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a b s t r a c t

The pKa values of 17 amines, alkanolamines, and piperazines have been computed using quantum chem-
istry techniques and the IEFPCM continuum solvation model. Several techniques were tested, including
B3LYP and MP2 levels of electronic structure theory, the addition of an explicit water molecule inside
the continuum cavity, and special scaling of cavity radii for ions. Entropy corrections for multiple con-
formers, often neglected in pKa studies, are discussed and utilized. The use of explicit water inside the
cavities reduced the pKa rms error by 34%. As noted several years ago, ringed compounds do seem to
be pathological cases for continuum solvation models, and the use of a second fitting parameter for these
compounds dramatically lowered the overall rms error a further 42–45%, to below 0.9. Our best proce-
dure reduces the errors found in a previous technique for similar compounds by 62%.

� 2009 Elsevier B.V. All rights reserved.
1. Purpose

Aqueous solutions of amines (particularly alkanolamines) have
been used commercially in post-combustion CO2 capture technol-
ogies for many years [1]. The most suitable amines would be ones
with high capture capacity, fast reaction rate, and low heat of
regeneration. A fundamental property of an alkanolamine is its ba-
sicity, quantified by the aqueous pKa value of its conjugate acid.
The basicity is important because it affects the kinetics and possi-
bly the mechanism of the capture process [2–8].

An a priori means of predicting the aqueous pKa of new alkanol-
amines would be useful. One possibility is direct calculation of
such values using a widely popular quantum chemistry program
(Gaussian [9]) with a continuum solvation model, in which the sol-
vent is approximated as a dielectric continuum. The only such
study of alkanolamines was reported by da Silva and Svendsen
[10], but they deemed their results too inaccurate. Our main goal
was to improve upon their technique, to calculate aqueous pKa

values to <1 pKa accuracy for a similar set of industrially relevant
CO2-capture amines (including alkanolamines and substituted
piperazines). The amines studied are listed in Table 1.

The second goal was to test, specifically for computation of
amine pKa values, some simple continuum modifications that have
sporadically appeared in the literature: the reduction of cavities
around cations (an electrostriction technique), and the use of expli-
ll rights reserved.
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cit solvent molecules with solute molecules inside the cavities (a
semicontinuum technique) (see Section 3).

The third goal was to recast the equations of pKa calculation via
continuum solvation methods more completely than has been
done in the past, because pKa calculation requires such accuracy
that a number of small terms require attention, as we will
demonstrate.

The fourth goal was to formalize an approximation for the
entropy of multiple conformers, an effect usually neglected.
Proper pKa calculation requires an estimate of the entropy
change of proton transfer between the base and water. East
and Radom [14] discussed many aspects of molecular entropy
computation in 1997, but for molecules with single conformers.
Here we state the extension of the theory to molecules with sev-
eral conformers, first summarized by DeTar [15], and an approx-
imation employed by Rauk [16] and Guthrie [17] which we
develop into a simple entropy correction formula for the effect
of multiple conformers.

The fifth goal was to briefly summarize the historical problems
with ab initio pKa calculations in the past, as a guide to future
workers in the field.

2. Theory

2.1. pKa calculation

The pKa of a base B is a scaled version of DrG(aq), the free energy
change of the acid-dissociation reaction:

http://dx.doi.org/10.1016/j.theochem.2009.09.022
mailto:Allan.East@uregina.ca
http://www.sciencedirect.com/science/journal/01661280
http://www.elsevier.com/locate/theochem


Table 1
Experimental pKa values of the bases investigated in this study.

Base Name or abbreviation pKa (25 �C) Ref.

NH3 Ammonia 9.25 [11]
NH2(CH3) Methylamine 10.66 [11]
NH(CH3)2 Dimethylamine 10.73 [11]
N(CH3)3 Trimethylamine 9.80 [11]
NH2CH2CH2OH MEA (monoethanolamine) 9.50 [11]
NH2CH2CH(CH3)OH MIPA (monoisopropanolamine) 9.47 [12]
NH2CH2CH2CH2OH MPA (monopropanolamine) 9.96 [12]
NH2C(CH3)2CH2OH AMP (aminomethylpropanol) 9.70 [12]
NH2CH2CH2NHCH2CH2OH AEEA (aminoethylethanolamine) 9.82a [12]
NH(CH2CH2OH)2 DEA (diethanolamine) 8.97 [12]
O(CH2CH2)2NH Morpholine 8.50 [11]
HN(CH2CH2)2NH Piperazine 9.73a [11]
C4H9N2(CH3) 2-Methylpiperazine 9.57a [13]
C4H9N2(C2H5) 1-Ethylpiperazine 9.20a [13]
C4H9N2(CH3) 1-Methylpiperazine 9.14a [13]
C4H9N2(C2H4OH) 1-(2-Hydroxyethyl)piperazine 9.09a [13]
C4H8N2(CH3)2 1,4-Dimethylpiperazine 8.38a [13]

a pKa(1).
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BHþðaqÞ ! BðaqÞ þHþðaqÞ ð1Þ

The relation is

pKa ¼ DrGðaqÞ=RT ln 10 ð2Þ

where R is the gas constant and T is temperature. Basicity increases
with DrG(aq) and hence with pKa. We write

DrGðaqÞ ¼ DhGðaqÞðBHþ ! BÞ þ GðaqÞðHþÞ ð3Þ

because the half-reaction energy DhG(aq) (BH+ ? B) is the quantity
of interest in this work, and is hereafter denoted simply DhG(aq). It
is computed as the difference of two free energies of compounds
in solution:

DhGðaqÞ ¼ GðaqÞðBÞ � GðaqÞðBHþÞ ð4Þ

The second term in Eq. (3), G(aq)(H+), is independent of base. It is
also notoriously difficult to calculate ab initio, probably because
aqueous H+ exists in several forms, like H3O+, H5O2

+, and H9O4
+

[18]. The best value for G(aq)(H+) is�270.3 kcal mol�1, which comes
from summing G(g)(H+) = �6.3 kcal mol�1 (1 atm pressure) [19]
with DsolvG(H+) = �264.0 kcal mol�1 (1 atm gas ? 1 mol L�1 aque-
ous); the latter number was cleverly derived by Tissandier, Coe,
and co-workers [20] from experimental data.

2.2. Continuum solvation theory

The free energy of a compound in solution can be written as:

GðaqÞ ¼ Eelec þ DGel þ DGnon-el þ Enuc ð5Þ

where Eelec is the electronic energy of the solute in solution, DGel is
electrostatic interaction between the solute and solvent, DGnon-el is
the sum of non-electrostatic contributions (cavitation, dispersion
and repulsion) to solvation energy, and Enuc is the nuclear-motion
energy of the solute in solution. Further expressions for these four
terms are:

Eelec ¼ Wðf Þh jĤ Wðf Þj i ð6Þ

DGel ¼ Wðf Þh j1
2

V̂ Wðf Þj i ð7Þ

DGnon-el ¼ DGcav þ DGdisp þ DGrep ð8Þ
Enuc ¼ ZPVEþ Ethermal þ PV � TS ð9Þ

where Wðf Þ is the wavefunction for the solute after solvent-polari-
zation, ZPVE is the zero-point vibrational energy, Ethermal is the tem-
perature correction E(0 ? 298 K), PV is the enthalpy term, and TS is
the entropy term. Eq. (5) is based on Tomasi’s theory [21], which is
implemented as SCRF = PCM in the Gaussian 03 software program
[9]. Under the Born–Oppenheimer approximation, these terms in
Eq. (5) should be computed after the geometry has also been
solvent-polarized; this is done in Gaussian 03 by minimizing Eelec +
DGel, i.e., Wðf Þh jĤ þ 1

2 V̂ Wðf Þj i, with respect to nuclear coordinates.
It is common (although not necessary) to talk of a solvation en-

ergy DsolvG for dissolving a solute into solution from the gas phase:

GðaqÞ ¼ GðgÞ þ DsolvG ð10Þ

The projection of Eq. (10) onto Eq. (5) requires further partitioning
of Eelec and Enuc in Eq. (5). For this we propose a 7-term master
equation which is more specific about the effects of geometry polar-
ization than others that appear in the literature:

GðaqÞ ¼ Eelecð0Þ@g þ DGgp þ DGep þ DGel þ DGnon-el þ Enucð0Þg@g

þ DEnucðg! aqÞ ð11Þ

In Eq. (11), the first 3 terms are from partitioning Eelec in Eq. (5): Ee-

lec(0)@g is the electronic energy of the unpolarized solute electron-
density computed at gas-phase geometry, DGgp is the shift of Ee-

lec(0)@g to Eelec(0) due to polarization of solute geometry by solvent,
and DGep is the shift of Eelec(0) to Eelec(f) due to polarization of sol-
ute electron-density by solvent:

Eelecð0Þ@g ¼ Wð0Þh jĤ Wð0Þj i ð12Þ

DGgp ¼ Eelecð0Þ � Eelecð0Þ@g ð13Þ

DGep ¼ Eelecðf Þ � Eelecð0Þ ð14Þ

The last 2 terms in Eq. (11) are from partitioning Enuc in Eq. (5): En-

uc(0)g@g is the nuclear-motion energy of the solute in gas-phase, and
DEnuc(g ? aq) is the correction needed for this term upon solvation.
With these partitionings, Eq. (11) satisfies Eq. (10) because the 1st
and 6th terms constitute G(g), while the remaining five terms consti-
tute DsolvG. There is a known effect (+1.9 kcal mol�1 at 298 K) of the
change in standard state conventions from 1 atm to 1 mol L�1 upon
solvation [19]; this would be part of the 7th term.

To denote the half-reaction energy of deprotonation of base (Eq.
(4)) an additional Dh can be added in front of all terms in Eqs. (5)–
(14). Thus, Eq. (10) becomes:

DhGðaqÞ ¼ DhGðgÞ þ DhDsolvG ð15Þ

and master equation (11) becomes:



F. Khalili et al. / Journal of Molecular Structure: THEOCHEM 916 (2009) 1–9 3
DhGðaqÞ ¼ DhEelecð0Þ@g þ DhDGgp þ DhDGep þ DhDGel

þ DhDGnon-el þ DhEnucð0Þg@g ð16Þ

where we have assumed DhDEnuc(g ? aq) = 0, i.e. DEnuc(g ? aq) is
the same for all solutes. In this work, the importance of the various
terms in Eqs. (11) and (16) is investigated, before computed pKa val-
ues are presented and examined.

2.3. Entropy contributions

Entropy calculation is needed for Enuc in Eq. (9), Enuc(0)g@g in Eq.
(11), and DhEnuc(0)g@g in Eq. (16). Let Si be the entropy of the ith
conformer of a molecule. The entropy of a system with d distin-
guishable conformers is:

S ¼
Xd

i¼1

xiSi � R
Xd

i¼1

xi ln xi ð17Þ

where the first sum is the weighted average of the entropies of con-
formers, and the second sum is the entropy of mixing of conformers.
Here xi is the Boltzmann probability of conformer i;

xi ¼
xie�ðHi�H1Þ=kTPd
j¼1xje�ðHj�H1Þ=kT

ð18Þ

where H1 is the energy (enthalpy) of the lowest-energy conformer
and xi is the degeneracy of indistinguishable versions of the ith dis-
tinguishable conformer. The sum of these xi is the total number of
configurations, n. For instance, for n-pentane, d = 6 (tt, g+g+, g�g�,
tg+, tg�, g+g�), but n can be chosen to be either 9 or 81 (see below).

Computation of Hi for all conformers is problematic. First, the
number of conformers may be large. Secondly, for the alkanolam-
ines of the current project, single-molecule Hi calculations (even
with continuum methods) will overweight the importance of
closed (non-extended) conformers, where it can provide an intra-
molecular hydrogen-bond, and underweight the importance of
open (extended) conformers, where it cannot describe intermolec-
ular H-bonds with solvent water molecules. Although some recent
molecular-mechanics simulations of aqueous ethanolamine reveal
a preponderance of intramolecular hydrogen-bonded conformers
[22,23], it is not clear if this result will be maintained when more
accurate forces are used.

Therefore, we make the approximation of equal weights, for-
malized as:

xi �
xi

n
ð19Þ

Si � Sint � R lnri ð20Þ

which assumes each conformer has equal probability 1/n, and that
each conformer contributes an essentially constant intrinsic entro-
py, Sint. The intrinsic entropy is the entropy devoid of any rotational
indistinguishability correction due to the rotational symmetry
number, ri, which can be conformer-dependent (eg. 2 or 1 for n-
Table 2
Conformer groups and subgroups.a

Group Description

G ¼ H ^ F Molecular conformer group

H ¼ I ^D Torsion subgroup

F ¼ J ^ V Frame subgroup

I Indistinguishable-torsion subgroup

D Distinguishable-torsion subgroup

J Rotation subgroup of F

V {E, V*}

a Four of these groups and the factorization technique are described in Ref. [26].
pentane conformers) [15]. Both Rauk [16] and Guthrie [17], and
probably Stull et al. [24], have used this approximation. With this
approximation, Eq. (17) becomes

S � Sint � R
Xd

i¼1

xi

n
ln

rixi

n
ð21Þ

What has not been recognized to date is that, for many molecules,

rixi ¼ X ð22Þ

where X is an integer constant. Using this result, Eq. (21) simplifies
to Eq. (23):

S � Sint � R ln
X
n

ð23Þ

Since Eq. (22) leads to a great simplification, it is worthwhile to
devote some explanation to it. Reference here will be made to
molecular symmetry group (MSG) theory [25]. Let G be the group
containing all nuclear-permutation possibilities that are feasible,
such as those arising from rotation and torsion (internal rotation).
Woodman [26] proposed that, for molecules that can be described
as internally rotating tops on a rigid frame, G can be factorized into
a semidirect product of a torsion subgroup H and a frame subgroup
F . Although his torsion subgroup contained only indistinguishable
torsions (e.g. methyl rotations), we will expand this group to in-
clude distinguishable torsions; this makes G not a symmetry group
but a conformer group to represent all feasible conformers of a mol-
ecule. Hence in Table 2 we divide the total torsional subgroup H

into 2 additional subgroups: distinguishable ones (group D) and
indistinguishable ones (group I).

We have used the ‘‘small-n” convention: n = order of D (=9 for
pentane), requiring X = order of J (=2 for pentane). Under the
‘‘large-n” convention, n = order of I ^ D (=81 for pentane) and
X = order of I ^ J (=18 for pentane). The choice of convention does
not affect the entropy-relevant Eq. (23) ratio X/n (=2/9 for pen-
tane). Simply put, the ‘‘small-n” approach ignores the results of tor-
sions that increase the degeneracy of all conformers equally: this
means we ignore methyl rotations (which triple the values of xi

and n), and the chair-to-chair conversions of piperazine and mor-
pholine rings (which double the values of xi and n). One advantage
with the ‘‘small-n” convention is that X becomes equal to the max-
imum rotational symmetry number rmax = max{ri}, for all the mol-
ecules studied here (and perhaps generally).

Eq. (22) arises as follows. Suppose a molecule has m plausible
interconverting potential-minima geometrical structures that span
a nonrigid-molecule symmetry subgroup E of order q. Then a the-
orem states that any symmetry-related subgroupings of these
structures (such as a set of xi indistinguishable permutable con-
formers, represented by distinguishable conformer i) must contrib-
ute to a subgroup of E, with an order pi that is a subfactor of q [27].
Let E be J , the rotation subgroup of the frame, so that q = X (=2
for pentane). Any rigid conformer i will have a rotation subgroup
that will necessarily be a subgroup of J (either {E} or {E,C2} for
Factorized product (pentane) Order of group (pentane)

½½Ca
3 ^ Cb

3� � ½C
d
3 ^ Cc

3�� ^ ½C
F
2v � 324

½Ca
3 ^ Cb

3� � ½C
d
3 ^ Cc

3� 81

½CF
2v � 4

½Ca
3 � Cd

3� 9

½Cb
3 � Cc

3� 9 (=n)

½CF
2� 2 (=X)

V 2



Table 3
Statistical entropy parameters and half-reaction free-energy corrections employed.

Base rmax(B) n(B) rmax(BH+) n(BH+)
RT ln

rmaxðBÞnðBHþÞ
rmaxðBHþÞnðBÞ

� �

NH3 3 1 12 1 RT ln(1/4) = �0.82 kcal mol�1

NH2(CH3) 1 1 3 1 RT ln(1/3) = �0.65
NH(CH3)2 1 1 2 1 RT ln(1/2) = �0.41
N(CH3)3 3 1 3 1 0
MEA 1 33 1 32 RT ln(1/3) = �0.65
MIPA 1 33 1 32 RT ln(1/3) = �0.65
MPA 1 34 1 33 RT ln(1/3) = �0.65
AMP 1 33 1 32 RT ln(1/3) = �0.65
AEEA 1 36 1 35 RT ln(1/3) = �0.65
DEA 1 36 2 36 RT ln(1/2) = �0.41
Morpholine 1 2 1 1 RT ln(1/2) = �0.41
Piperazine 2 22 1 2 0
2-Methylpiperazine 1 24 1 23 + 23 0
1-Ethylpiperazine 1 3122 1 3121 + 3122 RT ln(3/2) = +0.24
1-Methylpiperazine 1 22 1 2 + 22 RT ln(3/2) = +0.24
1-(2-Hydroxyethyl)piperazine 1 3322 1 3321 + 3322 RT ln(3/2) = +0.24
1,4-Dimethylpiperazine 2 22 1 22 RT ln(2) = +0.41
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pentane). The order of this rigid-conformer rotation subgroup is ri,
the rotational symmetry number for i. Hence, by the theorem, X/
ri = an integer.

This integer can be used as xi, the degeneracy of conformer i in
internal-rotation space (and therefore the weight in the Boltzmann
formula Eq. (18)). Suppose there is a reference structure i = 1 such
that r1 = X. If a particular torsion generates structure i = 2 with
half this rotational symmetry (r2 = r1/2), then by symmetry there
must be an opposing torsion that will make a degenerate copy of
this structure (hence x2 = 2�x1), and hence these degeneracies
xi are in direct proportion to the integers X/ri.

Eq. (23) allows one to compute the intrinsic entropy of only one
conformer (in C1-symmetry, to avoid automatic application of ri by
programs like Gaussian 03), and make two ‘‘statistical entropy”
corrections: an increase þR ln n for conformer uncertainty, and a
decrease �R ln X for internal- and overall-rotation indistinguish-
ability. Furthermore, the rotational symmetry numbers ri (inside
X) properly take into effect the possibility of protonating two iden-
tical base sites of a molecule (like piperazine), obviating the need
for an ad hoc correction for this.

Strictly speaking, for Eq. (23), n should be the number of
low-energy (populated) conformers, for the equal-weights approx-
imation (Eq. (19)) to be valid. Indeed, we neglect the twist-boat
conformers of morpholines and piperazines for this reason. How-
ever, for the computation of DS(BH+ ? B) for pKa determinations,
it is the ratio n(BH+)/n(B) that is needed, and this ratio will be fairly
well estimated regardless of energy range allowed.

Table 3 shows the values used for rmax (i.e., X) and the choices
made for n. In the small-n convention, n was built from factors of
3 for internal rotations about C–C, C–N, and C–O bonds (except
indistinguishable –CH3 or –NH3 rotations), and factors of 2 for (i)
axial-vs-equatorial positions and (ii) the enantiomers of neutral
and protonated 2-methylpiperazine. Furthermore, for four of the
last five n(BH+) entries in Table 3, we have summed conformer
counts for two distinguishable protonation-site possibilities, since
our conformer checks revealed that both nitrogen sites yield similar
protonation energies. Table 3 also lists the total correction applied
to DG(aq) half-reactions; the largest correction, for NH4

+ ? NH3, is
�0.8 kcal mol�1, or a pKa shift of �0.6. For Sint in Eq. (23), the
rigid-rotor/harmonic oscillator approximation was used.

3. Previous pKa studies

There is, in fact, a long history of pKa computation using contin-
uum solvation techniques. They began to look promising in 1992,
when Tomasi and co-workers [28] used MP4/6-31G(d) and an early
version of their continuum solvation model PCM to reproduce the
peculiar DrG(aq) basicity ordering of the methylated amines, de-
spite a relatively systematic absolute error of +2 to +3 kcal mol�1.
Unfortunately, simple continuum solvation models are poor
approximations for systems in which the solute molecules interact
strongly with the solvent molecules around them, with the worst
cases being aqueous solvation of hydrogen-bonding solutes and
solute ions. In the late 1990s, research teams at the University of
Minnesota (Cramer/Truhlar) [29] and Columbia University (Fries-
ner/Honig) [30] were already aware of one such difficulty: nitro-
gen-containing solutes in water. Ensuing research has shown
that this breakdown of the approximation results in a host of sys-
tematic errors, many of which depend on class of solute com-
pound. In continuum-based pKa calculations, the systematic
errors appear either as (i) constant-shift errors or (ii) errors propor-
tional to pKa itself. A variety of strategies have been applied in the
past to deal with these problems, as described below.

Constant-shift errors can be due to erroneous choices for
G(aq)(H+) or terms within, such as DsolvG(H3O+) or DsolvG(H+)
[28,31,32] or the standard-state shift within DEnuc(g ? aq) [19].
Constant-shift errors that depend on class of compound could be
due to poor electronic-structure treatment of certain atoms and
the point charges generated around the cavity, or in poor choices
of radius for certain atoms or functional groups. Techniques for
improving these errors include extensive element-dependent
parametrization of the continuum model (the SMx series of Cra-
mer/Truhlar [33]), consideration of electrostriction by making cav-
ity radii dependent on partial charge [33,34] (a simpler scaling idea
is tried in this work), or least-squares fitting vs. experiment to
determine DsolvG(H+) [35] or all of G(aq)(H+) (tried in this work).

Errors proportional to pKa itself have been revealed in plots of
experimental vs. computed pKa, in studies of compounds over a
wide pKa range [36–41]. They can also be seen in the data of Lip-
tak/Shields [42] and Nascimento and co-workers [43], when plot-
ted. Tomasi [38] originally thought the problem lay in poor DG(g)

computation, but Chipman [44] elegantly showed that the problem
was with DsolvG(aq), by demonstrating that this error virtually dis-
appears when the alternative solvents DMSO and MeCN were con-
sidered. Friesner and co-workers [39] explained that the incorrect
slope arises because the error due to ignoring local hydrogen-
bonding effects should be proportional to the partial charge at
the hydrogen-bonding site, and thus dependent on the acidity/ba-
sicity of this site. Three groups [45–47] have had success in reduc-
ing this pKa-proportional error with a semicontinuum technique
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[34] by adding explicit water molecules inside the solute cavity
(tried in this work). Other groups have suggested a more empirical
approach, relying on a known systematic error to build class-
dependent empirical relations

pKaðexptÞ ¼ m � pKaðtheoÞ þ b ð24Þ

for predictive uses [37–39]. Some, such as Adam [46] and Tao [48],
have found phenomenal accuracy for single classes of compounds
(<0.2 pKa errors) by taking this approach further, replacing
pKa(theo) in Eq. (24) with some other computable property of the
solute molecule.

Of the direct-pKa-computation studies (i.e. not based on linear
regressions like Eq. (24)), the few that have reported computed
pKa accuracy of better than ±1 were studies of a handful of com-
pounds within a single class and small pKa ranges [35,42,43,49],
where slope errors are hard to observe and constant-shift errors
may have fortuitously cancelled them. A good example would be
the work of Nascimento and co-workers, whose results for carbox-
ylic acids looked very good [43], but whose ensuing results for
three other classes of compounds showed large class-dependent
errors [50]. We will demonstrate that similar success can be
achieved for alkanolamines or piperazines of pH range 8–11.
O
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Fig. 1. Conformers of alkanolamines used in Model II.
4. Computational methods in this work

4.1. Procedures

All the calculations were done using the Gaussian 03 software
program and the 6-311++G** basis set [9]. Solvent effects were
computed using the continuum solvation method IEFPCM [18]
with UA0 radii for spherical cavities [9]. The electronic structure
levels of theory tested for IEFPCM calculations (including geometry
optimization) were B3LYP and MP2 [9], although we note that in
the MP2 calculation the DGnon-el term is only computed at the Har-
tree–Fock level of theory. Geometry optimizations with IEFPCM
minimize Eelec + DGel in Eq. (5). All Enuc(0)g@g terms were computed
only with B3LYP at B3LYP gas-phase-optimized geometries.

We tested the semicontinuum [34] technique of Kelly et al. [47]
of monohydrating the solute ions inside the continuum cavity, but
we consistently hydrated all solute ions, and went another step
further by also monohydrating the neutral bases. For neutral
amine, a hydrogen atom of the explicit water molecule was hydro-
gen-bonded to the nitrogen atom in amine, while for protonated
amine the new proton attached to nitrogen atom was hydrogen-
bonded to the oxygen of water molecule. The alcohol group of alk-
anolamine could also hydrogen-bond to the solvent molecules, but
the error in DsolvG caused by not providing explicit H2O here
should cancel well when the half- reaction DDsolvG is considered.
We will designate the use of one explicit water molecule as Model
II, to distinguish from Model I, where no explicit water is used.

To accommodate electrostriction in a simple manner, we
decided to test the utility of a constant scale factor to contract
the radii of charged ‘‘united atoms:” 0.9 instead of the default fac-
tor of 1.0 for the NHx groups of protonated amines [51]. This will be
referred to as ‘‘special scaling.”

4.2. Conformer choices

Some conformer testing was done in order to ensure that the
ones we chose were among the lowest-energy ones for each base
B and conjugate acid BH+. In gas-phase calculations on alkanolam-
ines we assumed intramolecular hydrogen-bonds; from the –OH
hydrogen to the N atom of neutral ones, and from a –NH3

+ hydro-
gen to the O atom of the protonated forms. In aqueous solution,
other structures become competitive in energy, due to intermolec-
ular H bonding with the solvent (see Section 2.3), but the IEFPCM
could not provide such interactions. Hence, In Model I (no explicit
water), these same intramolecular-H-bonded configurations were
used. However, in Model II calculations with one explicit H2O mol-
ecule, all-trans conformers could be maintained and hence were
used for alkanolamines (Fig. 1).

For the monohydrated cyclic amines piperazine and morpho-
line, different axial-vs-equatorial positions for the NH groups
were tested with chair conformers (Fig. 2), and the differences
were within 1 kcal mol�1. The most stable conformers at B3LYP/
IEFPCM were used: structures II in Model I, but structures I in
Model II.

Fig. 3 shows the conformers used for the substituted pipera-
zines. The substituents were added at equatorial positions, these
being the most stable positions in piperazine. For the four cases
where the two N atoms were inequivalent, both protonation sites
were tested. Interestingly, for 1-methylpiperazine and 2-methylpi-
perazine, protonating the N atom in position 1 was preferred in
gas-phase calculations, but not in IEFPCM calculations. The con-
formers used (shown in Fig. 3) were the ones lowest in energy in
IEFPCM/B3LYP calculations.

5. Results and discussion

5.1. Free energies

First we perform a component analysis, via Eq. (11), of the sol-
vation energies of individual compounds. Tables 4 and 5 present
results for the solvation of bases and protonated bases,
respectively.
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Fig. 3. Conformers of cyclic amines (piperazine family) used in Model II.

Table 4
Computed components of DsolvG for bases (kcal/mol), Model I/PCM/B3LYP.a

Base DGgp DGep DGel DGnon-el Sumb

NH3 0.05 0.61 �5.48 2.71 �2.11
NH2(CH3) 0.08 0.63 �5.14 4.55 0.13
NH(CH3)2 0.10 0.51 �4.08 6.46 2.98
N(CH3)3 0.07 0.18 �1.75 7.89 6.39
MEA 0.67 1.21 �10.43 3.93 �4.62
MIPA 0.36 1.22 �9.70 5.48 �2.63
MPA 0.38 1.44 �9.93 4.48 �3.62

a IEFPCM calculations; no explicit water or special scaling used.
b Sum is equal to DsolvG but without the DEnuc(g ? aq) term.
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Fig. 2. Possible conformers of morpholine and piperazine in Model II.
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The last column of Table 4 predicts that the methylamines are
actually destabilized by aqueous solvation (DsolvG > 0), with aver-
sion increasing monotonically with methylation. This prediction
is in line with other theoretical studies that have disagreed with
the negative values from experimental work [52,53]. The trend
with methylation is due to the hydrophobicity of methyl groups,
which reduces electrostatic benefits (|DGel| < 6 kcal mol�1), while
increasing the energy spent on making the cavity (DGcav, a term
in DGnon-el). The three alkanolamines are the most stabilized by
solvation effects, due to two polar sites (amine and hydroxyl
group) which can stabilize quite well in the polar solvent and
can benefit from electrostatic interactions (DGel = �10 kcal mol�1).

Comparing Table 5 to Table 4, the DGnon-el term changes very
little upon protonating the amines, but the DGel term is greatly
amplified (much more negative) due to the positive charge from
the added H+. As a result, solvation energies (DsolvG) are much low-
er. The ammonium ion is the most stabilized by solvation because
of its high charge-to-volume ratio and lack of hydrophobic groups.
Next we move to the half-reactions (BH+ ? B) and Eq. (16).
Tables 6 and 7 show computed components of half-reaction free
energies of the seven bases using Model I and Model II respectively.
The energies were calculated using the IEFPCM continuum model
and the B3LYP/6-311++G** level of theory.

In Table 6, the gas-phase terms (DhEelec(0)@g) span a 23
kcal mol�1 range (212–235 kcal mol�1). Addition of one explicit
H2O reduces this span to a 17 kcal mol�1 range (227–244 kcal mol�1,
first column of Table 7). With the continuum model of full solution,



Table 5
Computed components of DsolvG for protonated bases (kcal/mol), Model I/PCM/
B3LYP.a

Base DGgp DGep DGel DGnon-el Sumb

NH4
+ 0.02 0.03 �75.45 2.79 �72.60

NH3(CH3)+ 0.16 0.97 �70.49 4.32 �65.03
NH2(CH3)2

+ 0.26 1.36 �64.72 6.20 �56.91
NH(CH3)3

+ 0.32 0.92 �57.16 7.76 �48.16
MEAH+ 1.62 1.56 �72.16 3.65 �65.34
MIPAH+ 1.98 2.48 �71.86 5.26 �62.13
MPAH+ 0.96 1.37 �65.56 4.16 �59.07

a IEFPCM calculations; no explicit water or special scaling used.
b Sum is equal to DsolvG but without the DEnuc(g ? aq) term.
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the ranges of DG(aq) get remarkably narrow: 8.6 kcal mol�1 with
Model I, and 5.5 kcal mol�1 with Model II. If NH3 is omitted from this
list, the other 6 bases have tightly clustered DG(aq) values, making
the prediction of correct ordering a nearly impossible task, and mak-
ing all six components of the energy important.

5.2. pKa results

In order to calculate the pKa values using Eq. (2), we must con-
vert DG(aq) to DrG(aq) via Eq. (3), by adding the contribution
G(aq)(H+). Direct computational estimates of this term have been at-
tempted, but the resulting pKa values tend to be sufficiently poor
that most scientists [28,35,42,44,47] have resorted to taking an
empirical choice for DsolvG(H+), the dominant component of
G(aq)(H+). We simplify this by taking empirical choices for
G(aq)(H+) itself. We used it as the fitting parameter in minimizing
the root mean square (rms) of calculated pKa values vs. experimen-
tal values. Fitting was done for each model and level of theory. It
was also done to convert the results of da Silva and Svendsen
[10] from relative DG(aq) values into best possible pKa values.

The results are displayed in Table 8. The rms errors reveal that
the best results are obtained from Model II with default radii scal-
ing. For B3LYP calculations, Model II reduced the errors of Model I
(no explicit water) by 34%. Although the specialized scaling (reduc-
ing the radii of charged ‘‘united atoms” by 10%) did improve the
Table 6
Half-reaction energies DhG(aq) and their components (kcal/mol), Model I/PCM/B3LYP.a

Base DhEelec(0)@g DhDGgp DhDGep

NH3 211.87 0.03 0.58
NH2(CH3) 222.87 �0.08 �0.34
NH(CH3)2 230.05 �0.16 �0.85
N(CH3)3 234.41 �0.25 �0.74
MEA 227.88 �0.94 �0.35
MIPA 229.51 �1.62 �1.26
MPA 235.15 �0.58 0.08

a IEFPCM calculations; no explicit water or special scaling used. The statistical entropy
in the DhG(aq) values.

Table 7
Half-reaction energies DG(aq) and their components (kcal/mol), Model II/PCM/B3LYP.a

Base DhEelec(0)@g DhDGgp DhDGep

NH3 226.61 �0.85 0.76
NH2(CH3) 234.79 �0.76 0.21
NH(CH3)2 240.31 �0.89 0.06
N(CH3)3 243.67 �0.08 0.55
MEA 234.64 �0.90 0.39
MIPA 235.96 �0.98 0.02
MPA 236.84 �1.09 �0.41

a IEFPCM calculations; no explicit water or special scaling used. The statistical entropy
in the DhG(aq) values.
pKa of ammonia considerably, it made results for other amines
worse. Closer inspection of the data (naively assuming the pKa val-
ues vary linearly with scaling factor) suggests that a more optimal
scaling would have been 3% instead of 10%, with a potential
improvement of only 10% for the rms errors of the default-scaling
techniques.

We used the best 2 techniques of Table 7 to compute the pKa

values of the last 5 compounds in Table 1 (the substituted pipera-
zines). This included refitting of G(aq)(H+) to minimize rms error. In
doing so, we noticed that the errors for cyclic compounds tended to
be unique, as Friesner and co-workers had found years ago [30], so
we also did separate fittings for the 10 acyclic bases and the 7 cyc-
lic ones. This resulted in two fitting parameters for each modelling
technique, and improved the rms errors by 42–45% compared to
single-parameter results (Table 9). A large error is still seen for
NH3 (2 pKa units), due to the high charge-to-volume ratio which
amplifies the imperfections of the cavity.

Friesner and co-workers had speculated that the problem with
ringed compounds might be with the changing structure of water
around them [30]. The ensuing years has revealed that continuum
solvation models generally produce systematic errors for different
classes of compounds. It would appear that simple continuum sol-
vation models are simply too crude to provide greater accuracy
across several classes of compounds, and the models that try
(SMx [33], Jaguar [39], and COSMO [54]) have been forced to use
extensive (and continually upgraded) empirical parametrization.

Our most accurate procedure for the calculation of the pKa of
bases studied in this work is a Model II (explicit water) technique
employing IEFPCM/MP2/6-311++G** for the optimized geometries
and ensuing energies, with Enuc(0)g@g terms computed with B3LYP/
6-311++G** at a C1-symmetry gas-phase conformer geometry, sta-
tistical entropy corrections from Eq. (23), and G(aq)(H+) values of
�266.96 kcal mol�1 for acyclic bases and �269.63 kcal mol�1 for
cyclic bases. It produced an rms error of 0.68 for the pKa of the
17 compounds studied here.

We mentioned in Section 2 that the best experimental value for
G(aq)(H+) is �270.3 kcal mol�1. Interestingly, the fitted values in our
computational work are close to this value for (i) cyclic molecules
with no electrostriction scaling, and (ii) acyclic molecules with
DhDGel DhDGnon-el DhEnuc(0)g@g DhG(aq)

69.97 �0.08 �9.19 272.36
65.35 0.23 �9.47 277.91
60.64 0.26 �9.70 279.83
55.41 0.13 �9.79 279.18
61.73 0.28 �9.02 278.92
62.16 0.22 �8.91 279.45
55.63 0.31 �9.00 280.95

corrections (Table 3) were not included in the DhEnuc(0)g@g values, but are included

DhDGel DhDGnon-el DhEnuc(0)g@g DhG(aq)

58.47 0.28 �9.36 275.08
54.70 0.61 �8.33 280.57
50.51 0.69 �9.71 280.55
45.06 0.57 �10.43 279.33
53.38 0.58 �7.78 279.66
52.47 0.60 �8.86 278.56
53.72 0.54 �10.33 279.27

corrections (Table 3) were not included in the DhEnuc(0)g@g values, but are included



Table 8
Comparison of theoreticala and experimental pKa results.

Base B3LYP B3LYP B3LYP MP2 B3LYP MP2 Expt.d

Model I Model I Model II Model II Model II Model II
Ref. [9]b Def. sc.c Sp. sc.c Sp. sc.c Def. sc.c Def. sc.c

NH3 9.03 4.52 8.24 8.74 6.29 6.81 9.25
NH2(CH3) 8.64 8.61 10.96 11.43 10.33 10.76 10.66
NH(CH3)2 10.60 10.02 9.09 9.52 10.32 10.76 10.73
N(CH3)3 10.65 9.54 5.92 6.15 9.42 9.78 9.80
MEA 12.15 9.36 10.58 10.60 9.66 9.67 9.50
MIPA 7.33 9.74 9.53 9.37 8.85 8.70 9.47
MPA 7.86 10.85 10.18 10.12 9.38 9.30 9.96
AMP 7.75 9.78 10.94 10.49 10.14 9.73 9.70
AEEAe 9.49 10.58 11.01 10.95 10.20 10.04 9.82
DEA 9.13 11.25 9.17 8.89 9.68 9.37 8.97
Morpholine 10.97 9.61 9.21 8.97 9.81 9.56 8.50
Piperazinee 12.49 12.21 11.26 10.87 12.02 11.61 9.73

Rms error 1.79 1.85 1.47 1.30 1.22 1.00

a Obtained via DhG(aq)(BH+ ? B) computation and single-parameter least-squares fitting of G(aq)(H+), whose optimized values (kcal/mol) were: �12.27, �266.20, �271.35,
�272.28, �266.52, �267.36. The parameter value for the first column (�12.27) represents G(aq)(H+) plus a large term to shift the relative DrG(aq) data of Ref. [10] to absolute
data.

b Values we have optimally converted from relative DrG(aq) values of Ref. [10] (their Tables 4 and 7, B3LYP/6-311++G** gas-phase plus PCM/B3LYP/3-21G* solvent effects).
Their technique is similar to our B3LYP/PCM/Model I/default-scaling. Their particularly good value for NH3 arises from suspicious anchoring.

c ‘‘Def. sc.” means default radii scaling. ‘‘Sp. sc.” means special scaling (Section 4.1).
d For references see Table 1.
e pKa(1).

Table 9
Comparison of theoreticalab and experimental pKa results, including extra piperazines.

Base One fitting parameter Two fitting parameters Expt.c

B3LYP MP2 B3LYP MP2

NH3 5.61 6.29 6.65 7.10 9.25
NH2(CH3) 9.65 10.25 10.69 11.05 10.66
NH(CH3)2 9.64 10.25 10.68 11.05 10.73
N(CH3)3 8.74 9.27 9.78 10.07 9.80
MEA 8.98 9.15 10.02 9.96 9.50
MIPA 8.18 8.19 9.21 9.00 9.47
MPA 8.70 8.79 9.74 9.59 9.96
AMP 9.47 9.22 10.50 10.03 9.70
AEEAd 9.52 9.53 10.56 10.34 9.82
DEA 9.00 8.86 10.04 9.67 8.97
Morpholine 9.13 9.04 7.65 7.89 8.50
Piperazined 11.34 11.10 9.86 9.95 9.73
2-Methylpiperazined 11.01 10.46 9.53 9.31 9.57
1-Ethylpiperazined 10.95 10.60 9.47 9.45 9.20
1-Methylpiperazined 10.40 10.02 8.92 8.87 9.14
1-(2-Hydroxyethyl)piperazined 10.49 10.08 9.01 8.93 9.09
1,4-Dimethylpiperazined 10.65 10.37 9.17 9.21 8.38

Rms error 1.48 1.18 0.81 0.68

a Obtained via DhG(aq)(BH+ ? B) computation and least-squares fitting of G(aq)(H+), whose optimized values (kcal/mol) were: �267.44 (B3LYP), �268.06 (MP2), �266.04
(acyclic B3LYP), �269.46 (cyclic B3LYP), �266.96 (acyclic MP2), �269.63 (cyclic MP2).

b Model II (explicit water) calculations with default radii scaling.
c For references see Table 1.
d pKa(1).
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electrostriction scaling. In our future work, we will investigate
whether this observation can lead to a chemically meaningful ab
initio procedure in which the empirical fitting of G(aq)(H+) is re-
placed by properly fixing this quantity at its experimental value.

6. Conclusions

The pKa values of 17 amines, alkanolamines, and piperazines
have been computed using quantum chemistry techniques and
the IEFPCM continuum solvation model. Of several techniques
tested, the best ones involved incorporation of an explicit water
molecule inside the continuum cavity (Model II). The incorporation
of 10% smaller cavity radii for charged ‘‘united atoms” did not im-
prove the Model II results, but a 3% shrinkage would have provided
small improvements. Proper entropy corrections, often neglected
in pKa studies, were presented. The use of explicit water inside
the cavities reduced the pKa rms error (12 cases) by 34%. As noted
several years ago [30], ringed compounds do seem to be patholog-
ical cases for continuum solvation models, and the use of a second
fitting parameter for these compounds dramatically lowered the
overall rms error (17 cases) by 42–45%, to below 0.9. Our best tech-
nique reduces the errors found in a previous technique for similar
compounds [10] by 62%.
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