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Theorem 1 (Clairaut’s theorem). Let f: D — R be a function with domain D C R?, and
let (a,b) be an interior point of D. If the second partial derivatives fy, and f,, exist and are
continuous in a neighborhood of (a,b), then they satisfy f.,(a,b) = f,.(a,b).

The following (non-)example illustrates why the assumptions of the theorem are important.

Example 2 (# 14.3.101). Let f: R? — R be the function defined by

2 i () # (0,0)
fz,y) = {O ’ if (z,y) = (0,0).

At all points (z,y) # (0,0), the partial derivative f, is given by:
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Given the equality f(x,0) = 0 for all x, we have f,(0,0) = 0 and therefore:
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Likewise, the partial derivative f, is given by:
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To compute the mixed partial derivatives at the origin, consider:
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for all y, which implies | f;,,(0,0) = —1|. Likewise, we have:
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fy(z,0) = % =z

for all y, which implies | f,,(0,0) = 1|

Does this contradict Clairaut’s theorem? No: f does not satisfy the assumptions of the
theorem. The second partial derivatives f,, and f,, (and f,, and f,, for that matter) exist
on all of R?, in particular in a neighborhood of (0, 0). However, f,, and f,, are not continuous
at (0,0).



