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In these notes, we explain how the rules for limits and continuity of functions of a single
variable also hold for functions of several variables.

1 Statements
Theorem 1.1 (Rules for limits). Let f and g be functions of n variables, and let ¢ be a
function of one variable.
1. (Sum.) If f and g have a limit at @, then:
lim (f(Z) + ¢(7)) = lim f(Z) + lim g(Z).
2. (Product.) If f and g have a limit at @, then:
lim (f(#)9(7)) = (lim (7)) (i g(7))
3. (Quotient.) If f and g have a limit at @, and limgz_z g(Z) # 0, then:

li &) _ mg—a £(7)
i-a g(Z)  limg.zg(7)

4. (Composition.) If limz_.z f(Z) = L and ¢ is continuous at L, then

lim o ((7) = ¢ (lm £(7)) = p(L),
Corollary 1.2 (Rules for continuity). Let f and g be functions of n variables, and let ¢ be
a function of one variable.

1. (Sum.) If f and g are continuous at @, then f + g is continuous at @.
2. (Product.) If f and g are continuous at d, then fg is continuous at @.
3. (Quotient.) If f and g are continuous at @, and g(ad) # 0, then § is continuous at d.

4. (Composition.) If f is continuous at @, and ¢ is continuous at f(a), then the compo-
sition p o f is continuous at d.



2 Examples

To simplify the notation, we will work with functions of two variables.

Exercise 2.1. Using the epsilon-delta definition, show that the projection functions f(z,y) =
x and g(z,y) = y are continuous everywhere.

Proposition 2.2. Polynomials are continuous everywhere.

Proof. Constant functions are continuous everywhere. We know from 2.1 that the functions
f (:v y) = x and g(x,y) = y are continuous everywhere. By the product rule, monomials
cx'y’ for some constant ¢ € R and integers i,j > 0 are also continuous everywhere. A
polynomial p(z,y) is a sum of such monomials, and is therefore continuous everywhere, by
the sum rule. O]

Definition 2.3. A rational function is a quotient of two polynomials.
Example 2.4. The function
Szy —y? +1

is a rational function.

Proposition 2.5. Rational functions are continuous on their domain.

Proof. The maximal domain of a rational function f(z,y) =
denominator is non-zero:

is the region where the

D = {(x,y) € R* | g(x,y) # 0}.

Both functions p and ¢ are polynomials, hence continuous everywhere, by 2.2. By the
quotient rule, the function f = % is continuous wherever ¢ is non-zero, in particular on the
domain of f. O

Example 2.6. For the rational function from Example 2.4, let us compute lim, 41,9 f(, 7).

Note that the denominator 22 + xy — 6 is non-zero at the point (1,2):
201+ (1)(2) —6=2+2—-6=—2
and therefore f is continuous at (1,2). The limit is obtained by evaluating f at the point:

o fla,y) = f(1,2)
_5(1)%(2) - (2° +1
S 2012+ (1)(2) -6
10 -8+1




Remark 2.7. The same argument would not work to compute lim g ) (1,4) f(,y), since the
denominator 2% + zy — 6 is zero at the point (1,4):

2(1)° 4+ (1)(4) —6=2+4—6=0.
We would need to work harder to find this limit or prove that it does not exist.
Example 2.8. Consider the function

e™ cos (%y? — 5y®)

V2r+y+1

flx,y) =

and let us find lim, y)—1,-1) f(2, ).

Note that xy and z3y? — 5y® are polynomials, and thus continuous everywhere. By the
composition rule, e® is continuous everywhere and so is cos(z3y* — 5y?). By the product
rule, the numerator e® cos(z3y? — 5y?) is continuous everywhere.

By the composition rule, the denominator y/2x + y + 1 is continuous wherever the radicand is
non-negative: 2z+y+1 > 0. By the quotient rule, f is continuous wherever the denominator
is (defined and) non-zero, which is precisely where 2z +y + 1 > 0.

In our case, the radicand 2z + y + 1 is positive at the point (1, —1):
2+ (=) +1=2
and therefore f is continuous at (1, —1). The limit is obtained by evaluating f at the point:

(x,y)li’rgv_l) f(x> y) N f(l, _1>
e cos ((1)3(=1)2 — 5(—1)?)
V2(1) + (1) +1

\/§

V2




3 Bonus Feature

The following example illustrates why using rules for limits and continuity is a good idea.

Example 3.1. Using the epsilon-delta definition, let us show that the function f(x) = 2 is

continuous everywhere, i.e., for all z € R.

We want to show that f is continuous at a, for any a € R. Let ¢ > 0. Using the factorization
® —a® = (v — a)(2® + ax + a?), we obtain:

f(x) = fa)] = |2° — |
= |z — a||2? + az + ®|
< |z —a| (|2*] + |az| + |a®|)
= |o — af (J2* + |al[z| +|a]*)
<z —a|((la] + 1)*+ |a|(Ja| + 1) + |a|*) if we take § < 1
< |z —a| ((la] +1)* + (la| + 1)(Ja| + 1) + (la] + 1)?)
= |z —a[3(Ja| +1)*
< d3(la] +1)*
whenever |z — a| < ¢ holds, and we want that expression to be at most e:

§3(Ja] +1)* <e.

By taking § = min{1, W}, we obtain:

[f(z) = fla)| < 3(|al + 1)°

€
< ——3 1)?
< 3]+ 1 el + 1)

=€

whenever |z — a| < § holds. O



