Calculus 2302A - Intermediate Calculus I Fall 2013 §14.2: Rules for limits and continuity

Martin Frankland

November 6, 2013

In these notes, we explain how the rules for limits and continuity of functions of a single variable also hold for functions of several variables.

1 Statements

Theorem 1.1 (Rules for limits). Let f and g be functions of n variables, and let φ be a function of one variable.

1. (Sum.) If f and g have a limit at \vec{a}, then:

$$
\lim _{\vec{x} \rightarrow \vec{a}}(f(\vec{x})+g(\vec{x}))=\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})+\lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x}) .
$$

2. (Product.) If f and g have a limit at \vec{a}, then:

$$
\lim _{\vec{x} \rightarrow \vec{a}}(f(\vec{x}) g(\vec{x}))=\left(\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})\right)\left(\lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x})\right) .
$$

3. (Quotient.) If f and g have a limit at \vec{a}, and $\lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x}) \neq 0$, then:

$$
\lim _{\vec{x} \rightarrow \vec{a}} \frac{f(\vec{x})}{g(\vec{x})}=\frac{\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})}{\lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x})} .
$$

4. (Composition.) If $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=L$ and φ is continuous at L, then

$$
\lim _{\vec{x} \rightarrow \vec{a}} \varphi(f(\vec{x}))=\varphi\left(\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})\right)=\varphi(L)
$$

Corollary 1.2 (Rules for continuity). Let f and g be functions of n variables, and let φ be a function of one variable.

1. (Sum.) If f and g are continuous at \vec{a}, then $f+g$ is continuous at \vec{a}.
2. (Product.) If f and g are continuous at \vec{a}, then $f g$ is continuous at \vec{a}.
3. (Quotient.) If f and g are continuous at \vec{a}, and $g(\vec{a}) \neq 0$, then $\frac{f}{g}$ is continuous at \vec{a}.
4. (Composition.) If f is continuous at \vec{a}, and φ is continuous at $f(\vec{a})$, then the composition $\varphi \circ f$ is continuous at \vec{a}.

2 Examples

To simplify the notation, we will work with functions of two variables.
Exercise 2.1. Using the epsilon-delta definition, show that the projection functions $f(x, y)=$ x and $g(x, y)=y$ are continuous everywhere.

Proposition 2.2. Polynomials are continuous everywhere.
Proof. Constant functions are continuous everywhere. We know from 2.1 that the functions $f(x, y)=x$ and $g(x, y)=y$ are continuous everywhere. By the product rule, monomials $c x^{i} y^{j}$ for some constant $c \in \mathbb{R}$ and integers $i, j \geq 0$ are also continuous everywhere. A polynomial $p(x, y)$ is a sum of such monomials, and is therefore continuous everywhere, by the sum rule.

Definition 2.3. A rational function is a quotient of two polynomials.
Example 2.4. The function

$$
f(x, y)=\frac{5 x^{2} y-y^{3}+1}{2 x^{9}+x y-6}
$$

is a rational function.
Proposition 2.5. Rational functions are continuous on their domain.
Proof. The maximal domain of a rational function $f(x, y)=\frac{p(x, y)}{q(x, y)}$ is the region where the denominator is non-zero:

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid q(x, y) \neq 0\right\} .
$$

Both functions p and q are polynomials, hence continuous everywhere, by 2.2 . By the quotient rule, the function $f=\frac{p}{q}$ is continuous wherever q is non-zero, in particular on the domain of f.

Example 2.6. For the rational function from Example 2.4, let us compute $\lim _{(x, y) \rightarrow(1,2)} f(x, y)$. Note that the denominator $2 x^{9}+x y-6$ is non-zero at the point $(1,2)$:

$$
2(1)^{9}+(1)(2)-6=2+2-6=-2
$$

and therefore f is continuous at $(1,2)$. The limit is obtained by evaluating f at the point:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(1,2)} f(x, y) & =f(1,2) \\
& =\frac{5(1)^{2}(2)-(2)^{3}+1}{2(1)^{9}+(1)(2)-6} \\
& =\frac{10-8+1}{-2} \\
& =-\frac{3}{2} .
\end{aligned}
$$

Remark 2.7. The same argument would not work to compute $\lim _{(x, y) \rightarrow(1,4)} f(x, y)$, since the denominator $2 x^{9}+x y-6$ is zero at the point $(1,4)$:

$$
2(1)^{9}+(1)(4)-6=2+4-6=0 .
$$

We would need to work harder to find this limit or prove that it does not exist.
Example 2.8. Consider the function

$$
f(x, y)=\frac{e^{x y} \cos \left(x^{3} y^{2}-5 y^{3}\right)}{\sqrt{2 x+y+1}}
$$

and let us find $\lim _{(x, y) \rightarrow(1,-1)} f(x, y)$.
Note that $x y$ and $x^{3} y^{2}-5 y^{3}$ are polynomials, and thus continuous everywhere. By the composition rule, $e^{x y}$ is continuous everywhere and so is $\cos \left(x^{3} y^{2}-5 y^{3}\right)$. By the product rule, the numerator $e^{x y} \cos \left(x^{3} y^{2}-5 y^{3}\right)$ is continuous everywhere.
By the composition rule, the denominator $\sqrt{2 x+y+1}$ is continuous wherever the radicand is non-negative: $2 x+y+1 \geq 0$. By the quotient rule, f is continuous wherever the denominator is (defined and) non-zero, which is precisely where $2 x+y+1>0$.

In our case, the radicand $2 x+y+1$ is positive at the point $(1,-1)$:

$$
2(1)+(-1)+1=2
$$

and therefore f is continuous at $(1,-1)$. The limit is obtained by evaluating f at the point:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(1,-1)} f(x, y) & =f(1,-1) \\
& =\frac{e^{(1)(-1)} \cos \left((1)^{3}(-1)^{2}-5(-1)^{3}\right)}{\sqrt{2(1)+(-1)+1}} \\
& =\frac{e^{-1} \cos (1+5)}{\sqrt{2}} \\
& =\frac{e^{-1} \cos (6)}{\sqrt{2}} .
\end{aligned}
$$

3 Bonus Feature

The following example illustrates why using rules for limits and continuity is a good idea.
Example 3.1. Using the epsilon-delta definition, let us show that the function $f(x)=x^{3}$ is continuous everywhere, i.e., for all $x \in \mathbb{R}$.

We want to show that f is continuous at a, for any $a \in \mathbb{R}$. Let $\epsilon>0$. Using the factorization $x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$, we obtain:

$$
\begin{aligned}
|f(x)-f(a)| & =\left|x^{3}-a^{3}\right| \\
& =|x-a|\left|x^{2}+a x+a^{2}\right| \\
& \leq|x-a|\left(\left|x^{2}\right|+|a x|+\left|a^{2}\right|\right) \\
& =|x-a|\left(|x|^{2}+|a||x|+|a|^{2}\right) \\
& \leq|x-a|\left((|a|+1)^{2}+|a|(|a|+1)+|a|^{2}\right) \quad \text { if we take } \delta \leq 1 \\
& \leq|x-a|\left((|a|+1)^{2}+(|a|+1)(|a|+1)+(|a|+1)^{2}\right) \\
& =|x-a| 3(|a|+1)^{2} \\
& <\delta 3(|a|+1)^{2}
\end{aligned}
$$

whenever $|x-a|<\delta$ holds, and we want that expression to be at most ϵ :

$$
\delta 3(|a|+1)^{2} \leq \epsilon
$$

By taking $\delta=\min \left\{1, \frac{\epsilon}{3(|a|+1)^{2}}\right\}$, we obtain:

$$
\begin{aligned}
|f(x)-f(a)| & <\delta 3(|a|+1)^{2} \\
& \leq \frac{\epsilon}{3(|a|+1)^{2}} 3(|a|+1)^{2} \\
& =\epsilon
\end{aligned}
$$

whenever $|x-a|<\delta$ holds.

