Calculus 2302A - Intermediate Calculus I
 Fall 2013
 §13.4: Tangential and normal acceleration

Martin Frankland

October 28, 2013

Notation 1. Let us denote by:

- $\vec{r}(t)$ the position of a particle at time t.
- $\vec{v}(t):=\vec{r}^{\prime}(t)$ the velocity.
- $v(t):=|\vec{v}(t)|$ the speed.
- $\vec{a}(t):=\vec{r}^{\prime \prime}(t)$ the acceleration.
- $\vec{T}(t):=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}$ the unit tangent vector, whenever $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$.
- $\vec{N}(t):=\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|}$ the principal unit normal vector, whenever $\vec{T}^{\prime}(t) \neq \overrightarrow{0}$.
- $\kappa(t)=\frac{\left|\overrightarrow{T^{\prime}}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}$ the curvature.

The acceleration vector $\vec{a}(t)$ is always in the "osculating plane", spanned by $\vec{T}(t)$ and $\vec{N}(t)$.
Notation 2. Let us write the acceleration vector as

$$
\vec{a}(t)=a_{T} \vec{T}(t)+a_{N} \vec{N}(t)
$$

where a_{T} denotes the tangential component of $\vec{a}(t)$ and a_{N} denotes the normal component of $\vec{a}(t)$.
Note that $a_{N} \geq 0$ holds for all t, by our choice of the normal vector $\vec{N}(t)$.
Proposition 3. The tangential component of the acceleration satisfies

$$
a_{T}=v^{\prime}=\frac{\vec{v} \cdot \vec{a}}{v}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} .
$$

The normal component of the acceleration satisfies

$$
a_{N}=\kappa v^{2}=\frac{|\vec{v} \times \vec{a}|}{v}=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|} .
$$

Proposition 4. The following conditions for a parametrized curve $\vec{r}(t)$ are equivalent.

1. The acceleration is always orthogonal to the velocity, i.e., $\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)=0$ holds for all t.
2. The tangential component a_{T} of the acceleration is identically zero, i.e., $a_{T}=0$ holds for all t.
3. The speed $\left|\vec{r}^{\prime}(t)\right|$ is constant.

Example 5. Consider a particle moving along a circle of radius R increasingly fast, with position function

$$
\vec{r}(t)=\left(R \cos t^{2}, R \sin t^{2}\right)
$$

for $t \geq 0$. Let us find the tangential component a_{T} and normal component a_{N} of the acceleration. The velocity is

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =R\left(-2 t \sin t^{2}, 2 t \cos t^{2}\right) \\
& =2 R t\left(-\sin t^{2}, \cos t^{2}\right)
\end{aligned}
$$

whose magnitude is

$$
\left|\vec{r}^{\prime}(t)\right|=2 R t .
$$

The acceleration is

$$
\begin{aligned}
\vec{r}^{\prime \prime}(t) & =2 R\left(-\sin t^{2}, \cos t^{2}\right)+2 R t\left(-2 t \cos t^{2},-2 t \sin t^{2}\right) \\
& =2 R\left(-\sin t^{2}, \cos t^{2}\right)-4 R t^{2}\left(\cos t^{2}, \sin t^{2}\right)
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t) & =2 R t\left(-\sin t^{2}, \cos t^{2}\right) \cdot\left(2 R\left(-\sin t^{2}, \cos t^{2}\right)-4 R t^{2}\left(\cos t^{2}, \sin t^{2}\right)\right) \\
& =4 R^{2} t\left(-\sin t^{2}, \cos t^{2}\right) \cdot\left(-\sin t^{2}, \cos t^{2}\right)-8 R^{2} t^{3}\left(-\sin t^{2}, \cos t^{2}\right) \cdot\left(\cos t^{2}, \sin t^{2}\right) \\
& =4 R^{2} t(1)-8 R^{2} t^{3}(0) \\
& =4 R^{2} t
\end{aligned}
$$

and therefore the tangential component of the acceleration is

$$
\begin{aligned}
a_{T} & =\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} \\
& =\frac{4 R^{2} t}{2 R t} \\
& =2 R .
\end{aligned}
$$

We also have (viewing \mathbb{R}^{2} as the $x y$-plane in \mathbb{R}^{3}):

$$
\begin{aligned}
\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t) & =2 R t\left(-\sin t^{2}, \cos t^{2}, 0\right) \times\left(2 R\left(-\sin t^{2}, \cos t^{2}, 0\right)-4 R t^{2}\left(\cos t^{2}, \sin t^{2}, 0\right)\right) \\
& =-8 R^{2} t^{3}\left(-\sin t^{2}, \cos t^{2}, 0\right) \times\left(\cos t^{2}, \sin t^{2}, 0\right) \\
& =-8 R^{2} t^{3}\left(-\sin ^{2} t^{2} \vec{i} \times \vec{j}+\cos ^{2} t^{2} \vec{j} \times \vec{i}\right) \\
& =-8 R^{2} t^{3}\left(-\sin ^{2} t^{2}-\cos ^{2} t^{2}\right) \vec{k} \\
& =8 R^{2} t^{3} \vec{k}
\end{aligned}
$$

and therefore the normal component of the acceleration is

$$
\begin{aligned}
a_{N} & =\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|} \\
& =\frac{8 R^{2} t^{3}}{2 R t} \\
& =4 R t^{2} .
\end{aligned}
$$

Remark 6. We can explicitly verify Proposition 3 in Example 5.
The speed function is $v(t)=2 R t$ and its derivative is $v^{\prime}(t)=2 R$, so that the equality $a_{T}=v^{\prime}$ holds indeed.
The curvature of a circle of radius R is the constant function $\kappa(t)=\frac{1}{R}$. Thus, we have

$$
\begin{aligned}
\kappa v^{2} & =\frac{1}{R}(2 R t)^{2} \\
& =\frac{4 R^{2} t^{2}}{R} \\
& =4 R t^{2}
\end{aligned}
$$

so that the equality $a_{N}=\kappa v^{2}$ holds indeed.

