6.132 - Algebraische Topologie WS 2016/17 Übungsblatt der Woche 2

Martin Frankland

3.11.2016

Aufgabe 1. Sei \mathcal{S} ein Mengensysem über einem topologischen Raum X. Zeigen Sie, dass die von \mathcal{S} erzeugte Topologie $\mathcal{T}_{\mathcal{S}}$ tatsächlich eine Topologie ist.

Zur Erinnerung besteht $\mathcal{T}_{\mathcal{S}}$ aus beliebigen Vereinigungen von endlichen Schnitten von Teilmengen aus \mathcal{S} .

Aufgabe 2. Seien (X, d_X) und (Y, d_Y) metrische Räume. Die Formel

$$d((x,y),(x',y')) = d_X(x,x') + d_Y(y,y')$$

definiert eine Metrik auf $X \times Y$. Zeigen Sie, dass die metrische Topologie auf $X \times Y$ gleich ist der Produkttopologie der jeweiligen metrischen Topologien auf X und Y.

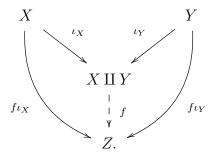
Aufgabe 3. Seien X und Y kompakte Räume. Zeigen Sie, dass der Produktraum $X \times Y$ kompakt ist.

Aufgabe 4. Seien $A \subseteq X$ und $B \subseteq Y$ Teilmengen von Räumen. Einerseits erben A und B die jeweiligen Teilraumtopologien, die dann die Produkttopologie $\mathcal{T}_{A \times B, \text{Prod}}$ auf $A \times B$ induzieren. Andererseits trägt $X \times Y$ die Produkttopologie, die dann die Teilraumtopologie $\mathcal{T}_{A \times B, \text{Teil}}$ auf die Teilmenge $A \times B \subseteq X \times Y$ induziert. Zeigen Sie, dass diese zwei Topologien auf $A \times B$ übereinstimmen, das heißt, $\mathcal{T}_{A \times B, \text{Prod}} = \mathcal{T}_{A \times B, \text{Teil}}$.

Aufgabe 5. Zeigen Sie, dass der *n*-Würfel und die *n*-Kugel homöomorph sind: $I^n \cong D^n$.

Aufgabe 6. Seien X und Y topologische Räume. Zeigen Sie, dass die Summentopologie auf der disjunkten Vereinigung $X \coprod Y$ die folgende (universelle) Eigenschaft erfüllt:

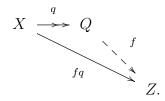
- (a) Die Inklusionen der Summanden $\iota_X \colon X \hookrightarrow X \coprod Y$ und $\iota_Y \colon Y \hookrightarrow X \coprod Y$ sind stetig.
- (b) Eine Abbildung $f: X \coprod Y \to Z$ ist genau dann stetig, wenn ihre Einschränkung auf jedem Summanden $f|_X = f\iota_X \colon X \to Z$ und $f|_Y = f\iota_Y \colon Y \to Z$ stetig ist, wie in diesem Diagramm dargestellt:



Aufgabe 7. Seien X und Y kompakte Räume. Zeigen Sie, dass der Summenraum $X \coprod Y$ kompakt ist.

Aufgabe 8. Sei X ein topologischer Raum und $q: X \rightarrow Q$ eine surjektive Abbildung. Zeigen Sie, dass die Quotiententopologie auf Q die folgende (universelle) Eigenschaft erfüllt:

- (a) Die Quotientenabbildung $q: X \rightarrow Q$ ist stetig.
- (b) Eine Abbildung $f: Q \to Z$ ist genau dann stetig, wenn die Komposition $fq: X \to Z$ stetig ist, wie in diesem Diagramm dargestellt:



Aufgabe 9. Finden Sie einen Quotientenraum von \mathbb{R} , der nicht hausdorffsch ist.

Aufgabe 10. Man betrachte den Rand der n-Kugel $\partial D^n \cong S^{n-1}$. Zeigen Sie, dass der Quotientenraum $D^n/\partial D^n$ homöomorph zu einer n-Sphäre ist: $D^n/\partial D^n \cong S^n$. Hier hat man den Rand ∂D^n auf einen Punkt kollabiert.

Aufgabe 11. Zeigen Sie, dass die Räume

$$D^n \coprod D^n / \sim \cong S^n$$

homöomorph sind, wo die Äquivalenzrelation \sim wie folgt definiert wird. Für $x \in D^n$ bezeichne $x_{(1)} \in D^n \coprod D^n$ den entsprechenden Punkt im ersten Summanden, das heißt, $x_{(1)} = \iota_1(x)$, und ebenso $x_{(2)} = \iota_2(x) \in D^n \coprod D^n$. Dann identifiziert man für jedes $x \in \partial D^n$ die entsprechenden Punkte $x_{(1)} \sim x_{(2)}$.

Aufgabe 12. Eine Teilmenge $A \subseteq \mathbb{R}$ heißt ein **Intervall**, wenn für alle $a,b \in A$ mit a < b die Inklusion $[a,b] \subseteq A$ gilt. Zeigen Sie, dass ein Teilraum $A \subseteq \mathbb{R}$ genau dann zusammenhängend ist, wenn A ein Intervall ist.

Aufgabe 13. Sei $f: X \to Y$ eine stetige Abbildung zwischen Räumen, wo X zusammenhängend ist. Zeigen Sie, dass das Bild $f(X) \subseteq Y$ zusammenhängend ist.