Calculus 2302A - Intermediate Calculus I Fall 2013 §14.8: Example of Lagrange multipliers

Martin Frankland

December 4, 2013

Here is the problem presented in lecture, whose completion was left as an exercise.

Example 1. Find the minimum and maximum values (if they exist) of the function $f(x, y) = 4x^2 + y^2$ on the hyperbola xy = 1, as well as all points where they occur.

Solution. Let C be the hyperbola xy = 1. The function f has <u>no maximum</u> on C, since f is not bounded above on C. Indeed, all points $(x, \frac{1}{x})$ belong to C and we have

$$\lim_{x \to +\infty} f(x, \frac{1}{x}) = \lim_{x \to +\infty} 4x^2 + \frac{1}{x^2} = +\infty.$$

Now let us find the minimum of f on C, which does exist. Write g(x, y) = xy. The gradient of g is:

$$\nabla g = (g_x, g_y) = (y, x)$$

which never vanishes on C. Thus, the method of Lagrange multipliers can be used. The gradient of f is:

$$\nabla f = (f_x, f_y) = (8x, 2y).$$

The equation is:

$$\nabla f = \lambda \nabla g$$

$$\Leftrightarrow (8x, 2y) = \lambda(y, x)$$

$$\Leftrightarrow \begin{cases} 8x = \lambda y \\ 2y = \lambda x \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{8x}{y} = \lambda \\ \frac{2y}{x} = \lambda \text{ since } x \text{ and } y \text{ are never } 0 \text{ on } C \end{cases}$$

$$\Rightarrow \frac{8x}{y} = \frac{2y}{x}$$

$$\Leftrightarrow 8x^2 = 2y^2$$

$$\Leftrightarrow y^2 = 4x^2$$

$$\Leftrightarrow y = \pm 2x.$$

Note that the case y = -2x yields no solutions, since x and y always have the same sign on C. More precisely, substituting y = -2x into the equation of C yields:

$$xy = 1$$

$$\Leftrightarrow x(-2x) = 1$$

$$\Leftrightarrow -2x^2 = 1$$

which holds for no $x \in \mathbb{R}$. Thus, we conclude y = 2x and substitute into the equation of C:

$$xy = 1$$

$$\Leftrightarrow x(2x) = 1$$

$$\Leftrightarrow 2x^2 = 1$$

$$\Leftrightarrow x^2 = \frac{1}{2}$$

$$\Leftrightarrow x = \pm \frac{1}{\sqrt{2}}$$

This yields two solutions $\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, -\frac{2}{\sqrt{2}}\right)$. The value of f at both points happens to be the same:

$$f\left(\frac{1}{\sqrt{2}},\frac{2}{\sqrt{2}}\right) = f\left(-\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right) = 4\frac{1}{2} + \frac{4}{2} = 4.$$

Therefore, the minimum of f on C is 4, and it occurs at the points $\left| \left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}} \right) \right|$

