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In these notes, we discuss the problem of finding the local minima and maxima of a function.

1 Background and terminology

Definition 1.1. Let f: D — R be a function, with domain D C R™. A point @ € D is
called:

a local minimum of f if f(@) < f(Z) holds for all ¥ in some neighborhood of d.

a local maximum of f if f(@) > f(Z) holds for all ¥ in some neighborhood of d.

a global minimum (or absolute minimum) of f if f(a) < f(Z) holds for all 7 € D.

a global maximum (or absolute maximum) of f if f(@) > f(&) holds for all # € D.

An extremum means a minimum or a maximum.

Definition 1.2. An interior point @ € D is called a:

e critical point of f if f is not differentiable at @ or if the condition V f(@) = 0 holds,
i.e., all first-order partial derivatives of f are zero at da.

e saddle point of f if it is a critical point which is not a local extremum. In other words,
for every neighborhood U of @, there is some point Z € U satisfying f(Z) < f(@) and
some point ¥ € U satistying f(Z) > f(a).

Remark 1.3. Global minima or maxima are not necessarily unique. For example, the function
f: R — R defined by f(x) = sinx has a global maximum with value 1 at the points:

3T mw™ bmw

T
..,—7,5,7,..._{§+2k7r\keZ}

1



and a global minimum with value —1 at the points:
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For a sillier example, consider a constant function ¢g(Z) = ¢ for all ¥ € D. Then every point
Z € D is simultaneously a global minimum and a global maximum of g.

Proposition 1.4. Let a be an interior point of the domain D. If @ is a local extremum of
f, then any partial derivative of f which exists at @ must be zero.

Proof. Assume that the partial derivative D,,f(@) exists, for some 1 < m < n. Then the
function of a single variable

mt coordinate

g([[‘) = f(a/ha?a"'a x 7"'aan—1aan)

is differentiable at x+ = a,, and has a local extremum at x = a,,. Therefore its derivative
vanishes at that point:

g'(an) = Dy f(d) = 0. O

Remark 1.5. The converse does not hold: a critical point of f need not be a local extremum.
For example, the function f(x) = 2® has a critical point at z = 0 which is a saddle point.

Upshot: In order to find the local extrema of f, it suffices to consider the critical points

of f.



2 One-dimensional case

Recall the second derivative test from single variable calculus.

Proposition 2.1 (Second derivative test). Let f: D — R be a function of a single variable,
with domain D CR. Let a € D be a critical point of f such that the first derivative f' exists
in a neighborhood of a, and the second derivative f"(a) exists.

e If f"(a) > 0 holds, then [ has a local minimum at a.
e If f"(a) <0 holds, then f has a local maximum at a.
e If f"(a) =0 holds, then the test is inconclusive.

Remark 2.2. The following examples illustrate why the test is inconclusive when the critical
point a satisfies f”(a) = 0.

e The function f(z) = z* has a local minimum at 0.
e The function f(x) = —z* has a local maximum at 0.
e The function f(x) = x® has a saddle point at 0.
Example 2.3. Find all local extrema of the function f: R — R defined by

f(z) = 32* — 42 — 122 + 10.

Solution. Note that f is twice differentiable on all of R, and moreover the domain of f is
open in R (so that there are no boundary points to check). Let us find the critical points of

f:
fl(z) =122 — 122% — 242 =0
st —r?—20=0
<:>x(x - — 2)20
szrx+1)(z—-2)=0
Sax=—1,0, or 2.

Let us use the second derivative test to classify these critical points:

f'(x) =12 (32° — 22 — 2)

-1 =12(3+2— 2)_12(3)>0
f1(0)=12(=2) <
f'(2)=12(12—-4-2) =12(6) > 0

from which we conclude:



e r=—lisa ‘local minimum‘ of f, with value f(—1) =3+4—12+10 = .

e = =0is a|local maximum | of f, with value f(0) =[10].

e = 2is a|local minimum | of f, with value f(2) = 3(16) — 4(8) — 12(4) + 10 =[—22|

Remark 2.4. In this example, the function f has no global maximum, because it grows arbi-
trarily large: lim, ., f(z) = +o0.

Moreover, the condition lim, , o f(x) = 400, together with the extreme value theorem,
implies that f reaches a global minimum. Therefore, x = 2 is in fact the global minimum of
f, with value f(2) = —22, as illustrated in Figure 1.

407 r(a)

20 |

—20 |

Figure 1: Graph of the function f in Example 2.3.



3 Two-dimensional case

Theorem 3.1 (Second derivatives test). Let f: D — R be a function of two variables, with
domain D C R%. Let (a,b) € D be a critical point of f such that the second partial derivatives
fazs foys fyos fyy exist in a neighborhood of (a,b) and are continuous at (a,b), which implies
in particular fu,(a,b) = fy.(a,b). The discriminant of f is the 2 x 2 determinant

fmx fa:y
fyac fyy

2
= fa::vfyy — Jaxy-

Now consider the discriminant D = D(a,b) at the point (a,b).

D =

e If D >0 and f,.(a,b) > 0 hold, then f has a local minimum at (a,b).
e [fD >0 and f.z(a,b) <0 hold, then f has a local mazimum at (a,b).
e If D <0 holds, then f has a saddle point at (a,b).

o If D =0 holds, then the test is inconclusive.

Remark 3.2. The following examples illustrate why the test is inconclusive when the discrim-
inant satisfies D =0 .

e The function f(z,y) = 2 + y* has a (strict) local minimum at (0, 0).

e The function f(x,y) = 2* has a (non-strict) local minimum at (0, 0).
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e The function f(x,y) = —2? — y* has a (strict) local maximum at (0, 0).

(
(
(
e The function f(x,y) = —2? has a (non-strict) local maximum at (0,0).
(
(

= 12 4+ y3 has a saddle point at (0, 0).

)
) _
) =
) =
e The function f(x,y)
e The function f(z,y) = —2? + 3 has a saddle point at (0,0).
e The function f(x,y) = 2% — y* has a saddle point at (0,0).
).

Example 3.3 (# 14.7.11
R defined by

Find all local extrema and saddle points of the function f: R? —

flz,y) = 2® — 122y + 8y°.



Solution. Note that f is infinitely many times differentiable on its domain R?. Let us find
the critical points of f:

folz,y) = 32> =12y = 0
fo(z,y) = =122+ 244> =0

4y = x?
= y=7
x = 21?

2)2 — 4y4

=4y = (2y
sy=y
Syly’ 1) =0
sSy=0o0ry’=1
Sy=0ory=1

y=0=2=2(0)7

0
2

y=1=1=2(1)?

which implies that (0,0) and (2, 1) are the only points that could be critical points of f, and
indeed they are.

Let us compute the discriminant of f:

fra(2,y) = 62
foy(a,y) = —12
fyy(z,y) = 48y
D(x,y) = faa(,9) fyy(2,9) = fay(2,)*

At the critical point (0,0), the discriminant is:

D(0,0) =12*(0—-1) <0
so that (0,0) is a .
At the critical point (2,1), the discriminant is:

D(2,1) =12%(4—1) >0

and we have f,,(2,1) = 6(2) = 12 > 0, so that (2,1) is a |local minimum | with value
f(2,1) =8—-2448= , as illustrated in Figure 2..




Figure 2: Graph of the function f in Example 3.3.

4 Why does it work?

4.1 Quadratic approximation

The second derivatives test relies on the quadratic approximation of f at the point (a,b),
which is the Taylor polynomial of degree 2 at that point.

Recall that for functions of a single variable f(z), the quadratic approximation of f at a is:

(x —a)?

f(z) = fla) + f(a)(z — a) + ["(a) =

Since the variable of interest is the displacement from the basepoint a, let us rewrite h ;== r—a
and thus: 12
fla+h) = f(a) + f(a)h + ["(a) -

If a is a critical point of f, then we have f’(a) = 0 and the quadratic approximation becomes:

flath)~ (@) + ()

If f”(a) # 0 holds, then the quadratic term will determine the local behavior of f around a:
f"(a) > 0 yields a local minimum while f”(a) < 0 yields a local maximum.

Idea:

o If f”(a) > 0 holds, then f qualitatively behaves like f(a + h) = f(a) + h* when h is
small.

e If f”(a) < 0 holds, then f behaves like f(a + h) = f(a) — k2.



For functions of two variables f(z,y), the quadratic approximation at (a,b) is:

flz,y) = fla,b) + fala,b)(z — a) + fy(a,b)(y — b)+
(x —a)? (y —b)°

+ fra(a, ) + foy(a,0)(@ = a)(y = b) + fy (@, 0) =
Again, consider the displacement from the basepoint (a,b) and write
h=(hk):=(z —a,y—b)
and thus:
2 2

h k
flathb+k)~ flab)+ fola, 0)h+ fy(a 0k + frn(a,b) 5 + fry(a,0)hk + fyy(a,b) %
In vector notation, which is convenient in higher dimension, this can be rewritten as:
o1 .
f(a+h7b+k) ~ f(avb) —I-Vf(a,b) -h+ §hT‘Hf(a’b)h

where H(a,b) is the Hessian of f at the point (a,b), defined as the matrix of second partial
derivatives:
f:vac f;ry:| )

Hy= [fyx fon

Here h7 denotes the row vector [h k}, which is the transpose of the column vector h= [Z] :
If (a,b) is a critical point of f, then we have f,(a,b) =0 and f,(a,b) = 0, and the quadratic
approximation becomes:

2 2

Flathb+ k)~ f(ab) + fula, b)% (@ BB+ f(a, b)%

1- -
= f(a,b) + §hTHf(a,b)h.

4.2 Behavior close to a critical point

The Hessian Hy(a,b) should be viewed as a symmetric bilinear form on the tangent space of
the domain D at the point (a,b). Given two direction vectors ¥ and , the Hessian outputs

the number
ﬁTHf(a, b)u_f = Du-;Dgf(CL, b)

where Djf(a,b) denotes the derivative of f in the (non-normalized) direction ¢ at the point
(a,b). For example, taking standard basis vectors ¢ = 7" and @ = 7"yields the number

" Hy(a,b)7= D;Dyf(a,b) = fuz(a,b)



and taking ¢ = 7 and w = J yields the number
TTHf(‘% b)j: DID?f<a7 b) = f:ry(aa b)

From linear algebra, we know that a symmetric bilinear form is classified, up to a change
of basis, by its signature: how many of its eigenvalues are positive, zero, or negative. Let
A1, A2 be the eigenvalues of Hy(a,b). Depending on the signs of A; and Ay, the bilinear form
H¢(a,b) will be equivalent (up to a change of basis) to one of the following:

° (1) (ﬂ if \; and Ay are both positive.
1 017 . : . : :
* o _1 if one )\; is positive and the other is negative.

° _01 _01} if A1 and Ay are both negative.

. (1) 81 if one \; is positive and the other is zero.
-1 0] . : : .

* | O} if one \; is negative and the other is zero.
[0 0] .

2 P if A\; and A9 are both zero.

Upshot: To analyze the behavior of f close to a critical point (a, b), the first step is to find
the signs of the eigenvalues of the Hessian Hy(a,b).

The discriminant of f was defined as the determinant of the Hessian, which is the product
of the eigenvalues:

D(a,b) = det H¢(a,b) = A Aq.

Definition 4.1. A critical point (a,b) of f is called non-degenerate if the Hessian H(a, b)
is non-degenerate, i.e., has only non-zero eigenvalues. Otherwise, the critical point is called
degenerate, which means that the Hessian Hy(a,b) has an eigenvalue 0.

Note that a critical point is degenerate if and only if the product of the eigenvalues is zero:
A1A2 = 0; equivalently, the discriminant is zero: D(a,b) = 0.

Example 4.2. For all the functions described in Example 3.2, the origin (0, 0) is a degenerate
critical point of f. As we have seen, the function f can have all kinds of behaviors close to
a degenerate critical point.

In contrast, close to a non-degenerate critical point, the behavior of f is dictated by the

signature of the Hessian. If the discriminant satisfies D(a,b) # 0, then the critical point
(a,b) is non-degenerate, and its signature is one of the following;:
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J[ro
0 1
L[ oo
0 -1
I
0 -1

The case of one positive eigenvalue and one negative eigenvalue happens if and only if the
discriminant is negative: D = A\ Ay < 0.

In the case D > 0, there are still two possible signatures:
. 10
0 1
. -1 0
0 -1

To distinguish between the two cases, Sylvester’s criterion (from linear algebra) tells us
that both eigenvalues are positive if and only if the top left entry of the matrix is positive:

fuz(a,b) > 0.

Remark 4.3. For this last step, one could also use the equivalent condition f,,(a,b) > 0, or
that the trace of the matrix is positive: fy.(a,b) + fyy(a,b) = A1 + A3 > 0.

Summary: Here is a reinterpretation of the second derivatives test.

D = 0 & one of the eigenvalues J\; is zero.

e D <0< one of the eigenvalues is positive and the other is negative.

D > 0 and f,, > 0 < both eigenvalues \; are positive.

D >0 and f,, <0< both eigenvalues \; are negative.

Idea:

e If both eigenvalues are positive, then f qualitatively behaves like f(a + h,b+ k) =
f(a,b) + h? + k? when h and k are small.

e If one eigenvalue is positive and the other is negative, then f behaves like f(a+h, b+k) =
f(a,b) + h? — K2

e If both eigenvalues are negative, then f behaves like f(a+h,b+k) = f(a,b) —h* — k>
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