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1 Definition and basic properties

Definition 1.1. A function f of two variables is differentiable at a point (x0, y0) if there
exist numbers A,B ∈ R such that

f(x0 + h, y0 + k) = f(x0, y0) + Ah + Bk + E(h, k) (1)

where the error term E(h, k) satisfies

lim
(h,k)→(0,0)

E(h, k)√
h2 + k2

= 0.

In other words, the error term E(h, k) has “order higher than 1”.

Proposition 1.2. If f is differentiable at (x0, y0), then the partial derivatives of f exist at
(x0, y0), and in fact the numbers A and B in Definition 1.1 must be

A = fx(x0, y0)

B = fy(x0, y0).

Proof. Varying only the x component about (x0, y0) corresponds to setting k = 0 in (1). One
has

f(x0 + h, y0) = f(x0, y0) + Ah + E(h, 0)
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and therefore

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

= lim
h→0

Ah + E(h, 0)

h

= A + lim
h→0

E(h, 0)

h

= A + 0

= A.

Likewise, varying only the y component about (x0, y0) corresponds to setting h = 0 in (1).
One has

f(x0, y0 + k) = f(x0, y0) + Bk + E(0, k)

and therefore

fy(x0, y0) = lim
k→0

f(x0, y0 + k)− f(x0, y0)

k

= lim
k→0

Bk + E(0, k)

k

= B + lim
k→0

E(0, k)

k

= B + 0

= B.

Consequently, Definition 1.1 could have been equivalently stated as follows.

Definition 1.3. A function f of two variables is differentiable at a point (x0, y0) if the
partial derivatives fx(x0, y0) and fy(x0, y0) exist, and

f(x0 + h, y0 + k) = f(x0, y0) + fx(x0, y0)h + fy(x0, y0) k + E(h, k)

where the error term E(h, k) satisfies

lim
(h,k)→(0,0)

E(h, k)√
h2 + k2

= 0.

Roughly speaking: f is differentiable at (x0, y0) if f is well approximated by its linear ap-
proximation close to (x0, y0). Geometrically, it means that the graph of f has a tangent plane
at the point (x0, y0, f(x0, y0)).

Remark 1.4. The error term E(h, k) measures the discrepancy between f and its linearization
L(x, y) at (x0, y0):

E(h, k) = f(x0 + h, y0 + k)− [f(x0, y0) + fx(x0, y0)h + fy(x0, y0) k]

= f(x0 + h, y0 + k)− L(x0 + h, y0 + k).
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As for functions of a single variable, differentiability is stronger than continuity.

Proposition 1.5. If f is differentiable at (x0, y0), then f is continuous at (x0, y0).

Proof. Exercise # 45.

2 Examples

Example 2.1. A polynomial of degree one f(x, y) = ax+ by+ c is differentiable everywhere,
i.e., at any point (x, y) ∈ R2. Indeed, f equals its linearization at any point, so that the error
term E in Definition 1.3 is identically zero.

Example 2.2. The function f(x, y) =
√
x2 + y2 is not differentiable at (0, 0). Indeed, the

partial derivative of fx(0, 0) does not exist, since the limit:

lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

√
h2 + 0− 0

h

= lim
h→0

|h|
h

= lim
h→0

sign(h)

does not exist.

Note, however, that f is continuous at (0, 0), and in fact everywhere.

Example 2.3. As in the previous example, the function f(x, y) =
√

(x− x0)2 + (y − y0)2 is
not differentiable at (x0, y0).

Example 2.4 (Exercise # 46a). The function

f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is not differentiable at (0, 0). Indeed, f is not even continuous at (0, 0). As we have seen in
§14.2, the limit

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist.

Note, however, that f does have both partial derivatives at (0, 0). Indeed, f restricted to the
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axes is identically zero, and so we have

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

0− 0

h

= 0.

It turns out that the “linearization” of f at (0, 0)

L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0)

= 0 + 0(x− 0) + 0(y − 0)

= 0

is a very bad approximation of f .

The following example is worse.

Example 2.5. The function

f(x, y) =

{
y3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is not differentiable at (0, 0). It is continuous at (0, 0), as we have

lim
(x,y)→(0,0)

y3

x2 + y2
= 0 = f(0, 0).

4



Moreover, it has both partial derivatives at (0, 0):

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

0

h

= 0

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

h3/h2

h

= lim
h→0

h

h

= 1.

However, the error term

E(h, k) = f(x0 + h, y0 + k)− f(x0, y0)− fx(x0, y0)h− fy(x0, y0)k

= f(h, k)− f(0, 0)− fx(0, 0)h− fy(0, 0)k

=
k3

h2 + k2
− k

=
−h2k

h2 + k2

does not satisfy

lim
(h,k)→(0,0)

|E(h, k)|√
h2 + k2

= 0

since this limit does not exist.

Upshot

Propositions 1.2 and 1.5 say that if f is differentiable at (x0, y0) then f is continuous at
(x0, y0) and the partial derivatives fx(x0, y0) and fy(x0, y0) exist. Example 2.5 shows that
those two conditions, even together, are not enough to guarantee that f is differentiable at
(x0, y0).
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3 Rules for differentiability

The following theorem will guarantee that many nice, familiar functions are differentiable.

Theorem 3.1 (Rules for differentiability). Let f and g be functions of two variables, and let
ϕ be a function of one variable.

1. (Sum.) If f and g are differentiable at (x0, y0), then f + g is differentiable at (x0, y0).

2. (Product.) If f and g are differentiable at (x0, y0), then fg is differentiable at (x0, y0).

3. (Quotient.) If f and g are differentiable at (x0, y0), and g(x0, y0) 6= 0, then f
g

is

differentiable at (x0, y0).

4. (Composition.) If f is differentiable at (x0, y0), and ϕ is differentiable at f(x0, y0), then
the composition ϕ ◦ f is differentiable at (x0, y0).

In all these cases, the partial derivatives are computed with the usual rules for differentiation:

1. (f + g)x = fx + gx

2. (fg)x = fxg + fgx

3.
(

f
g

)
x

= fxg−fgx
g2

4. (ϕ ◦ f)x(x, y) = ϕ′ (f(x, y)) fx(x, y)

and likewise for the partial derivatives with respect to y.

Example 3.2. Polynomials are differentiable everywhere. This follows from Example 2.1,
the product rule, and the sum rule.

Example 3.3. Rational functions f = p
q

are differentiable on their (maximal) domain,
namely wherever q is non-zero. This follows from Example 3.2 and the quotient rule.

For example, the function

f(x, y) =
8x5y3 + 3xy2 − 10

7x2y − 6x + 1

is differentiable wherever the condition 7x2y − 6x + 1 6= 0 holds.

Example 3.4. The function

f(x, y) =
5x3y + exy

√
x + 3y + 9

1− x2 − 4y2

is differentiable on the region

{(x, y) ∈ R2 | x + 3y + 9 > 0 and 1− x2 − 4y2 6= 0}.
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Note that the (maximal) domain of f is the region

D = {(x, y) ∈ R2 | x + 3y + 9 ≥ 0 and 1− x2 − 4y2 6= 0}

and in fact we know that f is continuous on D. Differentiability of f is not guaranteed on
the line x + 3y + 9 = 0, because the function ϕ(t) =

√
t is not differentiable at t = 0.

Example 3.5. The function

f(x, y) =
√

(x− x0)2 + (y − y0)2

from Example 2.3 is differentiable everywhere except at (x0, y0).

This follows from the composition rule, and the fact that the function ϕ(t) =
√
t is differen-

tiable at all t > 0.

Just for fun, let us compute the partial derivatives of f :

fx(x, y) =
1

2
√

(x− x0)2 + (y − y0)2
2(x− x0)(1)

=
x− x0√

(x− x0)2 + (y − y0)2

fy(x, y) =
1

2
√

(x− x0)2 + (y − y0)2
2(y − y0)(1)

=
y − y0√

(x− x0)2 + (y − y0)2
.
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4 Sufficient conditions

We have seen that the existence of partial derivatives does not guarantee differentiability.
The following theorem provides stronger conditions that do guarantee differentiability.

Theorem 4.1. If both partial derivatives fx and fy exist in a neighborhood of (x0, y0), and
fx and fy are continuous at (x0, y0), then f is differentiable at (x0, y0).

Example 4.2. Theorem 4.1 provides an alternate proof of the following facts.

• Polynomials are differentiable everywhere.

• Rational functions are differentiable on their (maximal) domain.

• The function
f(x, y) = x3y + y5ex + cos(xy)

is differentiable everywhere, i.e., on all of R2.

Example 4.3 (Exercise # 46b). The function

f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

from Example 2.4 has partial derivatives everywhere, in particular near (0, 0). However, we
know that f is not differentiable at (0, 0). By Theorem 4.1, this means that the partial
derivatives fx and fy cannot both be continuous at (0, 0).

Exercise 4.4. With that function f , show directly that fx is discontinuous at (0, 0) by first
computing fx.

Exercise 4.5. Same exercise, but with the function

f(x, y) =

{
y3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

from Example 2.5.
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