal André—Quillen homology of structured ring spectra.

5. MOTIVIC HOMOTOPY THEORY

Motivic homotopy theory applies methods from homotopy theory to algebraic geometry, more
precisely to cohomology theories for schemes. Working over a base scheme S, the motivic stable
homotopy category SH(S) is a triangulated category whose objects represent cohomology theories
for smooth schemes over S. An important example is the motivic Eilenberg—MacLane spectrum
HZ, which represents motivic cohomology.

5.1. The motivic Steenrod algebra. In his celebrated proof of the Milnor conjecture, V. Voevod-
sky used operations in motivic cohomology, working over a base field k of characteristic zero
[Voe03]. Notably, he produced certain classes in the dual motivic Steenrod algebra

Ty s (HIFg A HF{)

analogous to the Milnor basis, and showed that they form a basis over n. .HF, = H " 7*(k; F,), the
mod ¢ motivic cohomology of k. In [HK@17], it was shown that the same basis also works when
k has positive characteristic p # €. In joint work with M. Spitzweck [FS18b], we prove that when
k has characteristic p = ¢, the dual Steenrod algebra contains the conjectured answer as a retract.
Moreover, we have reduced the conjecture to showing that over the p-adic integers Z,, the spectrum
HF, can be built as a homotopy colimit of dualizable objects. Another conjecture of Voevodsky
states that the slices of the algebraic cobordism spectrum MGL are certain Eilenberg—MacLane
spectra. We prove that the slices contain the conjectured answer as retract.
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