# Calculus 2502A - Advanced Calculus I Fall 2014 §13.3: Osculating and normal planes 

Martin Frankland

October 10, 2014

Example 1. Consider the curve parametrized by

$$
\vec{r}(t)=\left(t+3, t^{2}-1, t^{3}-4\right)
$$

for $t \in \mathbb{R}$.
a) Find an equation for the normal plane to the curve at the point $(5,3,4)$.
b) Find an equation for the osculating plane of the curve at the point $(5,3,4)$.
c) Find all points (if any) on the curve where the osculating plane is parallel to the plane defined by the equation $3 z=7-9 x-9 y$.

Solution. a) The tangent vector is

$$
\vec{r}^{\prime}(t)=\left(1,2 t, 3 t^{2}\right) .
$$

The point $\vec{r}(t)=(5,3,4)$ corresponds to the (unique) value of the parameter $t=2$, for which the tangent vector is

$$
\vec{r}^{\prime}(2)=(1,4,12) .
$$

The normal plane at the point $(5,3,4)$ has equation:

$$
(x-5)+4(y-3)+12(z-4)=0
$$

or equivalently:

$$
x+4 y+12 z=65 \text {. }
$$

b) The second derivative is

$$
\vec{r}^{\prime \prime}(t)=(0,2,6 t) .
$$

Note is particular that $\vec{r}^{\prime \prime}(t)$ is never parallel to $\vec{r}^{\prime}(t)$, and so the osculating plane is defined at every point of the curve. At the point $\vec{r}(2)=(5,3,4)$, we have

$$
\vec{r}^{\prime \prime}(2)=(0,2,12) .
$$

The osculating plane is parallel to both $\vec{r}^{\prime}(2)$ and $\vec{r}^{\prime \prime}(2)$, and so we can take as its normal vector:

$$
\begin{aligned}
\vec{r}^{\prime}(2) \times \vec{r}^{\prime \prime}(2) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 4 & 12 \\
0 & 2 & 12
\end{array}\right| \\
& =\vec{i}\left|\begin{array}{ll}
4 & 12 \\
2 & 12
\end{array}\right|-\vec{j}\left|\begin{array}{ll}
1 & 12 \\
0 & 12
\end{array}\right|+\vec{k}\left|\begin{array}{ll}
1 & 4 \\
0 & 2
\end{array}\right| \\
& =\vec{i}(48-24)-\vec{j}(12-0)+\vec{k}(2-0) \\
& =(24,-12,2)
\end{aligned}
$$

or we may as well take the scalar multiple $(12,-6,1)$. The osculating plane at the point $(5,3,4)$ has equation:

$$
12(x-5)-6(y-3)+(z-4)=0
$$

or equivalently:

$$
12 x-6 y+z=46
$$

c) At any point $\vec{r}(t)$ on the curve, the osculating plane has as its normal vector:

$$
\begin{aligned}
\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 t & 3 t^{2} \\
0 & 2 & 6 t
\end{array}\right| \\
& =\vec{i}\left|\begin{array}{cc}
2 t & 3 t^{2} \\
2 & 6 t
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
1 & 3 t^{2} \\
0 & 6 t
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & 2 t \\
0 & 2
\end{array}\right| \\
& =\vec{i}\left(12 t^{2}-6 t^{2}\right)-\vec{j}(6 t-0)+\vec{k}(2-0) \\
& =\left(6 t^{2},-6 t, 2\right)
\end{aligned}
$$

or we may as well take $\left(3 t^{2},-3 t, 1\right)$. The given plane has normal vector $(9,9,3)$. We are looking for all values of $t$ such that $\left(3 t^{2},-3 t, 1\right)$ is parallel to $(9,9,3)$, i.e.,

$$
\left(3 t^{2},-3 t, 1\right)=c(9,9,3)
$$

for some scalar $c \neq 0$. This condition is equivalent to

$$
\left(3 t^{2},-3 t, 1\right)=(3,3,1)
$$

which holds if and only if $t=-1$ holds. Thus, the only point on the curve satisfying the condition is

$$
\vec{r}(-1)=(2,0,-5) .
$$

