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A general computer program has been written to compute rotation—contortion energy levels, using the semirigid-
bender structure-relaxation Hamiltonian, for any molecule having one large amplitude (contortional ) degree of freedom.
In an application it is necessary to input the contortional potential energy function and the expressions for the molecule
fixed xyz coordinates of the nuclei as functions of the contortiona coordinate. The contortional coordinate can be of
any type, such as an internal rotation, an inversion, or a bend, but the boundary conditions in the numerical integration
part of the program must be chosen appropriately; these boundary conditions are in a separate subroutine. The code is

applied to the model of a tilted and precessing internally rotating CH3 group in protonated methane, CHzZ .

From the

results we can determine quantitatively the effect of the approximations present in the Hamiltonian of X-Q. Tan and
D. W. Pratt [ J. Chem. Phys. 100, 7061—7067 (1994)] when the angle of tilt of the internal rotation axis becomes large.
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I. INTRODUCTION

In a study of p-toluidene, Tan and Pratt (1) developed
an approximate rotation—torsion Hamiltonian for a methyl
internal rotor attached to a C,, frame. This Hamiltonian de-
scribes the methyl internal rotor as rigidly rotating about a
tilted and precessing internal rotation axis, where the axis
of internal rotation precesses at three times the rate of the
internal rotation. This nicely models the form of some extra
symmetry allowed terms that were introduced by Sgrensen
(2) in the rotation—torsion Hamiltonian of nitromethane.
Recently Sgrensen (3) considered the problem further, using
perturbation theory to alow for full structural relaxation in
these terms. In Refs. (4, 5) the rotation—torsion energy lev-
els involving the torsion of the CH3 group in the CH{Z
molecular ion were calculated using the Hamiltonian of Ref.
(1). In these calculations the angle of tilt for the CH3 group
was taken from ab initio results (6), and at 14° it is much
larger than that envisaged by Tan and Pratt when they devel-
oped their model. It is thus necessary to test the applicability
of the model when the tilt angle is large.

In the present paper we first discuss the general rotation—
contortion Hamiltonian, and the structure of the computer
program that we have written to diagonalize it. The program
is applicable to the calculation of the rotation—contortion
energies of any molecule that has one large amplitude vibra-
tional degree of freedom, and such problems have been con-
sidered before (most recently by Makarewicz (7) who
quoted an extensive list of references to earlier work). We
use the program to calculate the rotation—torsion energies
for CHZ . We model the nuclear coordinates as analytic func-
tions of the torsional angle and the tilt angle so that the C;

axis of the CH3 group precesses at three times the rate of
the internal rotation of the CH3 group and so that there is
a constant angle of tilt. We compare the exact rotation—
torsion energies obtained with those obtained using the
Hamiltonian of Ref. (1) and find that the error in the latter
is significant for large values of the tilt angle.

Il. THE CALCULATION OF ROTATION-CONTORTION
ENERGIES

We consider a molecule with one low-frequency large
amplitude internal contortion mode 7, and we adiabatically
separate it from the other “*fast’” vibrational degrees of free-
dom. The electronic and ‘‘fast’’ vibrations contribute to-
gether to provide the effective contortional potential function
V (7). The four-dimensional Hamiltonian for rotation and 7
motion can be written as (8)

H — Hrot 4 Hrot,T 4 HT' [1]
where
Hmt = (1/2) z /laﬁjajﬁ, [2]
a,f=xyz
HthT = (1/2) Z {[jTY MaT]‘ja + Mar(jajT + jrja)}!
a=xyz
[3]
and

H™ = (1/2)p.. 3% + (1/2)[J,, p..13; (4]
+ (U2)pM 3 prp™ 3, 1] + V(7).
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In Egs. [2] to [4] J,, J,, and J, are the components of the
total angular momentum operator along molecul e fixed axes,
J. = —ikd/ 07 isthetorsional angular momentum operator,
u is the determinant of the 4 X 4 matrix p, and the matrix
p isthe inverse of the generalized 4 X 4 moment of inertia
matrix | . The elements of the 4 X 4 matrix | are (8)

o = 3 M (afy + &%), [5]

(6]

—
IS
Il

— > Mag.ag,

_Z m (ail + al + al’), [71

and

(8l

Iam'

- 2 m(a,al; — asal,),
i

where my; isthe mass of theith nucleus, a,, isthe Cartesian
coordinate of the ith nucleus along the « molecule-fixed
axis, aj, is the partial derivative of this coordinate with
respect to 7, and [afSy] must be chosen in cyclic order
from [xyz]. Each element of I, and hence of u, can be
nonzero and 7-dependent. The computation of the rota-
tion—contortion energiesinvolves three stages: (1) setting
upl andV (7), (2) calculating the eigenvalues and numer-
ical eigenfunctions of H ", and (3) diagonalizing the full
Hamiltonian H.

[1.1. The Elements of the Matrix |

The elements of the matrix | are molecule specific and
are calculated from the expressions for the a,, and a/, using
Egs. [5] to [8]. Thus the initial step is to define how the
molecule fixed xyz axes are attached to the molecule and to
determine the expressions for the a,,. Once the elements of
the 4 X 4 matrix | are set up and the potential function
provided, the rest of the calculation can proceed. It is best
to use analytical expressions for the Cartesian derivatives
a/, needed in the calculation of some of the elements of |
in order to maintain precision; this is because numerical
differentiation of the elementsof u = | ~* is performed later.

Due to the ‘*brute-force’’ way we diagonalize the Hamil-
tonian the motivation for the choice of the axis system can
be different from the customary one of trying to eliminate
off-diagona elements of |. Rather than having to choose
from among the PAM, |IAM, or Hougen's RAM systems (9,
10) to simplify the I matrix, and subsequent Hamiltonian
expression, one is free to choose the axes for other reasons,
such as ease in obtaining functions for the Cartesian coordi-
nates of the atoms. For a molecule with an internal rotor
attached to a ‘‘frame’’ the axes can be tied to the frame or
to the internal rotor, or to any intermediate position. The
same energies will be obtained (and this provides a check
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on the program), although the level of convergence achieved
with a given size of basis set will change.

I1.2. Determining the Eigenvalues and Eigenfunctions
of H”

The formulas of Ref. (8) were developed for triatomic
molecules using molecule fixed axes oriented so that I, =
ly, = I, = 0. In the genera case Eq. [4] for H " reduces to

2 2
o B[, 0 () 0
2 or or ) ot

0 _ 0
I M1/4|:E Lorh 1/2<5 Ml/4>] } +V(7)

which is the same as Eq. [39] in Ref. (8) except that
1/12, has been replaced by ... The eigenfunctions of this
one-dimensional Hamiltonian are determined numerically
using a generalized Numerov—Cooley (11) procedure.

The Numerov—Cooley procedure can be generalized to
solve differential equations of the type

(9]

P"(r) = G(7, E)P(7), [10]

where P”(7) is the second derivative with respect to = of
the function P(7), E is an eigenvalue, and G(r, E) is a
function of = and of E. We use the recursion formula

Yii=2Y; = Y + (AT)’G Py, [11]
where Y, = [1 — (1/12)(AT7)?G;]P;, i is shorthand for the
ith value of the coordinate 7, and At is the grid size. The

energy correction DE for the iterating (initially guessed)
energy eigenvalue E is given by

_ (_Ym—l + 2Ym - Ym+1)/(A7_)2 + Gum

DE :
S, (- 0GIIE), P?

[12]

where m is the grid point label of the meeting point of the
forward and backward integrations and n is the number of
evenly spaced points chosen along the coordinate 7. If we
put

P(T) = Ny(7)vg(7), [13]

where s(7) is the normalized eigenfunction of H7, a(7r) =
(1/2)h%u.,, and N is a constant, then P(7) satisfies Eq.
[10], the generalized Numerov—Cooley problem, with
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THE ROTATION—-CONTORTION HAMILTONIAN

G(7, E) = fu(7) + [V(7) — El/g(7), [14]
where
fi(7) = aux”(7)/aux(7), [15]
aux(r) = prp v, [16]
and
N = Z (- 9GIOE), P2, [17]

i=1

This looks quite similar to Egs. [41] —[43] of Ref. (8) but
ismoregeneral. Inour code, aux”(7), the double differentia-
tion of aux(7) with respect to 7, is determined numerically
so as not to be molecule-dependent. Boundary conditions
for the Numerov—Cooley agorithm are kept in a separate
subroutine, and are dependent upon the type of contortion
(inversion, bending, internal rotation, etc.).

For an internally rotating molecule the resulting energy
levels will correspond to J = 0 levels regardless of how the
Cartesian axes are fixed to the molecule, as long as the
molecule undergoes one complete internal rotation as + ad-
vances by 27, and a,(27) = a,(0) for al nuclear coordi-
nates.

I1.3. Diagonalizing the Rotation—Contortion
Hamiltonian H

Having obtained the contortion wavefunctions ¢(7) in
numerical form, we multiply them by a complete set of
appropriate linear combinations of symmetric top rotational
basis functions | J, k, 0) (we need only consider the M; =
0 functions for calculations in free space; see Eq. (8-111)
of Ref. (13)) to form a basis set for diagonalizing the full
rotation—contortion Hamiltonian. We use the following lin-
ear combinations of symmetric top functions (with K =
|k|), as devised by Szalay and Lane (12), in order that all
matrix elements be real.

1J,0)=1J,0,0), [18]
13,K) = —(12)(] 3,K,0) + (—1)%| J, =K, 0)), [19]
and

13, —K) = (iV2)[| 3, —K,0) — (-1)|J,K,0)],  [20]
where K = 1, 2, ..., J. If we let |p) represent the pth
product of numerical contortion function |m,) with Szalay-
Lane basis function | J,K), and let |q) represent the qgth
product, then the (pqg)th matrix element of the Hamiltonian
can be written as
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Hog = HIX + HI7 4 Hyg, [21]
where
H[)%t = (1/2) Z <%|Nuﬂ|nh><Jpr| jajﬂ| JqKq>v [22]
a,f=xyz
Hi™ = —(12)ih 3 ((my]pe- [my)
a=xyz
+2<mp|/lm|m(’1>)<‘]pr|ja|JqKq>7 [23]
and
Hia = Spac iy [24]

The primes refer to partial differentiation with respect to 7,
6pq 1S the Kronecker delta, and er, is the eigenvalue of H *
associated with the contortion function |m,). The partia
differentiations are performed numerically. These formula
require two different kinds of integrals. those over ~ (done
quite acceptably with Simpson’s Rule) and those over the
rotational degrees of freedom. Since the Szalay-Lane func-
tions are expressed as linear combinations of symmetric top
eigenfunctions, we need expressions for matrix elements of
s, Jy, and J, in the symmetric top basis. These can be
derived from the matrix elementsin Table 8-1 of Ref. (13),
using J, = (Ji + Jr)/2and 3, = (3}, — J)/(2i). Note
that these are components of the total angular momentum
along molecule-fixed axes.

I11. APPLICATION TO CH{

We apply the Hamiltonian and computer program to the
calculation of the rotation—torsion energy levels of the
CH¢Z molecular ion modeling it as having a tilted and pre-
cessing (and rigidly C;,) CHJZ internal rotor. Asin Ref. (1)
we model the precession of the C; axis of the CH3 group
as taking place at three times the speed of the internal rota-
tion. To implement the program we must first define the
molecule-fixed axes and then determine the expressions for
the Cartesian coordinates of the nuclei. We must aso define
the torsional potential energy function, and we use asimple
cosine function with a barrier of 30 cm™* (4, 5) in al the
calculations presented here.

The frame protons are labeled 1 and 2, and the top
protons are labeled 3, 4, and 5 in a clockwise sense when
viewed from the frame (see Fig. 1). The center of mass
of the H, frame is labeled f, the center of mass of the
CH3 top islabeled t, and the center of mass of the entire
molecule is labeled 0. We define the molecule fixed xyz
axes to have origin at 0 and to be tied to the frame; the z
axis points from t to f, the y axis is in the plane of the
frame with H; having positive y value, and the x axis is
such that the axes are right handed. The tilt angle 6 is the
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FIG. 1. The atom labeling convention. The configuration shown here
has 7 = 120°.

angle between thet — C axis and the t — f axis. We tie
right handed x’y’z’ axes to the CH3 top with z’ being the
t— Caxisand y' being in the H;Ct plane with H; having
apositivey’ coordinate. The orientation of the x'y’z’ axes
relative to the xyz axes is given by the Euler angles 6 (the
angle of tilt), ¢, and x. When 8 = 0 the torsional angle
7 is the angle measured in a right handed sense about the
z' = z axis from the yz plane to the y’z’ plane, and 7 =
¢ + x. For 8 # 0 the appropriately precessing internal
rotation motion is achieved by taking ¢ = (37 — 7/2)
and x = (—27 + «/2) which retains = = ¢ + x. In our
Hamiltonian @ is fixed and 7 is the dynamical variable.
Using the direction cosine matrix with these expressions
for the Euler angles ¢ and x in terms of 7 we obtain the
analytic expressions for the nuclear coordinates to be as
givenin Table 1. The expressionsgivenin Table 1involve
the following 7-independent geometrical factors,

th = rewSin(m — ar)

O = [Me/(3my + me)]reqcos(m — aq)
0 = [3ma/(3my + mc)]reucos(m — ar)
0. = [2mu/(5my + mc)]R

0s = [(3my + mc)/(5my + me)]R

Os = IxnSiN(ag)

07 = rxnCos(ag),

[25]

where my, and m¢ are the atomic masses, R is the distance
between the centers-of-mass of the top and frame, r¢y, is
the C—H bond distance in the top, rxy is haf the H-H
distance in the frame, «y is the angle between the C - H
bonds of the top and the t — C axis, and af is the angle
between the H, — H; bond of the frame and the z axis.
From ab initio calculations (14), we take R = 1.1425 A,
rew = 1.0907 A, ryy = 0.4807 A, ot = 106.16°, and ar
= 90°, from which the g; values quoted in Table 1 are
obtained. The expressions given in Table 1 are such that
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TABLE 1

The Cartesian Coordinates for the Precessing Internal
Rotor Model of CHZ

Coordinate Function®
RS g3 sinfl sin37
R 0
To 0
T3 — qi[sinT + cos27 sin3r(cosf — 1)] — gp sin37 sind
Ty z3(t =7 —2x/3)
Ts z3(r =7+ 25/3)
ye — q3 sinf cos3r
Y1 G
Y2 —qs
Y3 gi[cosT + cos27 cos37(cosd — 1)] + g, cos37 sinf
Yy ya(7 =7 —27/3)
s ys(r =7 +27/3)
e — g4 + g3 cosf
21 g5 + g7
2 95 — 97
z3 — qg — g2 cosf + g; cos2T sinf
24 z(r =7 —25/3)
zs z(r =7+ 27/3)

® The g¢; parameters are defined in Eq.[25] and have the values (in A):
7:=1.0476, ¢;=0.2425, 43=0.0611, q4=0.1352, ¢s=1.0073, ¢s=0.4807, g:=0.0.

the CH3 group remains with fixed and equal CH bond
lengths and HCH bond angles, and the C; axis precesses
around the z axis at three times the rate of internal rotation
and tilted at a constant angle # from the z axis. The expres-
sions for the coordinates of the nuclei in the top could be
used for any molecule having atilted and precessing CH;
rotor attached to a frame.

IV. RESULTS AND DISCUSSION

The coefficients of J2, J2, 2, 32 and 3,3, are u../2,
Uzl 2, ppd 2, pwl 2, and u,,, respectively. In the Tan and
Pratt Hamiltonian (1) these coefficients are called F, Ag,
B, C, and —2Accos 0 respectively, and the parameters F,
As, B, and C are taken to be independent of 8 and . Table
2 shows these cal culated Hamiltonian coefficients for five
tilt angles, from 0° to 13.43° (the latter being the average
ab initio tilt angle for CHZ (14)), at the = = 0° (a mini-
mum in V) and = = 30° (a maximum in V) positions.
The data show a dramatic decrease in the magnitudes of
Wy Mz, @nd u,. as the tilt angle is increased, and the
neglect of this dependence is a serious error if the tilt
angle is not negligible.

Also worthy of note is the importance of some other
coupling terms. The choice of principal axes for the mole-
cule-fixed xyz axis system (i.e., PAM) does not remove
the J,J, terms from the rotation—contortion Hamiltonian,
because of contributions from |, elements. There is per-
haps a (7-dependent) coordinate transformation (as Tan
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TABLE 2
The Coefficients (in cm™) of J2, JZ, JZ,
J2 and 3,3, as Functions of the Tilt Angle 9
and Torsional Angle 7

7 o7 wer ]2 )2 /2 pex/2 flor
0 0.00 41.274  36.194  +1.012 3.612 —72.387
1.00  41.134  36.096  1.021 3.612 —72.152
5.00 38.038  33.922 4.215 3.612 —66.939
10.00  30.745 28.799  1.644 3.612 —54.638
13.43 25450 25.075 4.918 3.612 —45.678
30 0.00 41.274 36.194 1.012  3.612 —72.387
1.00 41.125 36.088  4.012 3.619 —72.135
5.00 37.841 33.753 4012 3.775 —66.574
10.00 30.250 28.355  4.012 4.116 —53.701
13.43 24861 24.523 4.012 1.329 —44.538

@ In degrees.

and Pratt (1) suggest) other than the PAM that can remove
the J,J, terms, although J,J. terms will remain.

The calculated energies are given in Table 3 for the
precessing internal rotor model for the CH: molecular
ion, with tilt angle # = 0° and 13.43°, using both our exact
rotation—torsion Hamiltonian and the Hamiltonian of Ref.
(1). For 8 = 0° the results are the same, but for § =

TABLE 3
The Rotation—Torsion Energy Levels (in cm™!) Obtained
for J = 0 and 1 for Two Values of the Tilt Angle ¢

J K Kf symmetry FE(f=1343°)" E(§=1343°)° FE(§=0°)°"
IR 3 A 389.0681 620.4904 628.8307
Al 120.3022 200.1676 194.2418

Al 389.0898 620.4791 628.8169

Al 120.2586 202.5466 194.2280

2 E" 216.7447 343.4118 349.0246

E" 39.3642 65.6608 60.3151

1 E' 98.0165 150.3791 153.6190

E' 8.6434 10.7067 8.8921

0 Al 28.4059 39.4210 40.1989

Al 28.0098 39.1936 39.7985

1 0 3 A 241.6747 384.5233 386.6451
Al 226.5395 369.3830 371.6482

2 E' 108.1532 170.5159 172.6602

1 E" 32.7707 45.7522 48.8889

0 Al 7.6457 5.2323 7.6242

0 0 3 AY 234.0248 379.0239 379.0239
A 218.8945 364.0240 364.0240

2 E' 100.5056 165.0360 165.0360

1 E" 25.1359 41.2647 41.2647

0 Al 0.0000 0.0000 0.0000

ZPE? 14.9175 14.9243 14.9243

@ K; is the absolute value of the torsional quantum number k;.

b Energies calculated using the exact rotation-torsion Hamiltonian.
¢ Energies calculated using the Hamiltonian of Ref.(1).

¢ Zero-point energy of the torsional mode.
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TABLE 4
The Wavenumbers (in cm™) of the J =2 < 1
and 1 < 0 Rotational Transitions with K = 0

Transition K¢ 8=0° 6=1° 06=5 0=10° 0 =1343°
J=2+1 3 15.2487 15.2490 15.2539 15.2774 15.3000
3 15.2488 15.2490 15.2347 15.2723 15.2909

2 15.2493 15.2496 15.2360 15.2758 15.2967

1 15.2633 15.2635 15.2694 15.2860 15.3010

0 15.2447 15.2449 15.2506 15.2680 15.2858

J=10 3 7.6242  7.6243  7.6278 7.6385 7.6498
3 7.6242  7.6243  7.6271 7.6358 7.6450

2 7.6242  7.6243  T.6275  7.6373 7.6476

1 7.6242  7.6243  T.6264 7.6315 7.6348

0 7.6242  7.6243  7.6273 7.6364 7.6457

% K; is the absolute value of the torsional quantum number k;.

13.43° there are large differences, and the energies of
the approximate Hamiltonian are spaced much wider with
increasing K; . In the calculation using the Hamiltonian of
Ref. (1) the values for F, Ag, B, and C correspond to
values of u. /2, p,l2, pyl2, and /2, respectively, for
f# = 7 = 0°. It isinteresting to note that using the exact
Hamiltonian the energy of the levels having J = 1, 2, 3,

. . with K = K; = 0 are only slightly affected when the
tilt angleis changed from 0° to 13.43° as one would expect
(since the distance between the centers of mass of the top
and frame are unaffected by the angle of tilt and it is this
distance which largely governs the values of the K = K;
= 0 energies), whereas using the Hamiltonian of Ref. (1)
they are strongly shifted (5).

Some K =0, J =2+« 1and 1« O transition energies
are listed in Table 4 for CHZ using several different tilt
angles computed using our general Hamiltonian. The in-
corporation of a precessing tilt in the methyl group has
the effect of splitting these transitions by 0.01 to 0.02
cm™*, and of shifting them to higher wavenumber by 0.02
to 0.06 cm™*.

In a following paper (14) we apply the general rota-
tion—contortion Hamiltonian to the cal culation of the rota-
tion—torsion energy levels of CHZ using a full ab initio
minimum energy path in which all bond lengths and angles
are allowed to vary as the molecule internally rotates. The
energies obtained are very different from those obtained
earlier (4, 5), partly because the earlier work uses the
approximate rotation—torsion Hamiltonian of Ref. (1),
which is not appropriate when the tilt angle is large, and
partly because the CH3 group distorts as it internally ro-
tates.
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