
Higher Toda brackets and
the Adams spectral sequence

Martin Frankland
Universität Osnabrück

Joint work with Dan Christensen

Topology Seminar
University of Edinburgh

March 25, 2016

1 / 24



Outline

Triangulated categories

The Adams spectral sequence

3-fold Toda brackets, and the relation to d2

Higher Toda brackets, and the relation to dr

3-fold Toda brackets determine the rest

2 / 24



Triangulated categories

A triangulated category is an additive category T equipped with a
functor Σ : T → T that is an equivalence, and with a specified
collection of triangles of the form

X
f−→ Y

g−→ Z
h−→ ΣX. (1)

These must satisfy the following axioms motivated by (co)fibre
sequences in topology.

TR0: The triangles are closed under isomorphism. The following
is a triangle:

X
1−→ X −→ 0 −→ ΣX.

TR1: Every map X → Y is part of a triangle (1).

TR2: (1) is a triangle iff (2) is a triangle:

Y
g−→ Z

h−→ ΣX
−Σf−→ ΣY. (2)
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Triangulated categories, II

T additive, Σ : T → T an equivalence.

TR0: Triangles are closed under isomorphism and contain the
trivial triangle.

TR1: Every map appears in a triangle.

TR2: Triangles can be rotated.

TR3: Given a solid diagram

X //

u
��

Y

��

// Z

��

// ΣX

Σu
��

X ′ // Y ′ // Z ′ // ΣX ′

in which the rows are triangles, the dotted fill-in exists making the
two squares commute.

TR4: The octahedral axiom holds. (Some details later.)
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Examples and consequences

Example. The homotopy category of spectra.

Example. The derived category of a ring.

Example. The stable module category of a group algebra.

Consequences: (1) For any object A, the sequences

· · · −→ T (A,X) −→ T (A, Y ) −→ T (A,Z) −→ T (A,ΣX) −→ · · ·

and

· · · ←− T (X,A)←− T (Y,A)←− T (Z,A)←− T (ΣX,A)←− · · ·

are exact.

(2) The triangle containing a map X → Y is unique up to
(non-unique) isomorphism.
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Projective and injective classes

Eilenberg and Moore (1965) gave a framework for homological
algebra in any pointed category. When the category is
triangulated, their axioms are equivalent to the following:

Definition. A projective class in T is a pair (P,N ), where
P ⊆ ob T and N ⊆ mor T , such that:

(i) P consists of exactly the objects P such that every composite
P → X → Y is zero for each X → Y in N ,

(ii) N consists of exactly the maps X → Y such that every
composite P → X → Y is zero for each P in P,

(iii) for each X in T , there is a triangle P → X → Y with P in P
and X → Y in N .

The first two conditions are easy to satisfy. The third says that
there are enough projectives.

An injective class in T is a projective class in T op.
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Examples of projective and injective classes

Example. In spectra, take P to be all retracts of wedges of
spheres and N to consist of all maps inducing the zero map in
homotopy groups. Then (P,N ) is a projective class.

The analogous construction works starting with any set of objects
in any triangulated category with all coproducts.

Example. Dually, if E is any spectrum, take I to be all retracts of
products of suspensions of E and N to consist of all maps inducing
the zero map in E∗(−). Then (I,N ) is an injective class.

When E = HFp, this injective class leads to the classical Adams
spectral sequence.

We always assume that are projective and injective classes are
stable, that is, that they are closed under suspension and
desuspension.
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Adams resolutions

Definition. An Adams resolution of an object Y in T with respect
to an injective class (I,N ) is a diagram

Y = Y0

p0
��

Y1

p1
��

i0oo Y2

p2
��

i1oo Y3
i2oo · · ·oo

I0

δ0

CC

I1

δ1

CC

I2

δ2

CC

· · ·

where each Is is injective, each map is is in N , and the triangles
are triangles.

Axiom (iii) says exactly that you can form such a resolution.

Adams resolutions biject with injective resolutions, which are
diagrams

0 −→ Y −→ I0 −→ ΣI1 −→ Σ2I2 −→ · · ·

that give exact sequences under T (−, I) for each I in I.
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The Adams spectral sequence Miller, 1974; C, 1997

Given objects X and Y and an Adams resolution

Y = Y0

p0
��

Y1

p1
��

i0oo Y2

p2
��

i1oo Y3
i2oo · · ·oo

I0

δ0

CC

I1

δ1

CC

I2

δ2

CC

· · ·

of Y , applying T (X,−) leads to an exact couple and therefore a
spectral sequence; it is called the Adams spectral sequence.

The E1 term is Es,t1 = T (Σt−sX, Is), and the first differential d1 is
given by composition with

d1 := pδ : Is−→◦ Ys+1 −→ Is+1.

Proposition. The E2 term is given by ExtsI(Σ
tX,Y ).
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d1 is a primary operation

The I-cohomology of an object X is the family of abelian groups
HI(X) := T (X, I) indexed by the injective objects I ∈ I.

A primary operation in I-cohomology is a natural transformation
HI(X)→ HJ(X) of functors T → Ab. Equivalently, it is a map
I → J in I.

Clearly, d1 : Is → ΣIs+1 is a primary operation.

Our goal is to describe the higher differentials using higher
operations.
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3-fold Toda brackets

Let X0
f1−→ X1

f2−→ X2
f3−→ X3 be a diagram in T .

The Toda bracket 〈f3, f2, f1〉 ⊆ T (ΣX0, X3) consists of all
composites β ◦ Σα : ΣX0 → X3, where α and β appear in a
commutative diagram

X0

α

��

f1 // X1 ΣX0

Σα
��

−Σf1 // ΣX1

Σ−1Cf2
j // X1

f2 // X2
// Cf2

β

��

−Σj // ΣX1

X2
f3 // X3,

where the middle row is a triangle.

Rotating the middle triangle introduces a sign.
11 / 24



3-fold Toda brackets Toda, 1962; Sagave, 2008

Instead of a triangle involving f2, one can make an equivalent
definition using a triangle based on f1:

Proposition. The Toda bracket 〈f3, f2, f1〉 consists of all maps
ψ : ΣX0 → X3 that appear in a commutative diagram

X0
f1 // X1

// Cf1

��

// ΣX0

ψ

��
X0

f1 // X1
f2 // X2

f3 // X3,

where the top row is a triangle.

There is also an equivalent dual definition involving f3.

The indeterminacy can be described explicitly.
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Adams d2 in terms of Toda brackets

Given a class [x] in the E2 term of an Adams spectral sequence,
d2[x] is computed as shown:

· · · Ysoo

ps

��

Ys+1
ps+1

!!

isoo Ys+2

ps+2

!!

ps+2

!!

is+1oo is+1oo · · ·oo

Is

δs
??

δs
??

d1
-- Is+1

δs+1

==

d1
-- Is+2

X

x

OO
x̃

66

d2[x]

44

Proposition (“Known to the experts”). d2[x] ⊆ 〈d1, d1, x〉.

Note. The inclusion can be proper, and I’ll illustrate this later if
there is time.
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Adams d2 in terms of Toda brackets, II

The inclusion d2[x] ⊆ 〈d1, d1, x〉 can be made sharper.

Proposition (Christensen–F.). d2[x] = 〈d1, ps+1, δsx〉 = 〈
β

d1, d1, x〉.

The first equality is an elementary exercise, using the properties of
injective classes. The second requires some explanation. Recall
that 〈f3, f2, f1〉 was defined to consist of certain composites

ΣX0
Σα−→ Cf2

β−→ X3.

The notation 〈
β

f3, f2, f1〉 denotes the subset of the Toda bracket
with β held fixed and only α allowed to vary.
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Adams d2 in terms of Toda brackets, III

From the definition d1 = ps+1δs and the octahedral axiom, we get

ΣYs+2

Σis+1

��

ΣYs+2

is(Σis+1)

��
Is

δs // ΣYs+1
is //

Σps+1

��

ΣYs
Σps //

��

ΣIs

Is
d1 // ΣIs+1

//

Σδs+1

��Σd1

��

W //

��

β

qq

ΣIs

Σ2Ys+2

Σ2ps+2

yy

Σ2Ys+2

Σ2Is+2

with all rows and columns triangles. Define β as shown.
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Higher Toda brackets McKeown, nLab, 2012

Definition. Given X0
f1−→ X1

f2−→ X2
f3−→ X3, define the Toda

family T(f3, f2, f1) to consist of all pairs (β,Σα), where α and β
appear in a commutative diagram

ΣX0

Σα
��

−Σf1
// ΣX1

X1
f2 // X2

// Cf2

β
��

// ΣX1

X2
f3 // X3,

with middle row a triangle.

Given X0
f1−→ X1

f2−→ X2
f3−→ · · · fn−→ Xn, define the Toda bracket

〈fn, . . . , f1〉 ⊆ T (Σn−2X0, Xn) inductively as follows:

If n = 2, it is the set consisting of just the composite f2f1.

If n > 2, it is the union of the sets 〈β,Σα,Σfn−3, . . . ,Σf1〉, where
(β,Σα) is in T (fn, fn−1, fn−2).
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4-fold Toda bracket

Example. We have
〈f4, f3, f2, f1〉 =

⋃
β,α 〈β,Σα,Σf1〉 =

⋃
β,α

⋃
β′,α′{β′ ◦ Σα′}.

Σ2X0
Σα′ // CΣα

//

β′

��

Σ2X1 row = −Σ2f1

ΣX1
Σα // Cf3

//

β
##

OO

ΣX2 row = −Σf2

X2
f3 // X3

OO

f4
// X4

0

OO

The middle column is what is called a filtered object by Cohen,
Shipley and Sagave, and so this reproduces their definition.
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Self-duality for higher Toda brackets

The definition is asymmetrical. What happens in the opposite
category?

More generally, we can reduce an n-fold Toda bracket to a 2-fold
Toda bracket in (n− 2)! ways, inserting the Toda family operation
in any position.

Lemma (Christensen–F.). The pair (β,Σα) is in
T (T (f4, f3, f2),Σf1) iff the pair (−β,Σα) is in T (f4, T (f3, f2, f1)).

This is stronger than saying that the two ways of computing the
Toda bracket 〈f4, f3, f2, f1〉 are negatives, and the stronger
statement will be important for us.

The proof is a careful application of the octahedral axiom.
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Self-duality, II

For j1, j2, . . . , jn−2 with 0 ≤ ji < i, write

Tj1(Tj2(Tj3(· · ·Tjn−2(fn, . . . , f1) · · · )))
for the subset obtained by applying T in the spot with jn−2 maps to
the left, then applying T in the spot with jn−1 maps to the left, etc.

Our original definition corresponds to T0(T0(· · ·T0(fn, . . . , f1) · · · )).

Theorem (Christensen–F.). If you compute the Toda bracket
using the sequence j1, j2, . . . , jn−2, it equals the original Toda
bracket up to the sign (−1)

∑
ji .

Proof. One can give an inductive argument showing that the
Lemma lets you convert any such sequence into any other, using the
“move” j, j ←→ j, j + 1. Animation: http://turl.ca/todaanim
The move changes the sign and the parity of the sum.

Corollary. The higher Toda brackets are self-dual.
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Adams dr in terms of Toda brackets

Recall:

Proposition (Christensen–F.). d2[x] = 〈d1, ps+1, δsx〉 = 〈
β

d1, d1, x〉.

Theorem (Christensen–F.). dr can be expressed in terms of
(r + 1)-fold Toda brackets as:

dr[x] = 〈d1, d1, . . . , d1, ps+1, δsx〉 = 〈d1, d1, . . . , d1, x〉fixed

The first equality is straightforward, using the dual Toda bracket.

In the second equality, “fixed” means that you choose a particular
filtered object derived from the Adams resolution, which fixes all of
the choices except the very last β.

(More details in the preprint on the arXiv.)
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Application to sparse rings

Work in progress: Situations where the inclusion

〈d1, d1, . . . , d1, x〉fixed ⊆ 〈d1, d1, . . . , d1, x〉

is an equality.

Idea: If the cohomology of Y is sparse enough, then most of the
indeterminacy vanishes.
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An example in the stable module category

Let R = kC4 = k[x]/x4 with char k = 2.
Let M = R/x2. In StMod(R), ΩM = M .
With respect to the projective class generated by k,

M
µx //M

δ}}

µx //M

δ}}

µx //M

δ||

// · · ·

k ⊕ Ωk

p

aaaa

k ⊕ Ωk

p

aaaa

k ⊕ Ωk,

p

bbbb

is an Adams resolution of M , for certain p and δ.

Given any non-zero map κ : k ⊕ Ωk →M , one can show that d2[κ]
has no indeterminacy, while 〈κ, d1, d1〉 has non-trivial
indeterminacy, so the containment

d2[κ] = 〈κ,
β

d1, d1〉 ⊆ 〈κ, d1, d1〉

is proper.
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3-fold Toda brackets determine the triangulation

Here is a nice result due to Heller (1968), with a cleaner
formulation and proof due to Muro (2006 slides, 2015 e-mail):

Theorem. The diagram X
f−→ Y

g−→ Z
h−→ ΣX is a triangle iff

(i) the sequence of abelian groups

T (A,Σ−1Z)
(Σ−1h)∗−−−−−→ T (A,X)

f∗−→ T (A, Y )
g∗−→ T (A,Z)

h∗−→ T (A,ΣX)

is exact for every object A of T , and

(ii) the Toda bracket 〈h, g, f〉 ⊆ T (ΣX,ΣX) contains the identity
map 1ΣX .

The proof is essentially the Yoneda Lemma and the Five Lemma.
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3-fold Toda brackets determine the higher ones

Corollary. Given the suspension functor Σ: T → T , 3-fold Toda
brackets in T determine the triangulated structure. In particular,
3-fold Toda brackets determine the higher Toda brackets, via the
triangulation.

Remark. It is unclear to us if the higher Toda brackets can be
expressed directly in terms of 3-fold brackets.

Thank you!
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