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A general computer program has been written to compute rotation–contortion energy levels, using the semirigid-
bender structure-relaxation Hamiltonian, for any molecule having one large amplitude (contortional) degree of freedom.
In an application it is necessary to input the contortional potential energy function and the expressions for the molecule
fixed xyz coordinates of the nuclei as functions of the contortional coordinate. The contortional coordinate can be of
any type, such as an internal rotation, an inversion, or a bend, but the boundary conditions in the numerical integration
part of the program must be chosen appropriately; these boundary conditions are in a separate subroutine. The code is
applied to the model of a tilted and precessing internally rotating CH/

3 group in protonated methane, CH/
5 . From the

results we can determine quantitatively the effect of the approximations present in the Hamiltonian of X-Q. Tan and
D. W. Pratt [J. Chem. Phys. 100, 7061–7067 (1994)] when the angle of tilt of the internal rotation axis becomes large.
q 1997 Academic Press

I. INTRODUCTION axis of the CH/
3 group precesses at three times the rate of

the internal rotation of the CH/
3 group and so that there is

In a study of p-toluidene, Tan and Pratt (1) developed a constant angle of tilt. We compare the exact rotation–
an approximate rotation–torsion Hamiltonian for a methyl torsion energies obtained with those obtained using the
internal rotor attached to a C2£ frame. This Hamiltonian de- Hamiltonian of Ref. (1) and find that the error in the latter
scribes the methyl internal rotor as rigidly rotating about a is significant for large values of the tilt angle.
tilted and precessing internal rotation axis, where the axis
of internal rotation precesses at three times the rate of the II. THE CALCULATION OF ROTATION–CONTORTION
internal rotation. This nicely models the form of some extra ENERGIES
symmetry allowed terms that were introduced by Sørensen

We consider a molecule with one low-frequency large(2) in the rotation–torsion Hamiltonian of nitromethane.
amplitude internal contortion mode t, and we adiabaticallyRecently Sørensen (3) considered the problem further, using
separate it from the other ‘‘fast’’ vibrational degrees of free-perturbation theory to allow for full structural relaxation in
dom. The electronic and ‘‘fast’’ vibrations contribute to-these terms. In Refs. (4, 5) the rotation–torsion energy lev-
gether to provide the effective contortional potential functionels involving the torsion of the CH/

3 group in the CH/
5

V (t) . The four-dimensional Hamiltonian for rotation and tmolecular ion were calculated using the Hamiltonian of Ref.
motion can be written as (8)(1) . In these calculations the angle of tilt for the CH/

3 group
was taken from ab initio results (6) , and at 147 it is much

HO Å HO rot / HO rot,t / HO t , [1]larger than that envisaged by Tan and Pratt when they devel-
oped their model. It is thus necessary to test the applicability

whereof the model when the tilt angle is large.
In the present paper we first discuss the general rotation–

HO rot Å (1/2) ∑
a,bÅxyz

mabJO aJO b , [2]
contortion Hamiltonian, and the structure of the computer
program that we have written to diagonalize it. The program

HO rot,t Å (1/2) ∑
aÅxyz

{[JO t , mat]JO a / mat(JO aJO t / JO tJO a)},is applicable to the calculation of the rotation–contortion
energies of any molecule that has one large amplitude vibra-

[3]tional degree of freedom, and such problems have been con-
sidered before (most recently by Makarewicz (7) who

andquoted an extensive list of references to earlier work). We
use the program to calculate the rotation–torsion energies

HO t Å (1/2)mttJO 2
t / (1/2)[JO t , mtt]JO t

[4]for CH/
5 . We model the nuclear coordinates as analytic func-

tions of the torsional angle and the tilt angle so that the C3 / (1/2)m1/4[JO t , mttm
01/2[JO t , m1/4 ] ] / V (t) .
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EAST AND BUNKER158

In Eqs. [2] to [4] Ĵx , Ĵy , and Ĵz are the components of the on the program), although the level of convergence achieved
with a given size of basis set will change.total angular momentum operator along molecule fixed axes,

Ĵt Å 0i\Ì /Ìt is the torsional angular momentum operator,
m is the determinant of the 4 1 4 matrix m , and the matrix II.2. Determining the Eigenvalues and Eigenfunctions
m is the inverse of the generalized 4 1 4 moment of inertia of Ĥt

matrix I . The elements of the 4 1 4 matrix I are (8)
The formulas of Ref. (8) were developed for triatomic

molecules using molecule fixed axes oriented so that Ixt ÅIaa Å ∑
i

mi (a 2
ib / a 2

ig) , [5]
Iyt Å Izt Å 0. In the general case Eq. [4] for Ĥ t reduces to

Iab Å 0 ∑
i

miaiaaib , [6]

HO t Å 0 \ 2

2 Hmtt

Ì 2

Ìt 2 / S Ìmtt

Ìt D Ì
Ìt

[9]
Itt Å ∑

i

mi (a * 2
ix / a * 2

iy / a * 2
iz ) , [7]

and / m1/4F ÌÌt mttm
01/2S ÌÌt m1/4DG J / V (t)

Iat Å 0 ∑
i

mi (aiga *ib 0 aiba *ig) , [8]

which is the same as Eq. [39] in Ref. (8) except that
1/I 0

tt has been replaced by mtt . The eigenfunctions of thiswhere mi is the mass of the i th nucleus, aia is the Cartesian
one-dimensional Hamiltonian are determined numericallycoordinate of the i th nucleus along the a molecule-fixed
using a generalized Numerov–Cooley (11) procedure.axis, a *ia is the partial derivative of this coordinate with

The Numerov–Cooley procedure can be generalized torespect to t, and [abg] must be chosen in cyclic order
solve differential equations of the typefrom [xyz ] . Each element of I , and hence of m , can be

nonzero and t-dependent. The computation of the rota-
tion–contortion energies involves three stages: (1 ) setting P 9(t) Å G(t, E)P(t) , [10]
up I and V (t ) , (2 ) calculating the eigenvalues and numer-
ical eigenfunctions of Ĥ t , and (3 ) diagonalizing the full

where P9(t) is the second derivative with respect to t ofHamiltonian Ĥ .
the function P(t) , E is an eigenvalue, and G(t, E) is a
function of t and of E . We use the recursion formulaII.1. The Elements of the Matrix I

The elements of the matrix I are molecule specific and
Yi/1 Å 2Yi 0 Yi01 / (Dt)2Gi Pi , [11]are calculated from the expressions for the aia and a *ia using

Eqs. [5] to [8] . Thus the initial step is to define how the
where Yi Å [1 0 (1/12)(Dt)2Gi ]Pi , i is shorthand for themolecule fixed xyz axes are attached to the molecule and to
i th value of the coordinate t, and Dt is the grid size. Thedetermine the expressions for the aia . Once the elements of
energy correction DE for the iterating (initially guessed)the 4 1 4 matrix I are set up and the potential function
energy eigenvalue E is given byprovided, the rest of the calculation can proceed. It is best

to use analytical expressions for the Cartesian derivatives
a*ia needed in the calculation of some of the elements of I

DEÅ (0Ym01/ 2Ym0 Ym/1) / (Dt)2/GmPm

( n
iÅ1(0ÌG /ÌE)i P 2

i

, [12]in order to maintain precision; this is because numerical
differentiation of the elements of m Å I01 is performed later.

Due to the ‘‘brute-force’’ way we diagonalize the Hamil-
tonian the motivation for the choice of the axis system can where m is the grid point label of the meeting point of the
be different from the customary one of trying to eliminate forward and backward integrations and n is the number of
off-diagonal elements of I . Rather than having to choose evenly spaced points chosen along the coordinate t. If we
from among the PAM, IAM, or Hougen’s RAM systems (9, put
10) to simplify the I matrix, and subsequent Hamiltonian
expression, one is free to choose the axes for other reasons,

P(t) Å Nc(t)
√

g(t) , [13]such as ease in obtaining functions for the Cartesian coordi-
nates of the atoms. For a molecule with an internal rotor
attached to a ‘‘frame’’ the axes can be tied to the frame or where c(t) is the normalized eigenfunction of Ĥ t , g(t) Å

(1/2)\ 2mtt , and N is a constant, then P(t) satisfies Eq.to the internal rotor, or to any intermediate position. The
same energies will be obtained (and this provides a check [10], the generalized Numerov–Cooley problem, with
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THE ROTATION–CONTORTION HAMILTONIAN 159

G(t, E) Å f1(t) / [V (t) 0 E] /g(t) , [14] Hpq Å Hrot
pq / Hrot ,t

pq / Ht
pq , [21]

wherewhere

Hrot
pq Å (1/2) ∑

a,bÅxyz

»mpÉmabÉmq … »JpKpÉJO aJO bÉJqKq … , [22]f1(t) Å aux 9(t) /aux(t) , [15]

aux(t) Å m1/2
tt m

01/4 , [16] Hrot ,t
pq Å0(1/2) i\ ∑

aÅxyz

( »mpÉm*atÉmq …

and / 2 »mpÉmatÉm *q …) »JpKpÉJO aÉJqKq … , [23]

andN Å
√

∑
n

iÅ1

(0ÌG /ÌE)i P 2
i . [17]

Ht
pq Å dpqe

t
mp

. [24]

This looks quite similar to Eqs. [41] – [43] of Ref. (8) but
The primes refer to partial differentiation with respect to t,is more general. In our code, aux 9(t) , the double differentia-
dpq is the Kronecker delta, and etmp

is the eigenvalue of Ĥ ttion of aux(t) with respect to t, is determined numerically
associated with the contortion function Émp … . The partialso as not to be molecule-dependent. Boundary conditions
differentiations are performed numerically. These formulafor the Numerov–Cooley algorithm are kept in a separate
require two different kinds of integrals: those over t (donesubroutine, and are dependent upon the type of contortion
quite acceptably with Simpson’s Rule) and those over the(inversion, bending, internal rotation, etc.) .
rotational degrees of freedom. Since the Szalay-Lane func-For an internally rotating molecule the resulting energy
tions are expressed as linear combinations of symmetric toplevels will correspond to J Å 0 levels regardless of how the
eigenfunctions, we need expressions for matrix elements ofCartesian axes are fixed to the molecule, as long as the
Ĵx , Ĵy , and Ĵz in the symmetric top basis. These can bemolecule undergoes one complete internal rotation as t ad-
derived from the matrix elements in Table 8-1 of Ref. (13) ,vances by 2p, and aia(2p) Å aia(0) for all nuclear coordi-
using Ĵx Å (JO /m / JO 0m ) /2 and Ĵy Å (JO /m 0 JO 0m ) / (2i) . Notenates.
that these are components of the total angular momentum
along molecule-fixed axes.II.3. Diagonalizing the Rotation–Contortion

Hamiltonian Ĥ
III. APPLICATION TO CH/

5
Having obtained the contortion wavefunctions c(t) in

numerical form, we multiply them by a complete set of We apply the Hamiltonian and computer program to the
appropriate linear combinations of symmetric top rotational calculation of the rotation–torsion energy levels of the
basis functions ÉJ , k , 0… (we need only consider the MJ Å CH/

5 molecular ion modeling it as having a tilted and pre-
0 functions for calculations in free space; see Eq. (8-111) cessing (and rigidly C3£) CH/

3 internal rotor. As in Ref. (1)
of Ref. (13)) to form a basis set for diagonalizing the full we model the precession of the C3 axis of the CH/

3 group
rotation–contortion Hamiltonian. We use the following lin- as taking place at three times the speed of the internal rota-
ear combinations of symmetric top functions (with K Å tion. To implement the program we must first define the
ÉkÉ) , as devised by Szalay and Lane (12) , in order that all molecule-fixed axes and then determine the expressions for
matrix elements be real. the Cartesian coordinates of the nuclei. We must also define

the torsional potential energy function, and we use a simple
cosine function with a barrier of 30 cm01 (4, 5) in all theÉJ , 0 …Å ÉJ , 0, 0 … , [18]
calculations presented here.

ÉJ , K …Å0(1/
√
2)(ÉJ , K , 0 …/ (01)K

ÉJ ,0K , 0 …) , [19] The frame protons are labeled 1 and 2, and the top
protons are labeled 3, 4, and 5 in a clockwise sense whenand
viewed from the frame ( see Fig. 1 ) . The center of mass

ÉJ ,0K …Å ( i /
√
2)[ÉJ ,0K , 0 …0 (01)K

ÉJ , K , 0 …] , [20] of the H2 frame is labeled f , the center of mass of the
CH/

3 top is labeled t , and the center of mass of the entire
molecule is labeled 0. We define the molecule fixed xyzwhere K Å 1, 2, . . . , J . If we let Ép … represent the pth

product of numerical contortion function Émp … with Szalay- axes to have origin at 0 and to be tied to the frame; the z
axis points from t to f , the y axis is in the plane of theLane basis function ÉJpKp … , and let Éq … represent the qth

product, then the (pq) th matrix element of the Hamiltonian frame with H1 having positive y value, and the x axis is
such that the axes are right handed. The tilt angle u is thecan be written as
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TABLE 1
The Cartesian Coordinates for the Precessing Internal

Rotor Model of CH/
5

FIG. 1. The atom labeling convention. The configuration shown here
has t Å 1207.

angle between the t r C axis and the t r f axis. We tie
right handed x *y *z * axes to the CH/

3 top with z * being the
t r C axis and y * being in the H3Ct plane with H3 having
a positive y * coordinate. The orientation of the x *y *z * axes
relative to the xyz axes is given by the Euler angles u ( the
angle of tilt ) , f, and x. When u Å 0 the torsional angle
t is the angle measured in a right handed sense about the
z * Å z axis from the yz plane to the y *z * plane, and t Å
f / x. For u x 0 the appropriately precessing internal
rotation motion is achieved by taking f Å (3t 0 p /2 )
and x Å (02t / p /2 ) which retains t Å f / x. In our

the CH/
3 group remains with fixed and equal CH bondHamiltonian u is fixed and t is the dynamical variable.

lengths and HCH bond angles, and the C3 axis precessesUsing the direction cosine matrix with these expressions
around the z axis at three times the rate of internal rotationfor the Euler angles f and x in terms of t we obtain the
and tilted at a constant angle u from the z axis. The expres-analytic expressions for the nuclear coordinates to be as
sions for the coordinates of the nuclei in the top could begiven in Table 1. The expressions given in Table 1 involve
used for any molecule having a tilted and precessing CH3the following t-independent geometrical factors,
rotor attached to a frame.

q1 Å rCHsin(p 0 aT ) IV. RESULTS AND DISCUSSION

q2 Å [mC/(3mH / mC)]rCHcos(p 0 aT )
The coefficients of JO 2

t , JO 2
z , JO 2

y , JO 2
x and Ĵz Ĵt are mtt/2,

q3 Å [3mH/(3mH / mC)]rCHcos(p 0 aT ) mzz /2, myy /2, mxx / 2, and mzt , respectively. In the Tan and
Pratt Hamiltonian (1 ) these coefficients are called F , AF ,q4 Å [2mH/(5mH / mC)]R [25]
B , C , and 02AFcos u respectively, and the parameters F ,

q5 Å [(3mH / mC)/(5mH / mC)]R AF , B , and C are taken to be independent of u and t. Table
2 shows these calculated Hamiltonian coefficients for fiveq6 Å rXHsin(aF)
tilt angles, from 07 to 13.437 ( the latter being the average

q7 Å rXHcos(aF) , ab initio tilt angle for CH/
5 (14 ) ) , at the t Å 07 (a mini-

mum in V ) and t Å 307 (a maximum in V ) positions.
The data show a dramatic decrease in the magnitudes ofwhere mH and mC are the atomic masses, R is the distance

between the centers-of-mass of the top and frame, rCH is mtt , mzz , and mzt as the tilt angle is increased, and the
neglect of this dependence is a serious error if the tiltthe C–H bond distance in the top, rXH is half the H–H

distance in the frame, aT is the angle between the C r H angle is not negligible.
Also worthy of note is the importance of some otherbonds of the top and the t r C axis, and aF is the angle

between the H2 r H1 bond of the frame and the z axis. coupling terms. The choice of principal axes for the mole-
cule-fixed xyz axis system ( i.e., PAM) does not removeFrom ab initio calculations (14 ) , we take R Å 1.1425 Å,

rCH Å 1.0907 Å, rXH Å 0.4807 Å, aT Å 106.167, and aF the Ĵa Ĵb terms from the rotation–contortion Hamiltonian,
because of contributions from Iat elements. There is per-Å 907, from which the qi values quoted in Table 1 are

obtained. The expressions given in Table 1 are such that haps a (t-dependent ) coordinate transformation (as Tan
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TABLE 2 TABLE 4
The Coefficients ( in cm01 ) of JO 2

t , JO 2
z , JO 2

y , The Wavenumbers ( in cm01 ) of the J Å 2 R 1
and 1 R 0 Rotational Transitions with K Å 0JO 2

x and Ĵz Ĵt as Functions of the Tilt Angle u
and Torsional Angle t

13.437 there are large differences, and the energies of
and Pratt (1 ) suggest ) other than the PAM that can remove the approximate Hamiltonian are spaced much wider with
the Ĵa Ĵb terms, although Ĵa Ĵt terms will remain. increasing Ki . In the calculation using the Hamiltonian of

The calculated energies are given in Table 3 for the Ref. (1 ) the values for F , AF , B , and C correspond to
precessing internal rotor model for the CH/

5 molecular values of mtt/2, mzz /2, myy /2, and mxx /2, respectively, for
ion, with tilt angle u Å 07 and 13.437, using both our exact u Å t Å 07. It is interesting to note that using the exact
rotation– torsion Hamiltonian and the Hamiltonian of Ref. Hamiltonian the energy of the levels having J Å 1, 2, 3,
(1 ) . For u Å 07 the results are the same, but for u Å . . . with K Å Ki Å 0 are only slightly affected when the

tilt angle is changed from 07 to 13.437 as one would expect
( since the distance between the centers of mass of the top

TABLE 3 and frame are unaffected by the angle of tilt and it is this
The Rotation–Torsion Energy Levels ( in cm01 ) Obtained distance which largely governs the values of the K Å Ki

for J Å 0 and 1 for Two Values of the Tilt Angle u Å 0 energies ) , whereas using the Hamiltonian of Ref. ( 1 )
they are strongly shifted (5 ) .

Some K Å 0, J Å 2 R 1 and 1 R 0 transition energies
are listed in Table 4 for CH/

5 using several different tilt
angles computed using our general Hamiltonian. The in-
corporation of a precessing tilt in the methyl group has
the effect of splitting these transitions by 0.01 to 0.02
cm01 , and of shifting them to higher wavenumber by 0.02
to 0.06 cm01 .

In a following paper (14 ) we apply the general rota-
tion–contortion Hamiltonian to the calculation of the rota-
tion– torsion energy levels of CH/

5 using a full ab initio
minimum energy path in which all bond lengths and angles
are allowed to vary as the molecule internally rotates. The
energies obtained are very different from those obtained
earlier (4, 5 ) , partly because the earlier work uses the
approximate rotation– torsion Hamiltonian of Ref. (1 ) ,
which is not appropriate when the tilt angle is large, and
partly because the CH/

3 group distorts as it internally ro-
tates.
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