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Notation 1. Denote by:
e 7(t) the position of a particle at time ¢.
e U(t) :=7'(t) the velocity.

7" (t) the acceleration.

o T(t):= % the unit tangent vector, whenever 7/(t) # 0.

o N(t) = LW

O the principal unit normal vector, whenever T7(t) # 0.

N

i [

o x(t) = |‘ :Ei))\' the curvature.

=

The acceleration vector @(t) is always in the osculating plane, spanned by T(t) and N (t).
Notation 2. Write the acceleration vector as
a(t) = ar T(t) + ay N(t)

where ar denotes the tangential component of d(¢) and ay denotes the normal compo-
nent of d(t).

Note that ay > 0 holds for all £, by our choice of the normal vector N (1).
Proposition 3. The tangential component of the acceleration is given by

, v-a  T'(t)-7"(¢)
Qa =V = —_=
! v |7 (1)]

The normal component of the acceleration is given by

o et = Tx A [0 < )]
(Y



Proof. Recall that the unit tangent vector is defined by the equation

7 =T
and the principal unit normal vector is defined by the equation
T' = |T'|N.
Acceleration is given by
a=r"

= (uT)

=o'T + T’

—o'T + o|T'|N.

Now recall that curvature is given by

and substituting |77| = kv into equation (1) yields
i=v'T + r?N.
Dotting the acceleration with the unit tangent vector yields

T-a=T- <an+aNﬁ>

=arT -T+anT -N
:CLT
from which we obtain . Lo
v . U-a
ar=—-a4=—.
) v

Crossing the acceleration with the unit tangent vector yields
Txdi=T x <aT7:+aNN>
:anxf+afo ]\7
—ayT x N
= |T x d =layT x N|
= |an||T x N|

:a’N



from which we obtain

—

v ., |Uxd
aN:\;xa|:

v
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Proposition 4. The following conditions for a parametrized curve 7 (t) are equivalent (as-
suming 7 is twice differentiable and 7'(t) is never zero).

1. The acceleration is always orthogonal to the velocity, i.e., ¥ (t) - 7" (t) = 0 holds for all
t.

2. The tangential component ar of the acceleration is identically zero, i.e., ar = 0 holds
for all t.

3. The speed |7'(t)| is constant.

Proof. (1 = 2) By Proposition 3, we have

(2 = 3) The speed function v(t) is differentiable and has derivative v' = ar = 0, so that v
must be constant. (Recall that the domain of 7 is an interval.)
(3 = 1) The function |7'|* = 7' - 7’ is constant, so that its derivative is identically zero:

=2r" .. O

Example 5. Consider a particle moving along a circle of radius R increasingly fast, with

position function
7(t) = (Rcost®, Rsint?)

for t > 0. Let us find the tangential component a; and normal component ay of the
acceleration.
The velocity is

7'(t) = R (—2tsint’, 2t cos t?)
= 2Rt (— sin t?, cos tz)

whose magnitude is
|7 (t)] = 2Rt.

The acceleration is
7"(t) = 2R (—sint?, cost®) + 2Rt (—2t cos t*, —2¢ sin t*)

=2R (— sin t?, cos t2) — 4Rt? (cos £ sin t2) .



Then we have:

7(t) - 7"(t) = 2Rt (—sint? cost?) - (2R (—sint?, cost®) — 4Rt* (cos t?,sint?))
= 4R%* (— sin t?, cos t2) . (— sin %, cos t2) — 8R*? (— sin t?, cos t2) . (cos t?,sin t2)
= 4R*t(1) — 8R*t*(0)
= 4Rt

and therefore the tangential component of the acceleration is

() - ()
ar = — =, 77
()]
_4R%t
2Rt
=[2R|

We also have (viewing R? as the xy-plane in R?):
7'(t) x 7"(t) = 2Rt (—sint®, cost?,0) x (2R (—sint?, cost®,0) — 4Rt* (cos t?,sint?,0))

= —8R*3 (— sint?, cos t?, 0) X (cos t2,sin t2, O)
= —8R* <— sin® 127 x f+ cos? t2; X ;>
= —8R*t3 (— sin® t* — cos® t2) k
— 8R*°k
and therefore the normal component of the acceleration is
|7 () x 7"(2)]
AN = —— S~
|7 (t)]

_ 8R*?
2Rt

_[iz7)

Remark 6. We can explicitly verify Proposition 3 in Example 5.

The speed function is v(t) = 2Rt and its derivative is v'(t) = 2R, so that the equality
holds indeed.
The curvature of a circle of radius R is the constant function x(t) = %. Thus, we have

1
2= —(2Rt)?
KU R( )

AR
R
= 4Rt?

so that the equality |ay = xv? | holds indeed.




