Calculus 2302A - Intermediate Calculus I Fall 2013 §13.4: Tangential and normal acceleration

Martin Frankland

October 28, 2013

Notation 1. Let us denote by:

- $\overrightarrow{r}(t)$ the position of a particle at time t.
- $\vec{v}(t) := \vec{r}'(t)$ the velocity.
- $v(t) := |\vec{v}(t)|$ the speed.
- $\vec{a}(t) := \overrightarrow{r}''(t)$ the acceleration.
- $\vec{T}(t) := \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$ the unit tangent vector, whenever $\vec{r}'(t) \neq \vec{0}$.
- $\vec{N}(t) := \frac{\vec{T}'(t)}{|\vec{T}'(t)|}$ the principal unit normal vector, whenever $\vec{T}'(t) \neq \vec{0}$.
- $\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|}$ the curvature.

The acceleration vector $\vec{a}(t)$ is always in the "osculating plane", spanned by $\vec{T}(t)$ and $\vec{N}(t)$.

Notation 2. Let us write the acceleration vector as

$$\vec{a}(t) = a_T \vec{T}(t) + a_N \vec{N}(t)$$

where a_T denotes the **tangential component** of $\vec{a}(t)$ and a_N denotes the **normal component** of $\vec{a}(t)$.

Note that $a_N \ge 0$ holds for all t, by our choice of the normal vector $\vec{N}(t)$.

Proposition 3. The tangential component of the acceleration satisfies

$$a_T = v' = \frac{\vec{v} \cdot \vec{a}}{v} = \frac{\overrightarrow{r'}(t) \cdot \overrightarrow{r''}(t)}{|\overrightarrow{r'}(t)|}$$

The normal component of the acceleration satisfies

$$a_N = \kappa v^2 = \frac{|\vec{v} \times \vec{a}|}{v} = \frac{|\vec{r'}(t) \times \vec{r''}(t)|}{|\vec{r'}(t)|}.$$

Proposition 4. The following conditions for a parametrized curve $\overrightarrow{r}(t)$ are equivalent.

- 1. The acceleration is always orthogonal to the velocity, i.e., $\overrightarrow{r'}(t) \cdot \overrightarrow{r''}(t) = 0$ holds for all t.
- 2. The tangential component a_T of the acceleration is identically zero, i.e., $a_T = 0$ holds for all t.
- 3. The speed $|\overrightarrow{r}'(t)|$ is constant.

Example 5. Consider a particle moving along a circle of radius R increasingly fast, with position function

$$\overrightarrow{r}(t) = \left(R\cos t^2, R\sin t^2\right)$$

for $t \ge 0$. Let us find the tangential component a_T and normal component a_N of the acceleration. The velocity is

$$\overrightarrow{r}'(t) = R\left(-2t\sin t^2, 2t\cos t^2\right)$$
$$= 2Rt\left(-\sin t^2, \cos t^2\right)$$

whose magnitude is

$$|\overrightarrow{r}'(t)| = 2Rt$$

The acceleration is

$$\vec{r'}''(t) = 2R \left(-\sin t^2, \cos t^2 \right) + 2Rt \left(-2t \cos t^2, -2t \sin t^2 \right) = 2R \left(-\sin t^2, \cos t^2 \right) - 4Rt^2 \left(\cos t^2, \sin t^2 \right).$$

Then we have:

$$\overrightarrow{r'}(t) \cdot \overrightarrow{r''}(t) = 2Rt \left(-\sin t^2, \cos t^2\right) \cdot \left(2R \left(-\sin t^2, \cos t^2\right) - 4Rt^2 \left(\cos t^2, \sin t^2\right)\right)$$
$$= 4R^2t \left(-\sin t^2, \cos t^2\right) \cdot \left(-\sin t^2, \cos t^2\right) - 8R^2t^3 \left(-\sin t^2, \cos t^2\right) \cdot \left(\cos t^2, \sin t^2\right)$$
$$= 4R^2t(1) - 8R^2t^3(0)$$
$$= 4R^2t$$

and therefore the tangential component of the acceleration is

$$a_T = \frac{\overrightarrow{r'}(t) \cdot \overrightarrow{r''}(t)}{|\overrightarrow{r'}(t)|}$$
$$= \frac{4R^2t}{2Rt}$$
$$= \boxed{2R}.$$

We also have (viewing \mathbb{R}^2 as the *xy*-plane in \mathbb{R}^3):

$$\vec{r}'(t) \times \vec{r}''(t) = 2Rt \left(-\sin t^2, \cos t^2, 0 \right) \times \left(2R \left(-\sin t^2, \cos t^2, 0 \right) - 4Rt^2 \left(\cos t^2, \sin t^2, 0 \right) \right)$$
$$= -8R^2 t^3 \left(-\sin t^2, \cos t^2, 0 \right) \times \left(\cos t^2, \sin t^2, 0 \right)$$
$$= -8R^2 t^3 \left(-\sin^2 t^2 \vec{i} \times \vec{j} + \cos^2 t^2 \vec{j} \times \vec{i} \right)$$
$$= -8R^2 t^3 \left(-\sin^2 t^2 - \cos^2 t^2 \right) \vec{k}$$
$$= 8R^2 t^3 \vec{k}$$

and therefore the normal component of the acceleration is

$$a_N = \frac{|\overrightarrow{r'}(t) \times \overrightarrow{r''}(t)|}{|\overrightarrow{r'}(t)|}$$
$$= \frac{8R^2t^3}{2Rt}$$
$$= \overline{4Rt^2}.$$

Remark 6. We can explicitly verify Proposition 3 in Example 5.

The speed function is v(t) = 2Rt and its derivative is v'(t) = 2R, so that the equality $a_T = v'$ holds indeed.

The curvature of a circle of radius R is the constant function $\kappa(t) = \frac{1}{R}$. Thus, we have

$$\kappa v^2 = \frac{1}{R} (2Rt)^2$$
$$= \frac{4R^2 t^2}{R}$$
$$= 4Rt^2$$

so that the equality $a_N = \kappa v^2$ holds indeed.