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Notation 1. Denote by:

• ~r (t) the position of a particle at time t.

• ~v(t) := ~r ′(t) the velocity.

• v(t) := |~v(t)| the speed.

• ~a(t) := ~r ′′(t) the acceleration.

• ~T (t) := ~r ′(t)
|~r ′(t)| the unit tangent vector, whenever ~r ′(t) 6= ~0.

• ~N(t) :=
~T ′(t)

|~T ′(t)|
the principal unit normal vector, whenever ~T ′(t) 6= ~0.

• κ(t) = |~T ′(t)|
|~r ′(t)| the curvature.

The acceleration vector ~a(t) is always in the osculating plane, spanned by ~T (t) and ~N(t).

Notation 2. Write the acceleration vector as

~a(t) = aT ~T (t) + aN ~N(t)

where aT denotes the tangential component of ~a(t) and aN denotes the normal compo-
nent of ~a(t).

Note that aN ≥ 0 holds for all t, by our choice of the normal vector ~N(t).

Proposition 3. The tangential component of the acceleration is given by

aT = v′ =
~v · ~a
v

=
~r ′(t) · ~r ′′(t)

|~r ′(t)|
.

The normal component of the acceleration is given by

aN = κv2 =
|~v × ~a|
v

=
|~r ′(t)× ~r ′′(t)|
|~r ′(t)|

.
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Proof. Recall that the unit tangent vector is defined by the equation

~r ′ = v ~T

and the principal unit normal vector is defined by the equation

~T ′ = |~T ′| ~N.

Acceleration is given by

~a = ~r ′′

= (v ~T )′

= v′ ~T + v ~T ′

= v′ ~T + v|~T ′| ~N. (1)

Now recall that curvature is given by

κ =
|~T ′|
|r′|

=
|~T ′|
v

and substituting |~T ′| = κv into equation (1) yields

~a = v′ ~T + κv2 ~N.

Dotting the acceleration with the unit tangent vector yields

~T · ~a = ~T ·
(
aT ~T + aN ~N

)
= aT ~T · ~T + aN ~T · ~N

= aT

from which we obtain

aT =
~v

v
· ~a =

~v · ~a
v
.

Crossing the acceleration with the unit tangent vector yields

~T × ~a = ~T ×
(
aT ~T + aN ~N

)
= aT ~T × ~T + aN ~T × ~N

= aN ~T × ~N

⇒ |~T × ~a| = |aN ~T × ~N |

= |aN ||~T × ~N |

= aN
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from which we obtain

aN = |~v
v
× ~a| = |~v × ~a|

v
.

Proposition 4. The following conditions for a parametrized curve ~r (t) are equivalent (as-
suming ~r is twice differentiable and ~r ′(t) is never zero).

1. The acceleration is always orthogonal to the velocity, i.e., ~r ′(t) · ~r ′′(t) = 0 holds for all
t.

2. The tangential component aT of the acceleration is identically zero, i.e., aT = 0 holds
for all t.

3. The speed |~r ′(t)| is constant.

Proof. (1 ⇒ 2) By Proposition 3, we have

aT =
~r ′ · ~r ′′

|~r ′|
≡ 0.

(2 ⇒ 3) The speed function v(t) is differentiable and has derivative v′ = aT ≡ 0, so that v
must be constant. (Recall that the domain of ~r is an interval.)
(3 ⇒ 1) The function |~r ′|2 = ~r ′ · ~r ′ is constant, so that its derivative is identically zero:

0 = (~r ′ · ~r ′)′

= ~r ′′ · ~r ′ + ~r ′ · ~r ′′

= 2~r ′ · ~r ′′.

Example 5. Consider a particle moving along a circle of radius R increasingly fast, with
position function

~r (t) =
(
R cos t2, R sin t2

)
for t ≥ 0. Let us find the tangential component aT and normal component aN of the
acceleration.
The velocity is

~r ′(t) = R
(
−2t sin t2, 2t cos t2

)
= 2Rt

(
− sin t2, cos t2

)
whose magnitude is

|~r ′(t)| = 2Rt.

The acceleration is

~r ′′(t) = 2R
(
− sin t2, cos t2

)
+ 2Rt

(
−2t cos t2,−2t sin t2

)
= 2R

(
− sin t2, cos t2

)
− 4Rt2

(
cos t2, sin t2

)
.
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Then we have:

~r ′(t) · ~r ′′(t) = 2Rt
(
− sin t2, cos t2

)
·
(
2R

(
− sin t2, cos t2

)
− 4Rt2

(
cos t2, sin t2

))
= 4R2t

(
− sin t2, cos t2

)
·
(
− sin t2, cos t2

)
− 8R2t3

(
− sin t2, cos t2

)
·
(
cos t2, sin t2

)
= 4R2t(1)− 8R2t3(0)

= 4R2t

and therefore the tangential component of the acceleration is

aT =
~r ′(t) · ~r ′′(t)

|~r ′(t)|

=
4R2t

2Rt

= 2R .

We also have (viewing R2 as the xy-plane in R3):

~r ′(t)× ~r ′′(t) = 2Rt
(
− sin t2, cos t2, 0

)
×
(
2R

(
− sin t2, cos t2, 0

)
− 4Rt2

(
cos t2, sin t2, 0

))
= −8R2t3

(
− sin t2, cos t2, 0

)
×
(
cos t2, sin t2, 0

)
= −8R2t3

(
− sin2 t2~i×~j + cos2 t2~j ×~i

)
= −8R2t3

(
− sin2 t2 − cos2 t2

)
~k

= 8R2t3~k

and therefore the normal component of the acceleration is

aN =
|~r ′(t)× ~r ′′(t)|
|~r ′(t)|

=
8R2t3

2Rt

= 4Rt2 .

Remark 6. We can explicitly verify Proposition 3 in Example 5.

The speed function is v(t) = 2Rt and its derivative is v′(t) = 2R, so that the equality aT = v′

holds indeed.
The curvature of a circle of radius R is the constant function κ(t) = 1

R
. Thus, we have

κv2 =
1

R
(2Rt)2

=
4R2t2

R

= 4Rt2

so that the equality aN = κv2 holds indeed.
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