Calculus 2502A - Advanced Calculus I
 Fall 2014
 Adams §12.6: The chain rule

Martin Frankland

December 3, 2014

Additional exercises

A1. Let f be the function defined by:

$$
f(w, x, y, z)=\left(\sqrt{1+w+4 x}, y^{3}-w z\right)
$$

and g the function defined by:

$$
g(x, y)=\left(\log (5 x+y), x y^{2}, x^{2}-y\right)
$$

Consider the function h defined by:

$$
h(w, x, y, z)=g(f(w, x, y, z))
$$

Find the Jacobian matrix of h at the point $(w, x, y, z)=(4,1,2,1)$.

A2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable function. Assume that f is locally invertible around a point \vec{a}, i.e., there is a neighborhood U of \vec{a}, a neighborhood V of $f(\vec{a})$, and a function $g: V \rightarrow U$ which is inverse to the restriction $\left.f\right|_{U}: U \rightarrow V$. Assume moreover that g is differentiable. Show that the Jacobian matrix of g at $f(\vec{a})$ is the inverse of the Jacobian matrix of f at \vec{a} :

$$
D g(f(\vec{a}))=(D f(\vec{a}))^{-1}
$$

A3. Consider the transformation between Cartesian and polar coordinates:

$$
\left\{\begin{array}{l}
x(r, \theta)=r \cos \theta \\
y(r, \theta)=r \sin \theta
\end{array}\right.
$$

Call this transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, in other words:

$$
T(r, \theta)=(x(r, \theta), y(r, \theta))=(r \cos \theta, r \sin \theta) .
$$

a) Let us restrict T to $U:=\left\{(r, \theta) \in \mathbb{R}^{2} \mid r>0\right.$ and $\left.0<\theta<\frac{\pi}{2}\right\}$. On that domain, find an explicit inverse to T

$$
T^{-1}: V \rightarrow U
$$

where $V:=T(U)=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right.$ and $\left.y>0\right\}$ denotes the first quadrant.
b) Compute the Jacobian matrix of T and of T^{-1} at arbitrary points of their respective domains.
c) Verify the conclusion of Exercise A2 for this example. In other words, using part (b), check the equality:

$$
D\left(T^{-1}\right)(r \cos \theta, r \sin \theta)=(D T(r, \theta))^{-1}
$$

for every $(r, \theta) \in U$.

