Calculus 2502A - Advanced Calculus I
 Fall 2014 §14.7: Local minima and maxima

Martin Frankland

November 17, 2014

In these notes, we discuss the problem of finding the local minima and maxima of a function.

1 Background and terminology

Definition 1.1. Let $f: D \rightarrow \mathbb{R}$ be a function, with domain $D \subseteq \mathbb{R}^{n}$. A point $\vec{a} \in D$ is called:

- a local minimum of f if $f(\vec{a}) \leq f(\vec{x})$ holds for all \vec{x} in some neighborhood of \vec{a}.
- a local maximum of f if $f(\vec{a}) \geq f(\vec{x})$ holds for all \vec{x} in some neighborhood of \vec{a}.
- a global minimum (or absolute minimum) of f if $f(\vec{a}) \leq f(\vec{x})$ holds for all $\vec{x} \in D$.
- a global maximum (or absolute maximum) of f if $f(\vec{a}) \geq f(\vec{x})$ holds for all $\vec{x} \in D$.

An extremum means a minimum or a maximum.
Definition 1.2. An interior point $\vec{a} \in D$ is called a:

- critical point of f if f is not differentiable at \vec{a} or if the condition $\nabla f(\vec{a})=\overrightarrow{0}$ holds, i.e., all first-order partial derivatives of f are zero at \vec{a}.
- saddle point of f if it is a critical point which is not a local extremum. In other words, for every neighborhood U of \vec{a}, there is some point $\vec{x} \in U$ satisfying $f(\vec{x})<f(\vec{a})$ and some point $\vec{x} \in U$ satisfying $f(\vec{x})>f(\vec{a})$.

Remark 1.3. Global minima or maxima are not necessarily unique. For example, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin x$ has a global maximum with value 1 at the points:

$$
\ldots,-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \ldots=\left\{\left.\frac{\pi}{2}+2 k \pi \right\rvert\, k \in \mathbb{Z}\right\}
$$

and a global minimum with value -1 at the points:

$$
\ldots,-\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \ldots=\left\{\left.\frac{3 \pi}{2}+2 k \pi \right\rvert\, k \in \mathbb{Z}\right\} .
$$

For a sillier example, consider a constant function $g(\vec{x})=c$ for all $\vec{x} \in D$. Then every point $\vec{x} \in D$ is simultaneously a global minimum and a global maximum of g.

Proposition 1.4. Let \vec{a} be an interior point of the domain D. If \vec{a} is a local extremum of f, then any partial derivative of f which exists at \vec{a} must be zero.

Proof. Assume that the partial derivative $D_{m} f(\vec{a})$ exists, for some $1 \leq m \leq n$. Then the function of a single variable

$$
g(x):=f(a_{1}, a_{2}, \ldots, \overbrace{x}^{m^{\text {th }}} \text { coordinate }, \ldots, a_{n-1}, a_{n})
$$

is differentiable at $x=a_{m}$ and has a local extremum at $x=a_{m}$. Therefore its derivative vanishes at that point:

$$
g^{\prime}\left(a_{m}\right)=D_{m} f(\vec{a})=0 .
$$

Remark 1.5. The converse does not hold: a critical point of f need not be a local extremum. For example, the function $f(x)=x^{3}$ has a critical point at $x=0$ which is a saddle point.

Upshot: In order to find the local extrema of f, it suffices to consider the critical points of f.

2 One-dimensional case

Recall the second derivative test from single variable calculus.
Proposition 2.1 (Second derivative test). Let $f: D \rightarrow \mathbb{R}$ be a function of a single variable, with domain $D \subseteq \mathbb{R}$. Let $a \in D$ be a critical point of f such that the first derivative f^{\prime} exists in a neighborhood of a, and the second derivative $f^{\prime \prime}(a)$ exists.

- If $f^{\prime \prime}(a)>0$ holds, then f has a local minimum at a.
- If $f^{\prime \prime}(a)<0$ holds, then f has a local maximum at a.
- If $f^{\prime \prime}(a)=0$ holds, then the test is inconclusive.

Remark 2.2. The following examples illustrate why the test is inconclusive when the critical point a satisfies $f^{\prime \prime}(a)=0$.

- The function $f(x)=x^{4}$ has a local minimum at 0 .
- The function $f(x)=-x^{4}$ has a local maximum at 0 .
- The function $f(x)=x^{3}$ has a saddle point at 0 .

Example 2.3. Find all local extrema of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=3 x^{4}-4 x^{3}-12 x^{2}+10
$$

Solution. Note that f is twice differentiable on all of \mathbb{R}, and moreover the domain of f is open in \mathbb{R} (so that there are no boundary points to check). Let us find the critical points of f :

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x=0 \\
\Leftrightarrow & x^{3}-x^{2}-2 x=0 \\
\Leftrightarrow & x\left(x^{2}-x-2\right)=0 \\
\Leftrightarrow & x(x+1)(x-2)=0 \\
\Leftrightarrow & x=-1,0, \text { or } 2 .
\end{aligned}
$$

Let us use the second derivative test to classify these critical points:

$$
\begin{aligned}
f^{\prime \prime}(x) & =12\left(3 x^{2}-2 x-2\right) \\
f^{\prime \prime}(-1) & =12(3+2-2)=12(3)>0 \\
f^{\prime \prime}(0) & =12(-2)<0 \\
f^{\prime \prime}(2) & =12(12-4-2)=12(6)>0
\end{aligned}
$$

from which we conclude:

- $x=-1$ is a local minimum of f, with value $f(-1)=3+4-12+10=5$.
- $x=0$ is a local maximum of f, with value $f(0)=10$.
- $x=2$ is a local minimum of f, with value $f(2)=3(16)-4(8)-12(4)+10=-22$.

Remark 2.4. In this example, the function f has no global maximum, because it grows arbitrarily large: $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
Moreover, the condition $\lim _{x \rightarrow-\infty} f(x)=+\infty$, together with the extreme value theorem, implies that f reaches a global minimum. Therefore, $x=2$ is in fact the global minimum of f, with value $f(2)=-22$, as illustrated in Figure 1.

Figure 1: Graph of the function f in Example 2.3.

3 Two-dimensional case

Theorem 3.1 (Second derivatives test). Let $f: D \rightarrow \mathbb{R}$ be a function of two variables, with domain $D \subseteq \mathbb{R}^{2}$. Let $(a, b) \in D$ be a critical point of f such that the second partial derivatives $f_{x x}, f_{x y}, f_{y x}, f_{y y}$ exist in a neighborhood of (a, b) and are continuous at (a, b), which implies in particular $f_{x y}(a, b)=f_{y x}(a, b)$. The discriminant of f is the 2×2 determinant

$$
\begin{aligned}
D & :=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right| \\
& =f_{x x} f_{y y}-f_{x y}^{2} .
\end{aligned}
$$

Now consider the discriminant $D=D(a, b)$ at the point (a, b).

- If $D>0$ and $f_{x x}(a, b)>0$ hold, then f has a local minimum at (a, b).
- If $D>0$ and $f_{x x}(a, b)<0$ hold, then f has a local maximum at (a, b).
- If $D<0$ holds, then f has a saddle point at (a, b).
- If $D=0$ holds, then the test is inconclusive.

Remark 3.2. The following examples illustrate why the test is inconclusive when the discriminant satisfies $D=0$.

- The function $f(x, y)=x^{2}+y^{4}$ has a (strict) local minimum at $(0,0)$.
- The function $f(x, y)=x^{2}$ has a (non-strict) local minimum at $(0,0)$.
- The function $f(x, y)=-x^{2}-y^{4}$ has a (strict) local maximum at $(0,0)$.
- The function $f(x, y)=-x^{2}$ has a (non-strict) local maximum at $(0,0)$.
- The function $f(x, y)=x^{2}+y^{3}$ has a saddle point at $(0,0)$.
- The function $f(x, y)=-x^{2}+y^{3}$ has a saddle point at $(0,0)$.
- The function $f(x, y)=x^{2}-y^{4}$ has a saddle point at $(0,0)$.

Example 3.3 (\# 14.7.11). Find all local extrema and saddle points of the function $f: \mathbb{R}^{2} \rightarrow$ \mathbb{R} defined by

$$
f(x, y)=x^{3}-12 x y+8 y^{3} .
$$

Solution. Note that f is infinitely many times differentiable on its domain \mathbb{R}^{2}. Let us find the critical points of f :

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{x}(x, y)=3 x^{2}-12 y=0 \\
f_{y}(x, y)=-12 x+24 y^{2}=0
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
4 y=x^{2} \\
x=2 y^{2}
\end{array}\right. \\
& \Rightarrow 4 y=\left(2 y^{2}\right)^{2}=4 y^{4} \\
& \Leftrightarrow y=y^{4} \\
& \Leftrightarrow y\left(y^{3}-1\right)=0 \\
& \Leftrightarrow y=0 \text { or } y^{3}=1 \\
& \Leftrightarrow y=0 \text { or } y=1
\end{aligned}
$$

which implies that $(0,0)$ and $(2,1)$ are the only points that could be critical points of f, and indeed they are.
Let us compute the discriminant of f :

$$
\begin{aligned}
f_{x x}(x, y) & =6 x \\
f_{x y}(x, y) & =-12 \\
f_{y y}(x, y) & =48 y \\
D(x, y) & =f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y)^{2} \\
& =(6 x)(48 y)-(-12)^{2} \\
& =12^{2}(2 x y-1) .
\end{aligned}
$$

At the critical point $(0,0)$, the discriminant is:

$$
D(0,0)=12^{2}(0-1)<0
$$

so that $(0,0)$ is a saddle point.
At the critical point $(2,1)$, the discriminant is:

$$
D(2,1)=12^{2}(4-1)>0
$$

and we have $f_{x x}(2,1)=6(2)=12>0$, so that $(2,1)$ is a local minimum with value $f(2,1)=8-24+8=-8$, as illustrated in Figure 2..

Figure 2: Graph of the function f in Example 3.3.

4 Why does it work?

4.1 Quadratic approximation

The second derivatives test relies on the quadratic approximation of f at the point (a, b), which is the Taylor polynomial of degree 2 at that point.
Recall that for functions of a single variable $f(x)$, the quadratic approximation of f at a is:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}
$$

Since the variable of interest is the displacement from the basepoint a, let us rewrite $h:=x-a$ and thus:

$$
f(a+h) \approx f(a)+f^{\prime}(a) h+f^{\prime \prime}(a) \frac{h^{2}}{2}
$$

If a is a critical point of f, then we have $f^{\prime}(a)=0$ and the quadratic approximation becomes:

$$
f(a+h) \approx f(a)+f^{\prime \prime}(a) \frac{h^{2}}{2}
$$

If $f^{\prime \prime}(a) \neq 0$ holds, then the quadratic term will determine the local behavior of f around a : $f^{\prime \prime}(a)>0$ yields a local minimum while $f^{\prime \prime}(a)<0$ yields a local maximum.

Idea:

- If $f^{\prime \prime}(a)>0$ holds, then f qualitatively behaves like $f(a+h)=f(a)+h^{2}$ when h is small.
- If $f^{\prime \prime}(a)<0$ holds, then f behaves like $f(a+h)=f(a)-h^{2}$.

For functions of two variables $f(x, y)$, the quadratic approximation at (a, b) is:

$$
\begin{aligned}
& f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+ \\
& \quad+f_{x x}(a, b) \frac{(x-a)^{2}}{2}+f_{x y}(a, b)(x-a)(y-b)+f_{y y}(a, b) \frac{(y-b)^{2}}{2}
\end{aligned}
$$

Again, consider the displacement from the basepoint (a, b) and write

$$
\vec{h}:=(h, k):=(x-a, y-b)
$$

and thus:

$$
f(a+h, b+k) \approx f(a, b)+f_{x}(a, b) h+f_{y}(a, b) k+f_{x x}(a, b) \frac{h^{2}}{2}+f_{x y}(a, b) h k+f_{y y}(a, b) \frac{k^{2}}{2}
$$

In vector notation, which is convenient in higher dimension, this can be rewritten as:

$$
f(a+h, b+k) \approx f(a, b)+\nabla f(a, b) \cdot \vec{h}+\frac{1}{2} \vec{h}^{T} H_{f}(a, b) \vec{h}
$$

where $H_{f}(a, b)$ is the Hessian of f at the point (a, b), defined as the matrix of second partial derivatives:

$$
H_{f}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
$$

Here \vec{h}^{T} denotes the row vector $\left[\begin{array}{ll}h & k\end{array}\right]$, which is the transpose of the column vector $\vec{h}=\left[\begin{array}{l}h \\ k\end{array}\right]$. If (a, b) is a critical point of f, then we have $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, and the quadratic approximation becomes:

$$
\begin{aligned}
f(a+h, b+k) & \approx f(a, b)+f_{x x}(a, b) \frac{h^{2}}{2}+f_{x y}(a, b) h k+f_{y y}(a, b) \frac{k^{2}}{2} \\
& =f(a, b)+\frac{1}{2} \vec{h}^{T} H_{f}(a, b) \vec{h} .
\end{aligned}
$$

4.2 Behavior close to a critical point

The Hessian $H_{f}(a, b)$ should be viewed as a symmetric bilinear form on the tangent space of the domain D at the point (a, b). Given two direction vectors \vec{v} and \vec{w}, the Hessian outputs the number

$$
\vec{v}^{T} H_{f}(a, b) \vec{w}=D_{\vec{w}} D_{\vec{v}} f(a, b)
$$

where $D_{\vec{v}} f(a, b)$ denotes the derivative of f in the (non-normalized) direction \vec{v} at the point (a, b). For example, taking standard basis vectors $\vec{v}=\vec{\imath}$ and $\vec{w}=\vec{\imath}$ yields the number

$$
\vec{\imath}^{T} H_{f}(a, b) \vec{\imath}=D_{\vec{\imath}} D_{\vec{\imath}} f(a, b)=f_{x x}(a, b)
$$

and taking $\vec{v}=\vec{\imath}$ and $\vec{w}=\vec{\jmath}$ yields the number

$$
\vec{\imath}^{T} H_{f}(a, b) \vec{\jmath}=D_{\vec{\jmath}} D_{\vec{\imath}} f(a, b)=f_{x y}(a, b) .
$$

From linear algebra, we know that a symmetric bilinear form is classified, up to a change of basis, by its signature: how many of its eigenvalues are positive, zero, or negative. Let λ_{1}, λ_{2} be the eigenvalues of $H_{f}(a, b)$. Depending on the signs of λ_{1} and λ_{2}, the bilinear form $H_{f}(a, b)$ will be equivalent (up to a change of basis) to one of the following:

- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ if λ_{1} and λ_{2} are both positive.
- $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ if one λ_{i} is positive and the other is negative.
- $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ if λ_{1} and λ_{2} are both negative.
- $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ if one λ_{i} is positive and the other is zero.
- $\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$ if one λ_{i} is negative and the other is zero.
- $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ if λ_{1} and λ_{2} are both zero.

Upshot: To analyze the behavior of f close to a critical point (a, b), the first step is to find the signs of the eigenvalues of the Hessian $H_{f}(a, b)$.
The discriminant of f was defined as the determinant of the Hessian, which is the product of the eigenvalues:

$$
D(a, b)=\operatorname{det} H_{f}(a, b)=\lambda_{1} \lambda_{2} .
$$

Definition 4.1. A critical point (a, b) of f is called non-degenerate if the Hessian $H_{f}(a, b)$ is non-degenerate, i.e., has only non-zero eigenvalues. Otherwise, the critical point is called degenerate, which means that the Hessian $H_{f}(a, b)$ has an eigenvalue 0 .

Note that a critical point is degenerate if and only if the product of the eigenvalues is zero: $\lambda_{1} \lambda_{2}=0$; equivalently, the discriminant is zero: $D(a, b)=0$.

Example 4.2. For all the functions described in Example 3.2, the origin $(0,0)$ is a degenerate critical point of f. As we have seen, the function f can have all kinds of behaviors close to a degenerate critical point.

In contrast, close to a non-degenerate critical point, the behavior of f is dictated by the signature of the Hessian. If the discriminant satisfies $D(a, b) \neq 0$, then the critical point (a, b) is non-degenerate, and its signature is one of the following:

- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.

The case of one positive eigenvalue and one negative eigenvalue happens if and only if the discriminant is negative: $D=\lambda_{1} \lambda_{2}<0$.
In the case $D>0$, there are still two possible signatures:

- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.

To distinguish between the two cases, Sylvester's criterion (from linear algebra) tells us that both eigenvalues are positive if and only if the top left entry of the matrix is positive: $f_{x x}(a, b)>0$.
Remark 4.3. For this last step, one could also use the equivalent condition $f_{y y}(a, b)>0$, or that the trace of the matrix is positive: $f_{x x}(a, b)+f_{y y}(a, b)=\lambda_{1}+\lambda_{2}>0$.

Summary: Here is a reinterpretation of the second derivatives test.

- $D=0 \Leftrightarrow$ one of the eigenvalues λ_{i} is zero.
- $D<0 \Leftrightarrow$ one of the eigenvalues is positive and the other is negative.
- $D>0$ and $f_{x x}>0 \Leftrightarrow$ both eigenvalues λ_{i} are positive.
- $D>0$ and $f_{x x}<0 \Leftrightarrow$ both eigenvalues λ_{i} are negative.

Idea:

- If both eigenvalues are positive, then f qualitatively behaves like $f(a+h, b+k)=$ $f(a, b)+h^{2}+k^{2}$ when h and k are small.
- If one eigenvalue is positive and the other is negative, then f behaves like $f(a+h, b+k)=$ $f(a, b)+h^{2}-k^{2}$.
- If both eigenvalues are negative, then f behaves like $f(a+h, b+k)=f(a, b)-h^{2}-k^{2}$.

