Calculus 2502A - Advanced Calculus I Fall 2014 §14.8: Example of Lagrange multipliers

Martin Frankland

November 24, 2014

Example 1. Find the minimum and maximum values (if they exist) of the function $f(x, y)=$ $4 x^{2}+y^{2}$ on the hyperbola $x y=1$, as well as all points where they occur.

Solution. Let C be the hyperbola $x y=1$. The function f has no maximum on C, since f is not bounded above on C. Indeed, all points $\left(x, \frac{1}{x}\right)$ belong to C and we have

$$
\lim _{x \rightarrow+\infty} f\left(x, \frac{1}{x}\right)=\lim _{x \rightarrow+\infty} 4 x^{2}+\frac{1}{x^{2}}=+\infty
$$

Now let us find the minimum of f on C, which does exist. Write $g(x, y)=x y$. The gradient of g is:

$$
\nabla g=\left(g_{x}, g_{y}\right)=(y, x)
$$

which never vanishes on C. Thus, the method of Lagrange multipliers can be used. The gradient of f is:

$$
\nabla f=\left(f_{x}, f_{y}\right)=(8 x, 2 y)
$$

The equation is:

$$
\begin{aligned}
& \nabla f=\lambda \nabla g \\
\Leftrightarrow & (8 x, 2 y)=\lambda(y, x) \\
\Leftrightarrow & \left\{\begin{array}{l}
8 x=\lambda y \\
2 y=\lambda x
\end{array}\right. \\
\Leftrightarrow & \left\{\begin{array}{l}
\frac{8 x}{y}=\lambda \\
\frac{2 y}{x}=\lambda \text { since } x \text { and } y \text { are never } 0 \text { on } C \\
\Rightarrow \\
\Rightarrow \frac{8 x}{y}=\frac{2 y}{x} \\
\Leftrightarrow
\end{array} 8 x^{2}=2 y^{2}\right. \\
\Leftrightarrow & y^{2}=4 x^{2} \\
\Leftrightarrow & y= \pm 2 x .
\end{aligned}
$$

The case $y=-2 x$ yields no solutions, since x and y always have the same sign on C. More precisely, substituting $y=-2 x$ into the equation of C yields:

$$
\begin{aligned}
& x y=1 \\
\Leftrightarrow & x(-2 x)=1 \\
\Leftrightarrow & -2 x^{2}=1
\end{aligned}
$$

which holds for no $x \in \mathbb{R}$. Thus, we conclude $y=2 x$ and substitute into the equation of C :

$$
\begin{aligned}
& x y=1 \\
\Leftrightarrow & x(2 x)=1 \\
\Leftrightarrow & 2 x^{2}=1 \\
\Leftrightarrow & x^{2}=\frac{1}{2} \\
\Leftrightarrow & x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

This yields two solutions $\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right)$. The value of f at both points happens to be the same:

$$
f\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)=f\left(-\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right)=4 \frac{1}{2}+\frac{4}{2}=4
$$

Therefore, the minimum of f on C is $\boxed{4}$, and it occurs at the points $\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right)$.

