Running Gaussian16 on Digital Alliance’s Graham
Accessing Digital Alliance’s Graham supercomputer:
From another unix/linux computer:

ssh graham.computecanada.ca
From Windows: use the Putty software and type graham.computecanada.ca into the hostname bar (you can save this hostname in Putty as well so you don’t have to type the name every time).
Running gaussian on Graham:
1. Prepare a normal Gaussian input file (myfile.com or myfile.gjf)

2. Prepare a job script file (myfile.txt or myfile.sh; I typically use myfile-Js.txt for organizational purposes), declaring # of processors desired, a walltime limit, and # memory per processor desired.

a. Notes: Job script is case sensitive. Make sure the newlines (/n) are in UNIX form, not DUO form, or it won’t work. Can fix this by copy-pasting text into a Word doc, then save as a txt doc and choose the “only LF” option.
3. Make sure the job script file and the input file are in the same directory.
4. Type “sbatch myfile-Js.txt” to run

5. Monitor progress with sq command (use squeue to see submissions from all users)
The job script is needed for queuing purposes; runs demanding lots of resources will sit longer in queue. Use this example file, myfile-Js.txt:
#!/bin/bash

#SBATCH --mem=1G
#SBATCH --time=1-03:30:00

#SBATCH --cpus-per-task=2

module load gaussian/g16.c01

G16 myfile.gjf
You need to edit lines 2-4 and 6 each run:

Line 2 - mem (memory per process): M or G for units. 2G or 4G is okay here. May need more for larger runs. Might need %mem in the input file. (Give at least 2G more in job script than specified by %mem in input file because it likes to use more)

Line 3 - walltime (how many hours the run is allowed to go before the computer kills it): Format is day-hour:min:sec, 2 digits each, but you can get rid of the ‘day-’ part if it’s shorter than a day. Longer walltimes mean longer queue times, so you should become good at estimating these.
Line 4 – cpus per task: technically the max number is super high, but the higher it is, the longer you’ll wait in queue. Anywhere from 1 to 4 should be good. Anything over 6 is wasteful (Gaussian becomes inefficient). Use the same number in your job script as specified by %nproc in the input file.

Line 6 – change myfile.gjf for the name of your input file.
Running ORCA on Digital Alliance’s Graham
Accessing Digital Alliance’s Graham supercomputer:
Same as for using Gaussian on Graham.

Running ORCA on Graham:
1. Prepare a normal ORCA input file (myfile.txt or .inp). Use this example file (myfile.txt):

Title

%pal nprocs <#> end

! hf 3-21g

%other settings…

* xyz 0 1

…insert coordinates here…

*
· TD runs: ORCA Input Library - X-Ray Spectroscopy (XAS, XES, ROCIS) (google.com). Include both orbwins even though it says you don’t need to.
2. Prepare a job script file (myfile.txt or myfile.sh; I typically use myfile-Js.txt for organizational purposes), declaring # of processors desired, a walltime limit, and # memory per processor desired. Similar to the jobscript file for Gaussian.

3. Make sure the job script file and the input file are in the same directory.

4. Type “sbatch myfile-Js.txt” to run

5. Monitor progress with sq command (use squeue to see submissions from all users)

The job script is needed for queuing purposes; runs demanding lots of resources will sit longer in queue. Use this example file, myfile-Js.txt:

#!/bin/bash

#SBATCH --ntasks=2

#SBATCH –mem-per-cpu=1G

#SBATCH --time=1-03:30:00

#SBATCH --output=myfile.log

module load StdEnv/2020 gcc/10.3.0 openmi/4.1.1
module load orca/5.0.4

$EBROOTORCA/orca myfile.txt
You need to edit lines 2-5 and 8 each run:

Line 2 – ntasks: basically same as cpus per task for Gaussian. Upper limit super high. Use what you need.
Line 3 – mem-per-cpu: total memory you want used divided by the number specified in ntasks

Line 4 – walltime: same as with Gaussian

Line 5 – Output: ORCA gives you around 5 new files at the end of the run. Use this to distinguish which file is the main one.

Line 8 – change myfile.txt for the name of your input file.

Running VASP on Digital Alliance’s Graham
Accessing Digital Alliance’s Graham supercomputer:
Same as for using Gaussian on Graham.
Running VASP on Graham:

1. Prepare a typical VASP run directory, for example, pyr5ac15.dir, including INCAR, POSCAR, POTCAR and KPOINTS files. POTCAR can still be built on Dextrose (see the East group VASP tips document).
2. Prepare bash shell script .sh file; name it vasp_job.sh (see below).
3. Place the vasp_job.sh file into the same directory as the INCAR, POSCAR, POTCAR, and KPOINTS files.
4. Go into the pyr5ac15.dir with PuTTy. (cd /pyr5ac15.dir).
5. Type “sbatch vasp_job.sh” into PuTTy to submit your job.
6. Monitor progress with the command “sq” in PuTTy.
[image: image1.png][Jporcar
[poscar
Fvespiobsh
[near

[kpOINTS

Your simulation.dir directory should look like this.
The following bash shell script .sh is required (put this into the vasp_job.sh)

	#!/bin/bash

#SBATCH --ntasks=16 # number of MPI processes

#SBATCH --mem-per-cpu=4G # memory

#SBATCH --time=3-00:20 # time (DD-HH:MM)

module load intel/2020.1.217 intelmpi/2019.7.217 vasp/5.4.4

srun vasp_std

*NOTE:

The line “module load intel/2020.1.217 intelmpi/2019.7.217 vasp/5.4.4” may be subject to change. Refer to https://docs.alliancecan.ca/wiki/VASP (under prebuilt VASP) if this line is not working. Also, you can only use the version of VASP for which you have a license.
