Calculus 2302A - Intermediate Calculus I

Fall 2013 Practice Midterm

- On the real exam, no calculators, electronic devices, books, or notes may be used.
- Show your work. No credit for answers without justification.
- Good luck!

 Problem 1. (10 points) A boat wants to head due north. The water current is going northeast, with a speed of 5 km/h. The boat moves at full speed, which is 50 km/h (relative to the water). In what direction should the boat head (relative to the water) so that its actual motion is due north?

Give your answer as an angle θ of deviation from the north direction, going counterclockwise. For example, $\theta = 0$ would be north and $\theta = \frac{\pi}{4}$ would be northwest.

Problem 2. (10 points) Find the distance from the point P = (5, 2, 1) to the plane defined by the equation 2x + y - 4z = 3.

Problem 3. (10 points) Find an equation for the plane that contains both the point P = (3, 1, 5) and the line with parametric equations:

$$\begin{cases} x(t) = 4 - t \\ y(t) = 2t \\ z(t) = -2 + t \end{cases} \text{ for } t \in \mathbb{R}.$$

Problem 4. (10 points) Find a vector equation for the line of intersection of the two planes P_1 and P_2 defined by the equations:

$$P_1: 3x + y - 2z = 4$$
$$P_2: x + 2y + z = 1.$$

Problem 5. (10 points) Show that the equation

$$4x^2 + 36y^2 - 72y + 9z^2 + 36z + 9 = 0$$

in \mathbb{R}^3 defines an ellipsoid, and find its center.

Problem 6. (10 points) Let C be a curve parametrized by a vector function $\overrightarrow{r} : \mathbb{R} \to \mathbb{R}^3$. Assume that for all $t \in \mathbb{R}$, the position vector $\overrightarrow{r}(t)$ is orthogonal to the tangent vector $\overrightarrow{r}'(t)$. Show that the curve C lies entirely on a sphere centered at the origin. (Assume that \overrightarrow{r} is differentiable for all $t \in \mathbb{R}$.) **Problem 7.** (10 points) Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$ and the surface 3z = xy. Find the length of C from the origin to the point (6, 18, 36).

Problem 8. (10 points) Find the curvature of the curve parametrized by $\overrightarrow{r}(t) = (t^2, 7, t)$ at the point (1, 7, 1).

Multiple choice section

Problem 9. (5 points) True or False? In three-dimensional space \mathbb{R}^3 ...

(T / F) Two planes perpendicular to some given plane must be parallel to each other.

(T / F) Two planes perpendicular to some given line must be parallel to each other.

(T / F) Two lines perpendicular to some given plane must be parallel to each other.

(T / F) Two lines perpendicular to some given line must be parallel to each other.

(T / F) Two lines parallel to some given plane must be parallel to each other.

(T / F) Two lines parallel to some given line must be parallel to each other.

Problem 10. (5 points) For any vectors \vec{a} and \vec{b} in \mathbb{R}^3 , which is the following vectors is necessarily orthogonal to \vec{a} ?

- (A) $\operatorname{proj}_{\vec{b}}(\vec{a})$.
- (B) $\operatorname{proj}_{\vec{a}}(\vec{b})$. (C) $\vec{a} \operatorname{proj}_{\vec{b}}(\vec{a})$.
- (D) $\vec{b} \operatorname{proj}_{\vec{a}}(\vec{b})$.

Problem 11. (5 points) The equation

$$5x^2 - 2y^2 + z^2 + 2z + 8 = 0$$

in \mathbb{R}^3 defines a...

- (A) Hyperboloid of one sheet.
- (B) Hyperboloid of two sheets.
- (C) Hyperbolic paraboloid.
- (D) Hyperbolic cylinder.

for $t \ge 0$.

(D)

