Calculus 2502A - Advanced Calculus I
 Fall 2014 §12.5: Intersection of two planes

Martin Frankland

September 19, 2014

Example 1. Find an equation for the line of intersection of the two planes defined by the equations $x+y+z=3$ and $2 x-y+3 z=0$.

Geometric solution. The first plane has normal vector $\vec{n}_{1}=(1,1,1)$ while the second plane has normal vector $\vec{n}_{2}=(2,-1,3)$. Note that they are not parallel, and thus they intersect in a line.

Since the line of intersection is orthogonal to both \vec{n}_{1} and \vec{n}_{2}, we can take its direction vector to be:

$$
\begin{aligned}
\vec{v} & =\vec{n}_{1} \times \vec{n}_{2} \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 1 \\
2 & -1 & 3
\end{array}\right| \\
& =\vec{i}\left|\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right|-\vec{j}\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right| \\
& =\vec{i}(3-(-1))-\vec{j}(3-2)+\vec{k}(-1-2) \\
& =4 \vec{i}-\vec{j}-3 \vec{k} \\
& =(4,-1,-3) .
\end{aligned}
$$

It remains to find a point on the line. Let us find the point on the line with $z=0$, in which case the equations of the two planes become:

$$
\left\{\begin{array}{l}
x+y=3 \\
2 x-y=0
\end{array}\right.
$$

which has the (unique) solution $x=1, y=2$, yielding the point $(1,2,0)$. The line of intersection of the two planes has as vector equation:

$$
\vec{r}(t)=(1,2,0)+t(4,-1,-3) \text { for } t \in \mathbb{R} .
$$

Alternately, the parametric equations of the line are:

$$
\left\{\begin{array}{l}
x(t)=1+4 t \\
y(t)=2-t \\
z(t)=-3 t
\end{array}\right.
$$

for $t \in \mathbb{R}$.

Algebraic solution. The intersection of the two planes is the solution set of the system of two equations:

$$
\begin{aligned}
&\left\{\begin{array}{l}
x+y+z=3 \\
2 x-y+3 z=0
\end{array}\right. \\
& \sim \sim\left\{\begin{array}{r}
x+y+z=3 \\
-3 y+z=-6
\end{array}\right. \\
& \sim\left\{\begin{array}{r}
x+y+z=3 \\
y-\frac{1}{3} z=2
\end{array}\right. \\
& \sim\left\{\begin{array}{r}
x+\frac{4}{3} z=1 \\
y-\frac{1}{3} z=2 .
\end{array}\right.
\end{aligned}
$$

Using $z=t$ as parameter, the second equation yields $y=2+\frac{1}{3} t$ and the first equation yields $x=1-\frac{4}{3} t$. Therefore, the parametric equations of the line
are:

$$
\left\{\begin{array}{l}
x(t)=1-\frac{4}{3} t \\
y(t)=2+\frac{1}{3} t \\
z(t)=t
\end{array}\right.
$$

for $t \in \mathbb{R}$.
Remark 2. Fraction-haters may as well use $\frac{1}{3} z=s$ as parameter, yielding the parametric equations:

$$
\left\{\begin{array}{l}
x(s)=1-4 s \\
y(s)=2+s \\
z(s)=3 s
\end{array}\right.
$$

for $s \in \mathbb{R}$.

