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Notation 1. Let us denote by:

• −→r (t) the position of a particle at time t.

• ~v(t) := −→r ′(t) the velocity.

• v(t) := |~v(t)| the speed.

• ~a(t) := −→r ′′(t) the acceleration.

• ~T (t) :=
−→r ′(t)
|−→r ′(t)| the unit tangent vector, whenever −→r ′(t) 6= ~0.

• ~N(t) :=
~T ′(t)

|~T ′(t)|
the principal unit normal vector, whenever ~T ′(t) 6= ~0.

• κ(t) = |~T ′(t)|
|−→r ′(t)| the curvature.

The acceleration vector ~a(t) is always in the “osculating plane”, spanned by ~T (t) and ~N(t).

Notation 2. Let us write the acceleration vector as

~a(t) = aT ~T (t) + aN ~N(t)

where aT denotes the tangential component of ~a(t) and aN denotes the normal component
of ~a(t).

Note that aN ≥ 0 holds for all t, by our choice of the normal vector ~N(t).

Proposition 3. The tangential component of the acceleration satisfies

aT = v′ =
~v · ~a
v

=
−→r ′(t) · −→r ′′(t)
|−→r ′(t)|

.

The normal component of the acceleration satisfies

aN = κv2 =
|~v × ~a|
v

=
|−→r ′(t)×−→r ′′(t)|
|−→r ′(t)|

.
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Proposition 4. The following conditions for a parametrized curve −→r (t) are equivalent.

1. The acceleration is always orthogonal to the velocity, i.e., −→r ′(t) · −→r ′′(t) = 0 holds for all
t.

2. The tangential component aT of the acceleration is identically zero, i.e., aT = 0 holds for
all t.

3. The speed |−→r ′(t)| is constant.

Example 5. Consider a particle moving along a circle of radius R increasingly fast, with
position function

−→r (t) =
(
R cos t2, R sin t2

)
for t ≥ 0. Let us find the tangential component aT and normal component aN of the acceleration.

The velocity is

−→r ′(t) = R
(
−2t sin t2, 2t cos t2

)
= 2Rt

(
− sin t2, cos t2

)
whose magnitude is

|−→r ′(t)| = 2Rt.

The acceleration is

−→r ′′(t) = 2R
(
− sin t2, cos t2

)
+ 2Rt

(
−2t cos t2,−2t sin t2

)
= 2R

(
− sin t2, cos t2

)
− 4Rt2

(
cos t2, sin t2

)
.

Then we have:

−→r ′(t) · −→r ′′(t) = 2Rt
(
− sin t2, cos t2

)
·
(
2R

(
− sin t2, cos t2

)
− 4Rt2

(
cos t2, sin t2

))
= 4R2t

(
− sin t2, cos t2

)
·
(
− sin t2, cos t2

)
− 8R2t3

(
− sin t2, cos t2

)
·
(
cos t2, sin t2

)
= 4R2t(1)− 8R2t3(0)

= 4R2t

and therefore the tangential component of the acceleration is

aT =
−→r ′(t) · −→r ′′(t)
|−→r ′(t)|

=
4R2t

2Rt

= 2R .

We also have (viewing R2 as the xy-plane in R3):

−→r ′(t)×−→r ′′(t) = 2Rt
(
− sin t2, cos t2, 0

)
×
(
2R

(
− sin t2, cos t2, 0

)
− 4Rt2

(
cos t2, sin t2, 0

))
= −8R2t3

(
− sin t2, cos t2, 0

)
×

(
cos t2, sin t2, 0

)
= −8R2t3

(
− sin2 t2~i×~j + cos2 t2~j ×~i

)
= −8R2t3

(
− sin2 t2 − cos2 t2

)
~k

= 8R2t3~k
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and therefore the normal component of the acceleration is

aN =
|−→r ′(t)×−→r ′′(t)|
|−→r ′(t)|

=
8R2t3

2Rt

= 4Rt2 .

Remark 6. We can explicitly verify Proposition 3 in Example 5.

The speed function is v(t) = 2Rt and its derivative is v′(t) = 2R, so that the equality aT = v′

holds indeed.

The curvature of a circle of radius R is the constant function κ(t) = 1
R

. Thus, we have

κv2 =
1

R
(2Rt)2

=
4R2t2

R

= 4Rt2

so that the equality aN = κv2 holds indeed.
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