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By the accummulation of branching factors in diffusion quantum Monte Carlo (DQMC) and
their use as statistical weights, instead of the standard deletion and replication of
configurations, we can estimate the averages of (nondifferential) operators taken over the
exact electron distribution. This requires only a trivial modification of existing DQMC codes.
We illustrate our algorithm by computing ground-state properties for H, and LiH which are
related to the interelectron distance. We also estimate the dipole moment of LiH.

1. INTRODUCTION

Diffusion quantum Monte Carlo (DQMC) is the sim-
plest of various quantum Monte Carlo techniques available
to solve the Schrodinger equation; for a recent review of
quantum Monte Carlo see Ref. 1. Several DQMC applica-
tions have been reported; a reasonably complete list of cita-
tions appears in recent papers published by Garmer and An-
derson,> Hammond, Reynolds, and Lester, Jr.,> and by
Rothstein, Patil, and Vrbik.*

First it is necessary to review some basic terminology
and theory. We will solve the following modified Schro-
dinger equation:

~ (1/2)Vf(R,1) + [EL(R) — E]f (R,1)
+ V-[f (ROF(R)] +‘9—f%"ﬂ= 0, (1

where R represents the 3n Cartesian coordinates of the n
electrons in the atom or molecule, and E, is the exact
ground-state energy. The other quantities depend upon
¥r (R), a known approximate trial solution of the time-de-
pendent Schrodinger equation: F(R) = V¢, /¢, and (the
“local energy”) E, (R) = Hy /. The objective of using
the trial solution is to reduce the variance of the stochastic
estimate of the ground-state energy.

It can be shown that the asymptotic (#— « ) solution to
Eq. (1), f(R) say, is equal to ¢ (R) @, (R), where ¢, (R) is
the exact ground-state wave function. The function f (R)
can be interpreted as a probability density function of a sta-
tistical distribution, and as such it can be approximated by
computer simulation methods. In DQMC simulations one
starts with an “ensemble” of n-electron *“‘configurations”
{R,,i = 1,N}, chosen arbitarily. Then one moves the elec-
trons from R to R’ in a prescribed manner, corresponding to
a small fixed time interval (‘“‘time step””) 7. The move is
designed to simulate the action of the Green’s function for
Eq. (1), but involves several approximations, so that / (R)
and other results become exact only when subsequently ex-
trapolated to time step zero. After a large number of
“moves” (called iterations) the distribution of configura-
tions stabilizes (by reaching an equilibrium independent of
time). The ensemble is then distributed according to f (R)
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(plus a small error of the order 7) and may be viewed as a
random sample drawn from this distribution.

Here we need be more specific only in the following:
Simulating the contribution to the Green’s function from the
second term requires a process called “branching.” This in-
volves a random replication or deletion of configurations;
more specifically, one makes

B, =exp{ —7[E.(R,,) — E,]} (2)

copies of each configuration, where / denotes the configura-
tion and & the iteration number. (We will refer to B;, asthe
“pranching factor.”)

Some time ago Liu, Kalos, and Chester” indicated how
to sample the exact distribution, #3 (R), using effectively the
same simulation procedure. They proved that, in the expect-
ed value sense, the number of “descendants” of each config-
uration R;, “many” iterations later, is equal to ¢(R;)/
¥ (R;). Let us call this number N,;. If one then uses the set
of N; as weights when averaging some quantity Q(R) (eva-
luted at each R,, distributed as ¢¥1¢,):

N N
Q.= ON/3 N, (3)

i=1 i=1

one estimates the expected value of Q taken over the exact
distribution of electrons, since

Q). = f Q(R) (do/tr) (Yro)d R/
f ($o/¥r) (Yrdo)d R

=fQ(R)¢?, dR f¢g dR. (4)

Obviously, it is computationally rather difficult to im-
plement Liu ez al.’s algorithm: before taking the average of Q
in the present iteration one must determine not only the num-
ber of immediate descendants of each configuration, but also
the descendants of these, for many iterations in the future.
Nevertheless, a program to do this has been written and ap-
plied to H, and N, by Reynolds et al.° This is a preliminary
publication; more details will appear in a followup paper.’
Reference 6 also reports some results for @ being replaced by
a differential operator.
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We describe below an algorithm which can achieve the
same objective, but it requires only a minor modification of
DQMC as it circumvents the complications introduced by
having to look far into the “future.”

The theoretical basis of our work rests on the following
relatively simple argument: without branching the simulated
distribution is the ‘“variational” one, corresponding to
¥ (R)2. [This may be easily derived by substituting #2. into
Eq. (1) without the second term.] On the other hand, with
branching we obtain the mixed distribution ¥,-(R)@,(R),
this being the standard result of DQMC. One would like to
carry this a step further, to “square,” so to speak, the branch-
ing and obtain ¢3, but this cannot be done using the standard
process of deletion and replication of configurations. But,
suppose instead of performing the usual branching, we sim-
ply accummulate the branching factors [Eq. (2)] for many
iterations (denote the cummulative weight carried by the ith
configuration R, by #;). If we then make the corresponding
number ( W;) of replicates of each final R; in the ensemble,
the distribution of these is immediately converted from the
variational to the mixed one, (This implies that the weights,
like the number of “descendents,” are proportional to ¢,/
¥r.) Equivalently, we may use the W;’s as weights in all
averages, and we must get identical results as the old proce-
dure (in terms of the expected values of nondifferential oper-
ators). Finally, it follows that by averaging any quantity Q
with the squared weights:

. N N
o.=5 ow /s wi, (5)
i=1

i=1

one has an estimate of the exact expected value:

Q). = f Q(R)(¢o/1//r)2(¢'2r)dR/
f(¢o/¢r)2(¢21)dR, (6)

where the R’s remain distributed according to the “vari-
ational” distribution. Thus we have avoided the problem of
following the future course of the configurations to do the
exact averaging. Furthermore (as we will show below), the
only significant additional programming requirement is to
keep track of the local energies for sufficiently many of itera-
tions in the past (this from a computational point of view
requires only some increase in memory size).

As mentioned above, the DQMC results have a r-relat-
ed bias. This necessitates estimating the exact expectation
value by extrapolating the 7-biased averages [Eq. (5) and
Eqgs. (10) and (11) below] to zero time step. (This must be
done carefully to achieve reasonable reliability for the final
estimate. We emphasize this point in Sec. II. Also, when
using weights, the following problem arises: It is easy to
show [see Eq. (8) below] that the variance of the individual
weights increases proportional to M (the number of itera-
tions). Thus, in the M— o limit only one configuration
would essentially contribute to all averages. This implies
that mindlessly accumulating weights throughout the whole
simulation would totally ruin the statistical efficiency, to the
extent of making this procedure useless.

We have resolved this by accummulating only a relative-
ly small number of weights (L, say) before doing the averag-
ing, and maintaining this number for all iterations. We can
show that making L 7 dependent (according to L = A7~ ¢,
where 1 < a < 2) will alleviate the variance problem, without
introducing a zero order of 7 bias to the extrapolated expect-
ed values.

Firstly (to prove no bias), it is safe to assume that stabi-
lization occurs after A4 /r iterations, so if we chose a bigger
than 1, the equilibrium distribution will be guaranteed in the
7—0limit. The proper choice of A should result in a value of
L which is more than sufficient for good equilibrium even at
the largest time step.

Second (to prove the variance is under control), using
Eq. (4), the total weight accummulated by the ith configura-
tion in L consecutive iterations is given by

L
m = H Bi,k

k=1

L
=exp[ -7 z [EL(R,) —Eo]]. ' €))

k=1

Now

L
Var(W,-)::Var['r z [EL(R;x) — Ep) +0(1’2)]
k=1

=7L{Var[E_(R)]
X (142" + 207+ --)} + 0(). (8)

The infinite series of serial correlation coefficients for the
local energies sums to a quantity proportional to 7! (Ref.
8). Thus, for Loc 79,

Var(W,) =Ar' ~°, ()]

where A is a positive constant.

For a equal to 1.5 (our choice for this paper) the vari-
ance of the weights carried by the configurations is no worse
than the variance due to the serial correlation of consecutive
iterations (present even in simulations with no branching;
Ref. 8), therefore not introducing any additional difficulties.

To summarize our algorithm: First select a fixed num-
ber of configurations N of the order of several hundred. The
total number of iterations M and much smaller value of L are
chosen, the latter proportional to 7~>2, After a suitable
number of iterations to equilibrate the ensemble, run the
DQMC program for L iterations, and then compute W, for
each configuration from Eq. (7). (Here one may set E, =0
since it cancels out in our estimators.) The local energies
generated in the subsequent iteration replace those obtained
in the first of these L iterations; those of the next iteration
replace those obtained in the second, etc. (This may be
viewed as a “push up stack” of E; values, efficiently pro-
grammed by using a cyclic index to label the iteration num-
ber.)

After each such iteration, compute Q, [Eq. (5)], an
estimate of the exact expectation value. In addition, for the
purposes of this paper, we also compute
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Qm=§:Qim g:u/n

(10)
i=1 i=1
N
i=1
the mixed and variational expectation value estimates, re-
spectively.

Continue to iterate until M estimates [Eqgs. (5), (10),
and (11)] are obtained. The average of these provides a
grand mean estimate of the respective time step biased ex-
pectation value of the quantity Q. The whole procedure
needs to be repeated with several different values of 7, and all
results must be extrapolated (by regression) to 7 =0.

As is almost always the case in DQMC applications, we
use a linearly accurate DQMC algorithm. (This means that
the distributions and expectation values have a bias, the
dominant term of which is proportional to 7 itself.) To this
accuracy we may employ the following branching factor
which is less sensitive to singularities in the local energy:

B:,k =1- T[EL (Ri,k) _Eo], (12)
with a corresponding
L
wi=1I {1—r[E.(R,,) — E)} (13)
k=1

where E, should be a reasonably good estimate of the
ground-state energy. (The procedure is not overly sensitive
to the particular choice of E,.)

In Sec. II we will show that expectation values for H, are
consistently estimated using either choice of weights: Eq.
(7) or (13). For the sake of convenience we will only use the
“linear weights” [ Eq. (13) ] for simulations done on another
small molecule: LiH.
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Il. APPLICATIONS

First we will apply our algorithm to compute various
properties related to the interelectronic distances for the
ground state of H,: powers of r,, and of the longitudinal («, )
and transverse (u,) projections of r,,; the u, are by defini-
tion nonnegative. The guiding function (¥ ) was ¢, in the
notation of Ref. 9. We use the BJDJB algorithm, one of
several reported in Ref. 4, because for our guiding function it
produced the best (least time step biased) estimates of the
ground-state energy over a large interval of time steps.

As described in detail in Ref. 4, one iteration involves
four changes in the locations of the electrons in each configu-
ration, namely: diffusion, followed by two drifts, and an-
other diffusion. All quantities are evaluated after each of the
four moves. The average (per electron) of these four evalua-
tions is in turn weight averaged over the ensemble of configu-
rations, using Egs. (5), (10), and (11).

Extreme values of 1/r,, (1/r,,)? and 1/u_ were trun-
cated. The cutoffs are designed to control the variance of
estimators, without introducing a zero order (in 7) bias into
their expected values. For this purpose, we obtained histo-
grams of these quantities and chose 7~ -dependent and 7~ -
dependent cutoffs, where appropriate, to truncate about 1%
of the values at our largest time step. Theoretical justifica-
tion for the cutoffs is in direct analogy to those employed by
us in some relativistic calculations.'*

The results of extrapolating (Q ) (7) (the r-biased ex-
pectation values) to zero 7 appear in Table I, together with
analytical values either computed or cited by Sharma and
Thakkar.'® We used third order polynomial weighted

regression. The ground-state energy estimate (here, only the

TABLE I Energy and properties derived from the interelectronic distance vector for H, molecule ground state
at R = 1.401 bohr, using two weighting schemes. Energy units are hartrees and distance units are bohr.

DQMC*
Our procedure Approximate formula®

we we we we Analytical
(EL)m — 1.174(3) — 1.174 475°
A, 5.64(6) 5.65(7) 5.52(6) 5.55(7) 5.63239°
{(r). 2.17(1) 2.18(1) 2.15(1) 2.15(D) 2.168 95°
(ra". 0.587(3) 0.590(4)  0.588(3) 0.590(2) 0.587 366°
(rad. 0.518(4) 0.517(4)  0.516(5) 0.515(5) 0.518 27"
(u?), 2.39(3) 2.39(3) 2.32(2) 2.32(2) 2.3652¢
(lu,]). 1.244(7) 1.245(8) 1.235(5) 1.234(5) 1.244 1F
(). 3.28(6) 3.27(6) 3.25(5) 3.24(5) 3.2672°
(u.). 1.57(2) 1.57(2) 1.57(1) 1.56(1) 1.569 9
(u=-". 1.03(1) 1.03(1) 1.03(1) 1.03(1) 1.040 4

2 Algorithm BIDJB of Ref. 4 with modifications described in the text. Simulations used (M = )500 configura-
tions and (L = )INT(1.1873/?) configurations to accummulate the configuration weights. Several runs of
500 hundred iterations each were done at six equally spaced time time steps in the range 0.03-0.18 a.u. Paren-
theses denote one standard deviation of the 7 = 0 intercept derived from weighted regression of the grand

mean of the runs.
b Approximate formula, Eq. (14).
¢ Equation (13).
9Equation (7).
°Nearly exact value; for energy Ref. 12, for moments Ref. 13.
fDerived from 36 correlated Gaussian geminals; Ref. 10.
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TABLE II. Energy, dipole moment, and properties derived from the interelectronic distance vector for LiH
molecule ground state at R = 3.015 bohr. Energy units are hartrees and distance units are bohr.

DQMC* Best CI calculation

(E)m — 8.0667(6) — 8.0690°

). —2.287(25) —2.30°
Parallel spin Antiparallel spin

(R2). 13.2(1) 9.9(1)

(ra)e 3.42(1) 2.72(1)

rah. 0.333(2) 0.66(1)

(rg®, 0.132(1) 1.17(1)

(ul), 8.98(6) 5.55(4)

(u.). 2.718(6) 1.86(1)

(u?), 4.2(1) 4.3(1)

(u,), 1.70(2) 1.65(2)

=", 1.09(1) 1.29(2)

2 Algorithm BDJB-PUSH (Ref. 16) with branching removed. Simulations used (M = )600 configurations
and (L = )INT(0.57~'2) configurations to accummulate the configuration weights [Eq. (13)]. Several
runs of 600 hundred iterations each were done at seven time steps in the range 0.15-0.12 a.u. Parentheses
denote one standard deviation of the zero time step intercept derived from weighted regression of the grand

mean of the runs.

"Ref. 17. The exact energy is equal to — 8.0700 a.u. (Ref. 15) and the experimental dipole moment is — 2.29

a.u. (Ref. 18).

mixed distribution is required) also appears in Table I.

We also tested the following approximate formula (first
derived by Ceperley and Kalos'!), which is accurate to the
same order as the trial function itself:

(@), =2(Q),, ~(Q).. (14)

The results are also quoted in Table 1.

The exact-sampling results are well within statistical er-
ror of the true analytical values. The approximate formula
[Eq. (14)] is reasonably accurate for some estimates
(which was also the case in applications by Reynolds et al.?),
but has a noticable error for a few other properties: 7%,,u2,
and |, | in particular.

The precision of our regression intercepts is typically
1%, reasonable in light of the simplicity of our guiding func-
tion (double-& quality SCF with a single Jastrow correlation
function) and the modest CPU invested in our calculations.
One finds no apparent advantage to using W/ over W, in
terms of the accuracy or the variance of the extrapolated
values.

Next we consider the LiH molecule. Here we face the
inevitable (but relatively small) error of simulating the exact
electron distribution using the incorrect nodes of the trial
function ¢, (again, a double-{ quality SCF with a single
Jastrow correlation function®!3). Also, due to the electrons
“overshooting” the nuclei (much more severe than in the
case of H,*), special techniques'® must be employed to deal
with the resulting time step error introduced into the local
energy and all other simulated properties. This necessitates
extreme care to ensure that the extrapolated intercepts are
reliable. (In addition to the statistical error of the intercepts,
there is a systematic error introduced by using a specific

simple regression model which can only approximately
“mimic” the exact 7 dependence.)

Unlike the case of H,, the LiH simulations were done
using the BDJB-PUSH "' algorithm. For each configura-
tion in one iteration there are now three changes in the loca-
tions of the electrons: diffusion, drift, and then an extra
“push.” Again unlike H,, evaluations taken after each loca-
tion change were kept separate; ultimately we obtain three
distinct (Q ) (7) vs 7 curves for each property.

We fit the three curves by weighted regression using first
the simplest “plausible” polynomial model (by plausible we
mean a set of fits with good agreement between the three
7 =0 intecepts—the true values of these intercepts must be
identical) and then again, using the next highest polynomial,
as a way of estimating the “model bias.”!*> We quote as our
final estimate the average of all these, together with an error
which we believe is sufficient to account for both the statisti-
cal and systematic uncertainly. (It would be very difficult
trying to separate the two.)

The results appear in Table I1. Both the energy and di-
pole moment estimates are in excellent agreement with the
true values. We are not aware of any analytical values for the
remaining properties which appear in the table.
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