Calculus 2502A - Advanced Calculus I Fall 2014 §14.2: Examples of limits

Martin Frankland

October 29, 2014

The following example illustrates the strategy of switching to polar coordinates.
Example 1. Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{3}-2 x^{2} y+4 x y^{2}+y^{6}}{x^{2}+y^{2}}
$$

if it exists, or show that it does not exist.

Solution. Using polar coordinates

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

the limit can be expressed as

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{5(r \cos \theta)^{3}-2(r \cos \theta)^{2}(r \sin \theta)+4(r \cos \theta)(r \sin \theta)^{2}+(r \sin \theta)^{6}}{r^{2}} \\
& =\lim _{r \rightarrow 0} \frac{5 r^{3} \cos ^{3} \theta-2 r^{3} \cos ^{2} \theta \sin \theta+4 r^{3} \cos \theta \sin ^{2} \theta+r^{6} \sin ^{6} \theta}{r^{2}} \\
& =\lim _{r \rightarrow 0}\left(5 r \cos ^{3} \theta-2 r \cos ^{2} \theta \sin \theta+4 r \cos \theta \sin ^{2} \theta+r^{4} \sin ^{6} \theta\right) \\
& =0+0+0+0 \\
& =0 .
\end{aligned}
$$

Indeed, for any integers $m, n \geq 0$ and any $\theta \in \mathbb{R}$, we have the upper bound:

$$
\begin{aligned}
\left|\cos ^{m} \theta \sin ^{n} \theta\right| & =|\cos \theta|^{m}|\sin \theta|^{n} \\
& \leq(1)^{m}(1)^{n} \\
& =1
\end{aligned}
$$

and therefore the limit: $\lim _{r \rightarrow 0} r \cos ^{m} \theta \sin ^{n} \theta=0$.
Although there is no analogue of l'Hôpital's rule in higher dimension, some problems can be reduced to a one-dimensional problem, as in the following example.

Example 2. Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2}+4 y^{2}}{\sqrt{5 x^{2}+4 y^{2}+1}-1}
$$

if it exists, or show that it does not exist.

Solution. Given $\lim _{(x, y) \rightarrow(0,0)} 5 x^{2}+4 y^{2}=0$ and the fact $5 x^{2}+4 y^{2} \neq 0$ for $(x, y) \neq(0,0)$ in a small enough neighborhood of $(0,0)$, the composition rule yields:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{2}+4 y^{2}}{\sqrt{5 x^{2}+4 y^{2}+1}-1} & =\lim _{u \rightarrow 0} \frac{u}{\sqrt{u+1}-1} \\
& =\lim _{u \rightarrow 0} \frac{1}{1 / 2 \sqrt{u+1}} \quad \text { by l'Hôpital's rule } \\
& =\frac{1}{1 / 2} \quad \text { by the rules for continuity } \\
& =2 .
\end{aligned}
$$

Remark 3. For your numerical pleasure, if we define $f(u)=\frac{u}{\sqrt{u+1}-1}$, then we have the values

$$
\begin{aligned}
& f(0.1) \approx 2.04881 \\
& f(0.01) \approx 2.00499 \\
& f(0.001) \approx 2.00050
\end{aligned}
$$

The next two examples illustrate the strategy of finding upper bounds and the Squeeze theorem.

Example 4. Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x^{3} e^{x y}}{5 x^{2}+4 y^{2}+x^{2} y^{2}+y^{6}}
$$

if it exists, or show that it does not exist.

Solution. Consider the upper bound:

$$
\begin{aligned}
\left|\frac{7 x^{3} e^{x y}}{5 x^{2}+4 y^{2}+x^{2} y^{2}+y^{6}}\right| & \leq\left|\frac{7 x^{3} e^{x y}}{4 x^{2}+4 y^{2}}\right| \\
& =\frac{7}{4}\left|\frac{x^{3}}{x^{2}+y^{2}}\right| e^{x y} .
\end{aligned}
$$

By the product rule, we have

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{7}{4} \frac{x^{3} e^{x y}}{x^{2}+y^{2}} & =\frac{7}{4}\left(\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}}\right)\left(\lim _{(x, y) \rightarrow(0,0)} e^{x y}\right) \\
& =\frac{7}{4}(0)(1) \\
& =0
\end{aligned}
$$

which guarantees:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x^{3} e^{x y}}{5 x^{2}+4 y^{2}+x^{2} y^{2}+y^{6}}=0 .
$$

Example 5. Find the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \tan (x y)}{x^{2}+y^{2}}
$$

if it exists, or show that it does not exist.

Solution. For all $(x, y) \neq(0,0)$, the inequality

$$
0 \leq \frac{x^{2}}{x^{2}+y^{2}} \leq 1
$$

holds. This implies the inequality

$$
\left|\frac{x^{2} \tan (x y)}{x^{2}+y^{2}}\right| \leq \tan (x y) \xrightarrow{(x, y) \rightarrow(0,0)} \tan (0)=0 .
$$

Therefore, we have:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \tan (x y)}{x^{2}+y^{2}}=0 .
$$

