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Here is the problem presented in lecture, whose completion was left as an exercise.

Example 1. Find the minimum and maximum values (if they exist) of the function f(x, y) =
4x2 + y2 on the hyperbola xy = 1, as well as all points where they occur.

Solution. Let C be the hyperbola xy = 1. The function f has no maximum on C, since
f is not bounded above on C. Indeed, all points (x, 1

x
) belong to C and we have

lim
x→+∞

f(x,
1

x
) = lim

x→+∞
4x2 +

1

x2
= +∞.

Now let us find the minimum of f on C, which does exist. Write g(x, y) = xy. The gradient
of g is:

∇g = (gx, gy) = (y, x)

which never vanishes on C. Thus, the method of Lagrange multipliers can be used. The
gradient of f is:

∇f = (fx, fy) = (8x, 2y).
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The equation is:

∇f = λ∇g

⇔ (8x, 2y) = λ(y, x)

⇔

{
8x = λy

2y = λx

⇔

{
8x
y

= λ
2y
x

= λ since x and y are never 0 on C

⇒ 8x

y
=

2y

x

⇔ 8x2 = 2y2

⇔ y2 = 4x2

⇔ y = ±2x.

Note that the case y = −2x yields no solutions, since x and y always have the same sign on
C. More precisely, substituting y = −2x into the equation of C yields:

xy = 1

⇔ x(−2x) = 1

⇔ − 2x2 = 1

which holds for no x ∈ R. Thus, we conclude y = 2x and substitute into the equation of C:

xy = 1

⇔ x(2x) = 1

⇔ 2x2 = 1

⇔ x2 =
1

2

⇔ x = ± 1√
2
.

This yields two solutions
(

1√
2
, 2√

2

)
and

(
− 1√

2
,− 2√

2

)
. The value of f at both points happens

to be the same:

f

(
1√
2
,

2√
2

)
= f

(
− 1√

2
,− 2√

2

)
= 4

1

2
+

4

2
= 4.

Therefore, the minimum of f on C is 4 , and it occurs at the points

(
1√
2
,

2√
2

)
and(

− 1√
2
,− 2√

2

)
.
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