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Abstract. The matrix equation X + ATX−1A = Q has been studied extensively when A and
Q are real square matrices and Q is symmetric positive definite. The equation has positive definite
solutions under suitable conditions, and in that case the solution of interest is the maximal positive
definite solution. The same matrix equation plays an important role in Green’s function calculations
in nano research, but the matrix Q there is usually indefinite (so the matrix equation has no positive
definite solutions) and one is interested in the case where the matrix equation has no positive definite
solutions even when Q is positive definite. The solution of interest in this nano application is a special
weakly stabilizing complex symmetric solution. In this paper we show how a doubling algorithm can
be used to find good approximations to the desired solution efficiently and reliably.
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1. Introduction. The non-equilibrium Green’s function formalism provides a
powerful conceptual and computational framework for treating quantum transport in
nanodevices [6]. Typically the system Hamiltonian H is a bi-infinite or semi-infinite
block tridiagonal real symmetric matrix [1, 6, 15, 16, 21]. The semi-infinite case is
slightly easier to handle. So we assume H is bi-infinite, and in that case H is usually
of the form

H =

 HL HL,S

HT
L,S HS HS,R

HT
S,R HR

 ,
where HS is the Hamiltonian for the scattering region, which is an ns×ns symmetric
matrix, HL is the Hamiltonian for the left lead, given by

HL =


. . . . . .
. . . BL AL

ATL BL AL
ATL BL

 ,

∗Version of May 26, 2010.
†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada

(chguo@math.uregina.ca). The work of this author was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada and by the National Center for Theoretical
Sciences in Taiwan.
‡Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

(wwlin@math.nctu.edu.tw). The work of this author was partially supported by the National Science
Council and the National Center for Theoretical Sciences in Taiwan.

1



2 CHUN-HUA GUO AND WEN-WEI LIN

where all matrix blocks are nl × nl, AL 6= 0 and BL is symmetric, and HR is the
Hamiltonian for the right lead, given by

HR =


BR AR
ATR BR AR

ATR BR
. . .

. . . . . .

 ,
where all matrix blocks are nr × nr, AR 6= 0 and BR is symmetric. The matrix HL,S

represents the coupling between the scattering region and the left lead and is given
by

HL,S =


...
0
0

CL,S

 ,
where CL,S is nl × ns, and the matrix HS,R represents the coupling between the
scattering region and the right lead and is given by

HS,R = [DS,R 0 0 . . .] ,

where DS,R is ns × nr.
The Green’s function G is defined [5, 7] by

G = ((E + i0+)I −H)−1 = lim
η→0+

((E + iη)I −H)−1,

where E is energy, a real number that may be negative, and I is the identity operator.
We will also use Ir (or simply I) to denote the identity matrix of dimension r. Since
H is real symmetric, it is easily seen [5, 7] that G = G1 + iG2 with G1 and G2 real
symmetric (so G is complex symmetric). In practice, one is only interested in GS , the
Green’s function corresponding to the scattering region. It is easily found [5, 15] that

GS =
(
(E + i0+)I −HS −HT

L,SGLHL,S −HS,RGRH
T
S,R

)−1

=
(
(E + i0+)I −HS − CTL,SGL,SCL,S −DS,RGS,RD

T
S,R

)−1
,

where GL = ((E + i0+)I − HL)−1, GR = ((E + i0+)I − HR)−1, GL,S is the nl × nl
matrix in the lower-right corner of GL, and GS,R is the nr×nr matrix in the upper-left
corner of GR. Moreover, one is only interested in the values of E for which GL,S and
GS,R, respectively, have nonzero imaginary parts [16]. Computing GL,S and GS,R has
been a challenging problem for nano-scientists.

It is easily seen [15] that GL,S satisfies the matrix equation

GL,S = ((E + i0+)I −BL −ATLGL,SAL)−1,

and GS,R satisfies the matrix equation

GS,R = ((E + i0+)I −BR −ARGS,RATR)−1.

For each fixed E , we take η > 0 sufficiently small and compute GL,S(η), the nl × nl
matrix in the lower-right corner of GL(η) = ((E + iη)I − HL)−1. In [1, 15, 21], the
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values of E are between −5 and 5 and the smallest η used is 10−6. Now GL,S(η)
satisfies the matrix equation

X = ((E + iη)I −BL −ATLXAL)−1, (1.1)

and GL,S(η) is taken to be an approximation to GL,S . Similarly, GS,R is approximated
by GS,R(η), which is the nr × nr matrix in the upper-left corner of GR(η) = ((E +
iη)I −HR)−1 and is a particular solution of

X = ((E + iη)I −BR −ARXATR)−1. (1.2)

Since (1.1) and (1.2) have the same type, we only need to study (1.1).
A basic numerical method for finding GL,S(η) is the fixed-point iteration [21]

X(k+1) = ((E + iη)I −BL −ATLX(k)AL)−1 (1.3)

with X(0) = ((E + iη)I −BL)−1. It has been observed that the iteration converges in
practice and the limit is the required matrix GL,S(η) (rather than a different solution
of (1.1)). The convergence of the iteration has been observed to be very slow for η
close to 0. Note that we cannot take η = 0 for this iteration. Since otherwise the
sequence X(k) (even if well defined) would be real, and would not approximate GL,S ,
which is to have a nonzero imaginary part. To speed up the convergence of (1.3) the
following strategy is suggested in [21]: once X(k+1) has been computed from X(k),
replace X(k+1) by (X(k+1) + X(k))/2 and proceed with the iteration. Since GL,S(η)
needs to be computed for many different values of E , it is also suggested in [1, 21]
that the GL,S(η) computed at a given energy be used as the initial guess for GL,S(η)
at the next nearby energy point.

Other methods have also been considered. In [15] the equation (1.1) is rewritten
as

ATLXALX − ((E + iη)I −BL)X + I = 0 (1.4)

and Newton’s method with exact line searches (as in [14]) is used, possibly preceded
by the fixed-point iteration (1.3). In [15] η = 0+ in theory, but η is taken to be 2×10−6

in actual computations. Whether this Newton method will always converge to the
solution GL,S(η) is left as an open problem in [15]. Another approach is suggested in
[16]. In that approach one would obtain the equation

ATLY
2 − ((E + iη)I −BL)Y +AL = 0 (1.5)

by post-multiplying (1.4) by AL, where Y = XAL. The equations (1.4) and (1.5) are
equivalent when AL is nonsingular. In [16] η = 0 is assumed. If the right solution Y
of (1.5) is found, then GL,S = Y A−1

L is obtained. To find Y the auxiliary matrix[
0 I

−(ATL)−1AL (ATL)−1(EI −BL)

]
(1.6)

is used. Assuming this matrix is diagonalizable, the required solution Y can be found
(see [13]) by selecting nl linearly independent eigenvectors of (1.6). However, there
is no explanation in [16] how these nl eigenvectors can be selected from the 2nl
eigenvectors. Moreover, this approach does not work when AL is singular. Indeed,
for a simple example given in [16], AL is singular but the solution GL,S can be found
analytically.
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In this paper we show how a doubling algorithm can find the desired solution
GL,S(η) of (1.1) and the desired solution GS,R(η) of (1.2). Our numerical experiments
indicate the efficiency and reliability of the doubling algorithm. The algorithm works
very well even when η is taken to be very close to 0.

Our starting point is to rewrite (1.1) as

X +ATX−1A = Q, (1.7)

where

A = AL, Q = QL + iηI, QL = EI −BL, (1.8)

and the required solution is X = (GL,S(η))−1. Similarly, we rewrite (1.2) as

X +AX−1AT = Q, (1.9)

where

A = AR, Q = QR + iηI, QR = EI −BR, (1.10)

and the required solution is X = (GS,R(η))−1.
We often have AL = AR and BL = BR (in [15] for example). In this case, the

doubling algorithm is able to compute GL,S(η) and GS,R(η) simultaneously.

2. Characterization of GL,S(η) and GS,R(η). The matrices GL,S(η), GS,R(η)
have been uniquely defined through the inverses of semi-infinite block Toeplitz ma-
trices. They are also particular solutions of the matrix equations (1.1) and (1.2),
respectively. Those matrix equations may have many other solutions. So we need
to give a characterization for GL,S(η) and GS,R(η), in terms of the matrix equa-
tions (rather than the infinite matrices). We only need to derive results for GL,S(η),
analogous results for GS,R(η) follow readily.

We have rewritten (1.1) as (1.7), by replacing X in (1.1) with X−1. When Q is a
real symmetric positive definite matrix (which is possible here only when η = 0), the
matrix equation (1.7) has been studied extensively (see [3, 8, 10, 11, 12, 17, 20, 22]).
In all those papers the desired solution is the maximal positive definite solution (when
it has at least one positive definite solution). As we will explain later, in the nano
application we are only interested in values of energy E for which the equation (1.7)
with Q = EI −BL has no positive definite solutions.

When A is nonsingular, with Y = X−1A the equation (1.7) is equivalent to the
quadratic matrix equation

ATY 2 −QY +A = 0,

for which we have the associated quadratic eigenvalue problem

P (λ)x = 0, x 6= 0,

where P (λ) = λ2AT − λQ+A.
We will not use this connection to solve the equation (1.7) since the matrix A may

be singular in the application we have in mind. However, we will use the quadratic
matrix polynomial P (λ) in our discussions even when A is singular.

Theorem 2.1. Let A and Q be as in (1.8) and T be the unit circle. Then the
quadratic P (λ) = λ2AT − λQ + A has no eigenvalues on T for any η 6= 0. In this
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case it has exactly nl eigenvalues inside T (counting multiplicities) and exactly nl
eigenvalues outside T (counting multiplicities and including eigenvalues at ∞).

Proof. The quadratic P (λ) has eigenvalues on T if and only if detP (λ) = 0 for
some λ ∈ T, or equivalently det(λAT + λ−1A − QL − iηI) = 0 for some λ ∈ T.
However, for any λ ∈ T the matrix λAT + λ−1A−QL is Hermitian and thus has real
eigenvalues ν1, ν2, . . . , νnl

. The eigenvalues of λAT + λ−1A − QL − iηI are then the
nonzero numbers ν1 − ηi, ν2 − ηi, . . . , νnl

− ηi. So det(λAT + λ−1A−QL − iηI) 6= 0
for any λ ∈ T. Thus the quadratic P (λ) has no eigenvalues on T. The location of
the eigenvalues must be as stated since P (λ) is a T -palindromic matrix polynomial
(see [18]). More precisely, the number ξ is an eigenvalue of the quadratic P (λ) if and
only if ξ−1 is so, and they have the same partial multiplicities (see [18, Theorem 2.2]).

Let X be any complex symmetric solution of (1.7) and ρ(·) denote the spec-
tral radius. Then ρ(X−1A) = ρ((X−1A)T ) = ρ(ATX−1). We adopt the following
definition.

Definition 2.2. A complex symmetric solution X of (1.7) is said to be stabilizing
if ρ(X−1A) < 1, and weakly stabilizing if ρ(X−1A) = 1.

Let

M0 =
[
A 0
Q −I

]
, L0 =

[
0 I
AT 0

]
. (2.1)

Then the pencil M0 − λL0 (also denoted by (M0, L0)) is a linearization of the T -
palindromic polynomial λ2AT − λQ + A, and X is a solution of (1.7) if and only
if

M0

[
I
X

]
= L0

[
I
X

]
X−1A. (2.2)

It follows that each complex symmetric solution of (1.7) is determined by a suitable de-
flating subspace of the pencil M0−λL0. The required matrix GL,S = limη→0+ GL,S(η)
is the inverse of a special complex symmetric solution of (1.7) with η = 0, and we
are only interested in the values of E for which GL,S has a nonzero imaginary part.
We will see later in this section that for those values of E the pencil M0 − λL0 (or
equivalently the quadratic λ2AT −λQ+A) must have eigenvalues on T and that GL,S
is the inverse of one of the weakly stable solutions of (1.7) with η = 0. For η > 0,
the pencil M0 − λL0 has no eigenvalues on T by Theorem 2.1. This is a necessary
condition for the existence of a (necessarily unique) stabilizing solution of (1.7). By
using a deep result on linear operators, we will show that the equation (1.7) with
η > 0 always has a stabilizing solution and its inverse is precisely the matrix GL,S(η)
we are looking for.

Recall that GL,S(η) is the nl×nl matrix in the lower-right corner of ((E + iη)I −
HL)−1. Note that

(E + iη)I −HL =


. . . . . .
. . . Q −A

−AT Q −A
−AT Q

 .

It is easy to see that GL,S(η) is also the nl×nl matrix in the upper-left corner of T−1
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with

T =


Q −AT
−A Q −AT

−A Q
. . .

. . . . . .

 . (2.3)

This change is largely notational and is not needed if we discuss GS,R(η). The symbol
for the block Toeplitz matrix T is φ(λ) = −λA+Q− λ−1AT .

Let `2 be the usual Hilbert space of all square summable sequence of complex
numbers, and let `m2 be the Cartesian product of m copies of `2. The infinite matrix
(2.3) is then seen to be in B(`nl

2 ), the set of all bounded linear operators on `nl
2 . It is

clear that T = (ηi)I −W with W a self-adjoint operator in B(`nl
2 ). It is well known

that the spectrum of a self-adjoint operator is real. So, for each η > 0, T has an
inverse in B(`nl

2 ) since ηi is not in the spectrum of W . Thus, by appealing to a deep
result on linear operators (see [9, Chapter XXIV, Theorem 4.1] and [19]) we know
that φ(λ) has a factorization

φ(λ) = (I − λ−1L)D(I − λU) (2.4)

with D invertible, ρ(L) < 1 and ρ(U) < 1. From (2.4) we see that

A = DU, AT = LD, Q = D + LDU.

Thus D+ATD−1A = Q and ρ(D−1A) < 1. In other words, D is the unique stabilizing
solution of the equation (1.7), which must be complex symmetric. By [9, Chapter
XXIV, Theorem 4.1] the nl × nl matrix in the upper-left corner of T−1 is precisely
D−1. We thus have the following characterization of GL,S(η) and GS,R(η).

Theorem 2.3. The matrix GL,S(η) is the inverse of the unique stabilizing solu-
tion of (1.7), and the matrix GS,R(η) is the inverse of the unique stabilizing solution
of (1.9).

We will show in the next section that a doubling algorithm can compute GL,S(η)
and GS,R(η) efficiently, even if η is very close to 0. In the remainder of this section
we answer the following question: for what values of E will GL,S = limη→0+ GL,S(η)
have a nonzero imaginary part?

In the limiting case η = 0, the matrix Q in (1.7) is real symmetric. For real
symmetric (and more generally Hermitian) matrices X and Y , we write X ≥ Y (X >
Y ) if X − Y is positive semidefinite (definite). When Q is real symmetric positive
definite, necessary and sufficient conditions for the existence of a positive definite
solution of (1.7) have been given in [8].

Theorem 2.4. Let Q be positive definite. Then the equation (1.7) has a positive
definite solution if and only if the rational matrix function ψ(λ) = Q+ λA+ λ−1AT

is regular (i.e., the determinant of ψ(λ) is not identically zero) and ψ(λ) ≥ 0 for all
λ on T. In this case the equation (1.7) has a maximal positive definite solution X+

(i.e., X+ ≥ X for any other positive definite solutions).
The next result follows quite quickly from Theorem 2.4.
Theorem 2.5. Let Q be real symmetric, and for each λ on T the eigenvalues

of the Hermitian matrix Q + λA + λ−1AT be µ1(λ) ≤ µ2(λ) ≤ . . . ≤ µn(λ). For
i = 1, 2, . . . , n, let ai = min|λ|=1 µi(λ) and bi = max|λ|=1 µi(λ), and let ∆i = [ai, bi].
Then the matrix equation

X +ATX−1A = sI −Q (2.5)
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has a positive definite solution for s > bn, has a negative definite solution for s < a1,
and has no positive or negative definite solutions for a1 < s < bn. ψs(λ) = Q+ sI +
λA + λ−1AT The quadratic Ps(λ) = λ2AT − λ(sI − Q) + A has eigenvalues on T if
and only if s ∈ ∪1≤i≤n∆i.

Proof. For each i = 1, . . . , n, µi(λ) is a continuous function on T. So µi(T) = ∆i.
Since µ1(λ) ≤ µ2(λ) ≤ . . . ≤ µn(λ), we have a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤
. . . ≤ bn. Let ψs(λ) = sI − Q − λA − λ−1AT . If s > bn, then ψs(λ) ≥ sI − bnI > 0
for all λ ∈ T. Note that in this case we must have sI − Q > 0. In fact, we have
sI − Q − (A + AT ) > 0 for λ = 1 and sI − Q + (A + AT ) > 0 for λ = −1. Adding
this two we get 2(sI −Q) > 0. Now by Theorem 2.4 the equation (2.5) has a positive
definite solution. If s < a1, then ψ̂s(λ) = Q− sI + λA+ λ−1AT ≥ a1I − sI > 0. So
Q− sI > 0 and by Theorem 2.4 the equation X +ATX−1A = Q− sI has a positive
definite solution X∗. So −X∗ is a negative definite solution of (2.5). ψ̂s(λ) (for
s = −bn). We now show that the equation (2.5) has no positive definite solutions for
s < bn. In fact, the existence would imply ψs(λ) ≥ 0 for all λ ∈ T and then ψbn

(λ) > 0
for all λ ∈ T. This is impossible since ψbn(λ) is singular for some λ ∈ T. Similarly, the
equation (2.5) has no negative definite solutions for s > a1. The quadratic Ps(λ) =
λ2AT − λ(sI − Q) + A has eigenvalues on T if and only if detPs(λ) = 0 for some
λ ∈ T, or equivalently detψs(λ) = (s− µ1(λ))(s− µ2(λ)) · · · (s− µn(λ)) = 0 for some
λ ∈ T, the latter is equivalent to s ∈ ∪1≤i≤n∆i.

We use one simple example to illustrate the results in Theorem 2.5.
Example 2.1. Let n = 2, and

A =
[

0 0
1 0

]
, Q =

[
t+ 1 t
t t+ 1

]
, t ≥ 0.

This example is a special case of an example in [16]. For λ = eiθ we find

µ1(λ) = t+ 1−
√
t2 + 1 + 2t cos θ, µ2(λ) = t+ 1 +

√
t2 + 1 + 2t cos θ.

We then find

∆1 =
{

[0, 2t] , 0 ≤ t ≤ 1,
[0, 2] , t ≥ 1, ∆2 =

{
[2, 2(t+ 1)] , 0 ≤ t ≤ 1,
[2t, 2(t+ 1)] , t ≥ 1.

By Theorem 2.5 or direct verification, the equation (2.5) has a positive definite solution
for s > 2(t + 1), has a negative definite solution for s < 0, and has no positive or
negative definite solutions for 0 < s < 2(t+1). The quadratic Ps(λ) = λ2AT −λ(sI−
Q) + A has eigenvalues on the unit circle if and only if s ∈ ∆1 ∪ ∆2. In particular,
when t = 0 the quadratic Ps(λ) has eigenvalues on the unit circle only for s = 0, 2;
when t = 1 the quadratic Ps(λ) has eigenvalues on the unit circle for all s ∈ [0, 4].
For this example, the value t = 1 is the only one for which ∆1 ∪∆2 is connected.

We can now give the following result about when GL,S has a nonzero imaginary
part. A similar result can be given for GS,R.

Theorem 2.6. For λ ∈ T, let the eigenvalues of ψL(λ) = BL + λAL + λ−1ATL be
µL,1(λ) ≤ . . . ≤ µL,n(λ), where n = nl. Let

∆L,i =
[

min
|λ|=1

µL,i(λ), max
|λ|=1

µL,i(λ)
]
,

and ∆L = ∪ni=1∆L,i. Then GL,S is a real symmetric matrix if E /∈ ∆L, and is
a complex symmetric matrix if E ∈ ∆L. When E ∈ ∆L, the quadratic PL(λ) =
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λ2ATL − λ(EI − BL) + AL has eigenvalues on T. In the generic case that all these
eigenvalues on T are simple and nonreal, GL,S has a nonzero imaginary part.

Proof. By taking Q = BL, A = AL and s = E in Theorem 2.5, we know that
PL(λ) has eigenvalues on T if and only if E ∈ ∆L. The matrix GL,S is known to be
complex symmetric. If E /∈ ∆L, then we know by Theorem 2.3 that GL,S is determined
by the deflating subspace of M0 − λL0 corresponding to the n eigenvalues inside T,
where M0 and L0 are given in (2.1) with η = 0. So GL,S is a real matrix since AL
and BL are real. We now assume that E ∈ ∆L and that the eigenvalues on T are
simple eigenvalues αk ± βki (k = 1, . . . ,m), with βk > 0. In this case, for each η > 0,
PL,η(λ) = λ2ATL − λ((E + iη)I − BL) + AL has no eigenvalues on T (see Theorem
2.1). After the introduction of iη, one of the pair αk ± βki is moved to the inside
of T (the choice is independent of the size of η > 0 by the continuity of eigenvalues)
and the other is moved to the outside of T (by the property of T -palindromic matrix
polynomials). Therefore, GL,S is determined by the deflating subspace of M0 − λL0

(with η = 0) corresponding to the n − m eigenvalues inside T together with the m
eigenvalues on T that would be moved to the inside of T with the introduction of iη.
These n eigenvalues of M0 − λL0 must be those of GL,SA by (2.2). In this case GL,S
must have a nonzero imaginary part since otherwise the eigenvalues of GL,SA would
appear in conjugate pairs.

We remark that the numerical determination of ∆L in the above theorem may
require the computation of the eigenvalues of ψL(λ) for many fixed values of λ on T.
However, for each fixed λ on T, ψL(λ) is just a Hermitian matrix. The computation
of all its eigenvalues is a relatively easy task. We don’t have to do the computation
for too many points of λ on T. A rough numerical approximation of ∆L would be
sufficient. In this way, we can avoid the much more complicated computation of GL,S
for many energy values E of no practical interest. Moreover, in many cases ∆L,i and
∆L,i+1 overlap for i = 1, . . . , n− 1, so an accurate approximation of ∆L only requires
the computation of the extreme eigenvalues µL,1(λ) and µL,n(λ) for many λ values
on T.

3. Computation of GL,S(η) and GS,R(η). We know that GL,S(η) = X−1
s ,

where η > 0 and Xs is the unique stabilizing solution of (1.7). A doubling algorithm
has been studied in [17] for the equation (1.7) with a real symmetric positive definite
Q. In our case, Q is complex symmetric. However, the more general presentation in
[3, 4] can be used directly.

Let M0 and L0 be as given in (2.1). It is easy to verify that the pencil M0 − λL0

is T -symplectic, i.e.,

M0JM
T
0 = L0JL

T
0 for J =

[
0 I
−I 0

]
.

We can define the sequences {Mk} and {Lk}, where

Mk =
[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
ATk 0

]
, (3.1)

by the following doubling algorithm [3, 4] if no breakdown occurs.
Algorithm 3.1. Let A0 = A,Q0 = Q,P0 = 0.
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For k = 0, 1, . . ., compute

Ak+1 = Ak(Qk − Pk)−1Ak,

Qk+1 = Qk −ATk (Qk − Pk)−1Ak,

Pk+1 = Pk +Ak(Qk − Pk)−1ATk .

We will show shortly that this algorithm will not break down, and Qk converges
to Xs much more quickly than the sequence {Xk} generated by the following basic
fixed-point iteration.

Algorithm 3.2.

X0 = Q,

Xk+1 = Q−ATX−1
k A, k = 0, 1, . . . .

We will also show that the sequence {Xk} is well-defined and converges to Xs.
Note that the sequence {X(k)} from (1.3) is then well-defined and given by X(k) =
X−1
k . So we indeed have limX(k) = GL,S(η), as observed in numerical experiments.

Theorem 3.1. Let A and Q be as in (1.8) with η > 0. Let Xs be the stabilizing
solution of (1.7) and X̂s be the stabilizing solution of the dual equation

X +AX−1AT = Q

(The existence of X̂s is also guaranteed by the argument leading to Theorem 2.3).
Then

(a) The sequences {Ak}, {Qk}, {Pk} in Algorithm 3.1 are well-defined, and Qk
and Pk are complex symmetric.

(b) The sequence {Xk} in Algorithm 3.2 is well-defined and Xk is complex sym-
metric.

(c) Qk = X2k−1 for each k ≥ 0.
(d) Qk converges to Xs quadratically, Ak converges to 0 quadratically, Q − Pk

converges to X̂s quadratically, with

lim sup
k→∞

2k
√
‖Qk −Xs‖ ≤ (ρ(X−1

s A))2, lim sup
k→∞

2k
√
‖Ak‖ ≤ ρ(X−1

s A),

lim sup
k→∞

2k
√
‖Q− Pk − X̂s‖ ≤ (ρ(X−1

s A))2,

where ‖ · ‖ is any matrix norm.
(e) Xk converges to Xs linearly with

lim sup
k→∞

k
√
‖Xk −Xs‖ ≤ (ρ(X−1

s A))2.

Proof. Let Tk be the block k × k matrix given by

Tk =


Q −AT

−A Q
. . .

. . . . . . −AT
−A Q

 .
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For each k ≥ 1 we can write Tk = Vk + iηI with Vk real symmetric. So Tk has no zero
eigenvalues and is thus invertible. The sequence {Xk} is obtained by block Gaussian
elimination performed on the matrix (2.3). In fact, X0 = Q is the (1, 1) block in (2.3);
when the (1, 1) block is used to eliminate the (2, 1) block, the new (2, 2) block is X1;
when the new (2, 2) block is used to eliminate the (3, 2) block, the new (3, 3) block is
X2; and so on. Since Tk is invertible for each k ≥ 1, Xk is well-defined and invertible
for each k ≥ 0. It is easily seen by induction that Xk are complex symmetric since Q
is complex symmetric. So (b) is proved.

Let Wk = Qk − Pk in Algorithm 3.1. Then the sequence {Wk} satisfies

Wk+1 = Wk −ATkW−1
k Ak −AkW−1

k ATk , W0 = Q.

It follows from [2, Theorem 13] that Wk is nonsingular for each k ≥ 0. The sequences
{Ak}, {Qk}, {Pk} are then well-defined. Again, Qk and Pk are complex symmetric
since Q is complex symmetric. This proves (a).

The proof of (c) is the same as in the proof of [11, Proposition 5], although Q is
complex symmetric here.

To prove (d), we start with

M0

[
I
Xs

]
= L0

[
I
Xs

]
X−1
s A,

a special case of (2.2). It follows from [3] that for each k ≥ 0

Mk

[
I
Xs

]
= Lk

[
I
Xs

]
(X−1

s A)2
k

. (3.2)

Substituting (3.1) into (3.2) yields

Ak = (Xs − Pk)(X−1
s A)2

k

, Qk −Xs = ATk (X−1
s A)2

k

. (3.3)

Similarly we have

M̂0

[
I

X̂s

]
= L̂0

[
I

X̂s

]
X̂−1
s AT ,

where

M̂0 =
[
AT 0
Q −I

]
, L̂0 =

[
0 I
A 0

]
.

The pencil M̂0−λL̂0 is a linearization of λ2A−λQ+AT , which has the same eigenvalues
as λ2AT −λQ+A. It follows that X̂−1

s AT and X−1
s A have the same eigenvalues, and

in particular ρ(X̂−1
s AT ) = ρ(X−1

s A). For each k ≥ 0 we now have

M̂k

[
I

X̂s

]
= L̂k

[
I

X̂s

]
(X̂−1

s AT )2
k

,

where M̂k and L̂k are given by (3.1) and Algorithm 3.1 when A0 = A in Algorithm
3.1 is replaced by A0 = AT . It is easy to see that

M̂k =
[
ATk 0
Q̂k −I

]
, L̂k =

[
−P̂k I
Ak 0

]
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with

P̂k = Q−Qk, Q̂k = Q− Pk. (3.4)

So we now have

ATk = (X̂s − P̂k)(X̂−1
s AT )2

k

, Q̂k − X̂s = Ak(X̂−1
s AT )2

k

. (3.5)

By (3.3), (3.5) and (3.4), we have

Qk −Xs = ATk (X−1
s A)2

k

= (X̂s − P̂k)(X̂−1
s AT )2

k

(X−1
s A)2

k

= (Qk −Xs + (Xs + X̂s −Q))(X̂−1
s AT )2

k

(X−1
s A)2

k

.

Thus

(Qk −Xs)(I − (X̂−1
s AT )2

k

(X−1
s A)2

k

) = (Xs + X̂s −Q)(X̂−1
s AT )2

k

(X−1
s A)2

k

. (3.6)

It follows that

lim sup
k→∞

2k
√
‖Qk −Xs‖ ≤ ρ(X̂−1

s AT )ρ(X−1
s A) = (ρ(X−1

s A))2 < 1.

So Qk converges to Xs quadratically. Then we know {P̂k} is bounded and have by
the first equation in (3.5) that

lim sup
k→∞

2k
√
‖Ak‖ ≤ ρ(X−1

s A) < 1.

So Ak converges to 0 quadratically. By the second equations in (3.5) and (3.4) we
have

lim sup
k→∞

2k
√
‖(Q− Pk)− X̂s‖ ≤ (ρ(X−1

s A))2 < 1.

So Q− Pk converges to X̂s quadratically. This completes the proof of (d).
Since Qk converges to Xs and X2k−1 = Qk, we know that a subsequence of {Xk}

converges to Xs. Since ρ(X−1
s A) < 1, Xs is an attractive fixed point of the mapping

f defined by f(X) = Q−ATX−1A. It follows that the sequence {Xk} also converges
to Xs, and we have

lim sup
k→∞

k
√
‖Xk −Xs‖ ≤ (ρ(X−1

s A))2,

as in [12]. So (e) is proved.
Algorithm 3.1 is said to be structure-preserving since for each k ≥ 0 Mk and Lk

have the structures given in (3.1) and the pencil Mk − λLk is T -symplectic.
When AL = AR and BL = BR, the dual equation of (1.7) with (1.8) is precisely

the equation (1.9) with (1.10). In this case, Algorithm 3.1 can find GL,S(η) and
GS,R(η) simultaneously.

To get good approximations to GL,S , we need to take η > 0 to be sufficiently
small. However, we cannot apply Algorithm 3.1 with η = 0 directly. If we take η = 0,
then the sequence {Qk} is real and will not approximate Xs, which is to be complex
symmetric.
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We are only interested in the values of E for which limη→0+ ρ(X−1
s A) = 1. Since

we need to take η sufficiently small, we always have ρ(X−1
s A) ≈ 1, and the convergence

of Algorithm 3.2 will be very slow in general. The strategy proposed in [21] for
improving the convergence of iteration (1.3) generates a new sequence X(k) as follows.

Algorithm 3.3. Take X(0) = Q−1. For k = 0, 1, . . . , compute

X(k+1) = (Q−ATX(k)A)−1,

X(k+1) ← (X(k) +X(k+1))/2.

We now adapt this strategy for Algorithm 3.2 and get the following modified
fixed-point method.

Algorithm 3.4. Take X0 = Q. For k = 0, 1, . . . , compute

Xk+1 = Q−ATX−1
k A,

Xk+1 ← (Xk +Xk+1)/2.

We remark that for {X(k)} from Algorithm 3.3 and {Xk} from Algorithm 3.4
we no longer have X(k) = X−1

k in general. To keep this relation, one would have to
replace the last line of Algorithm 3.4 by

Xk+1 ←
(
(X−1

k +X−1
k+1)/2

)−1
.

This would make the algorithm slightly more expensive. Numerical experiments show
that this change does not affect the performance of the algorithm in any significant
way. So we prefer to use the update of Xk+1 as given in Algorithm 3.4. Numerical
experiments also show that the convergence of Algorithm 3.4 is often much faster than
that of Algorithm 3.2. But a rigorous convergence analysis remains an open problem.

In [16], η = 0 is assumed and a diagonalization procedure is used on the auxiliary
matrix (1.6) when A = AL is nonsingular. However, that approach will run into
difficulties even when A is perfectly conditioned and the auxiliary matrix is diagonal-
izable.

Example 3.1. Let

AL = −I3, BL =

 4 −1 0
−1 4 −1
0 −1 4

 .
It is easy to determine by Theorem 2.6 that

∆L,1 = [0.5858, 4.5858], ∆L,2 = [2.0000, 6.0000], ∆L,3 = [3.4142, 7.4142].

So ∆L = [0.5858, 7.4142]. For η = 0 and E = 4, the matrix in (1.6) has all 6 eigenvalues
on T:

−
√

2
2
±
√

2
2
i,

√
2

2
±
√

2
2
i, ±i.

The difficulty with the approach in [16] is that we do not know which 3 eigenvalues
should be used to get GL,S . There are 20 different choices. By the proof of Theorem
2.6, we now know that we can pick only one eigenvalue from each conjugate pair. This
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reduces the number of choices to 6. Only by changing η from 0 to a small positive
number do we find that the 3 eigenvalues with negative imaginary parts are perturbed
to the inside of T. So these 3 eigenvalues are to be used to find GL,S . We could have
taken a small η > 0, say η = 10−10, right in the beginning and use Algorithm 3.1 to
compute GL,S(η) as a good approximation to GL,S .

In general, the palindromic matrix polynomial P (λ) = λ2AT − λQ + A, where
A and Q are given in (1.8) with η = 0, can have 2k eigenvalues on T with k being
any integer from 0 to nl. For the above example, we find that P (λ) has 0 eigenvalues
on T for E ∈ (−∞, 0.5857] ∪ [7.4143,∞), has 2 eigenvalues on T for E ∈ [0.5858, 2) ∪
(6, 7.4142], has 4 eigenvalues on T for E ∈ [2, 3.4142]∪[4.5858, 6], and has 6 eigenvalues
on T for E ∈ [3.4143, 4.5857]. For a large problem, the computed eigenvalues of P (λ)
(or the matrix (1.6)) may contain a number of conjugate pairs near T, and the number
of eigenvalues inside T may be different from the number of eigenvalues outside T. In
that case, it is hard to tell which eigenvalues should be used to compute GL,S . For
this reason, the eigenvalue approach will not be considered further in this paper.

Newton’s method has been studied in [12] for equation (1.7) with a Hermitian
positive definite Q. Since Q is non-Hermitian in our case, there is no guarantee
of convergence for Newton’s method with X0 = Q. With a given X0, the Newton
iteration for (1.7) is easily found to be

Xk −ATX−1
k−1XkX

−1
k−1A = Q− 2ATX−1

k−1A. (3.7)

If Xk−1 is a nonsingular complex symmetric matrix with ρ(X−1
k−1A) < 1, then (3.7)

has a unique solution Xk, which must be complex symmetric. Since ρ(X−1
s A) < 1 for

η > 0, the convergence of Newton’s method is guaranteed if X0 is complex symmetric
and sufficiently close to Xs.

Algorithm 3.5 (Newton’s method for (1.7)). Take X0 to be complex symmetric
and sufficiently close to Xs. For k = 1, 2, . . . , compute Lk = X−1

k−1A, and solve

Xk − LTkXkLk = Q− 2LTkA. (3.8)

Note that the Stein equation (3.8) is uniquely solvable when ρ(Lk) < 1.
If we are to find Xs (and then GL,S(η) = X−1

s ) only for one fixed value of E ,
there is little hope for Algorithm 3.5 to beat Algorithm 3.1. In practice, we need to
determine GL,S (through Xs and GL,S(η) for a small η > 0) for a range of energy
values [21]. So for Algorithm 3.5, the Xs computed at a given energy can be used as
an initial guess for Xs at the next nearby energy point. However, there is some danger
associated with this practice. If η is very small, then the convergence of Algorithm
3.5 is guaranteed only when Xs for the previous energy is very close to the Xs for the
current energy. This means that the stepsize for the energy E must be very small.
But it is hard to tell how small the stepsize should be for a given η > 0. On the
other hand, Algorithm 3.1 is not a correction method, and thus we cannot use the
Xs computed at a given energy to compute Xs at the next nearby energy point. But
the convergence of Qk to Xs is fast (see Theorem 3.1 and (3.6)) even though we use
Q0 = Q for each energy E .

4. Numerical results. In this section we present some numerical results to illus-
trate the convergence behavior of the algorithms for computing the stabilizing solution
Xs of the equation (1.7). We use DA, M FPM and NM to denote the doubling algo-
rithm (Algorithm 3.1), the modified fixed-point method (Algorithm 3.4) and Newton’s
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Method (Algorithm 3.5), respectively. All computations are performed in MATLAB
R2008b using IEEE double-precision floating-point arithmetic (eps ≈ 2.2× 10−16) on
the Linux system.

Suppose one complex flop is equivalent to four real flops and n is the dimension
of the matrices in (1.7). Then for each iteration DA requires about (104/3)n3 real
flops, M FPM requires about (38/3)n3 real flops, and NM requires about (398/3)n3

real flops. We also recall that DA can compute the stabilizing solutions of (1.7) and
(1.9) simultaneously if the matrices A and Q in these two equations are the same two
matrices. This makes the comparison more favorable for DA.

To measure the accuracy of a computed stabilizing solution X to (1.7) we use the
relative residual (r res) ∥∥X +ATX−1A−Q

∥∥
‖X‖+ ‖A‖2 ‖X−1‖+ ‖Q‖

,

where ‖ · ‖ is the spectral norm.
Example 4.1. We randomly generate a symmetric matrix BL and an arbitrary

matrix AL of dimension 50. By Theorem 2.6 we find

∆L = [−23.03,−19.94] ∪ [−19.84, 15.83] ∪ [16.12, 17.78] ∪ [18.26, 21.28].

We divide the interval [−23.03, 21.28] (the smallest interval containing ∆L) into P
subintervals using P +1 equally spaced nodes Ei = −23.03+44.31(i/P ), i = 0, . . . , P .
We now choose P = 1000 and take η = 10−10 in (1.8). Let di be the distance between
T and the set of eigenvalues of the pencil (M0, L0) in (2.1), with E = Ei. We find that
di < 10−8 whenever Ei ∈ ∆L.

We run DA for each Ei as well as for a few E values outside [−23.03, 21.28].
The algorithm is stopped when ‖Qk+1 − Qk‖ < 10−8 and X = Qk+1 is taken to
be a good approximation to the stabilizing solution of (1.7). We also compute the
relative residual for X as another check of accuracy. In Figure 4.1, we plot the
relative residuals, the number of iterations and the distance between T and the set
of eigenvalues of the pencil (M0, L0). We see that DA converges to the stabilizing
solution of (1.7) in about 40 iterations for E ∈ ∆L, and that the convergence is
very fast for other E values. We also see that r res < 10−10 for almost all E values.
Generally speaking, there is no need to look for higher accuracy since we have taken
η = 10−10 rather than η = 0+.

Note that DA computes the stabilizing solution for each E value without using
the stabilizing solution already computed for a nearby E value. For this example,
we have already found by DA the (approximate) stabilizing solution X

(i)
DA for each

E = Ei, i = 0, . . . , P . We now examine whether it is possible to use NM to find all
those stabilizing solutions more efficiently, with some help from DA. Let q ≥ 2 be a
factor of P and P = mq. Suppose we only use DA to find the stabilizing solutions for
E = Erq, r = 0, . . . ,m − 1. Then we may find the stabilizing solutions for E = Erq+i
(i = 1, . . . , qr, with qr = q − 1 for r < m − 1 and qr = q for r = m − 1) as follows.
Take X0 = X

(rq)
DA , apply NM until ‖Xk+1−Xk‖ < 10−8 or k+ 1 = 30, and take Xk+1

to be X(rq+1)
NM . To get X(rq+i)

NM for i = 2, . . . , qr, we apply NM in the same way with
X0 = X

(rq+i−1)
NM . For r = 0, . . . ,m − 1 and i = 1, . . . , qr, we say NM is successful

if
∥∥∥X(rq+i)

NM −X(rq+i)
DA

∥∥∥ < 10−6. Suppose NM is successful S times, we define the
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Fig. 4.1. Relative residuals, the number of iterations for convergence of DA, and the distance
between T and the spectrum of (M0, L0), P = 1000.

efficiency (or success rate) of NM by

Eff =
S

m(q − 1) + 1
. (4.1)

For P = 1000 we find that NM converges (within 30 iterations) most of the time,
with average number of iterations at about 10. However, it often converges to a
wrong solution. In practice, X(rq+i)

DA is not computed if we choose to use NM to get
X

(rq+i)
NM . But we could still check whether X(rq+i)

NM is approximating the stabilizing
solution by computing the eigenvalues of (X(rq+i)

NM )−1A. The efficiency of NM is shown
in Table 4.1 for different values of q. Note that the success rate of NM is only 58%

q 40 20 10 5 2
Eff 15% 27% 33% 48% 58%

Table 4.1. Efficiency of NM for P = 1000.

even for q = 2. Besides, the computational work for 10 NM iterations is not much
less than that for 40 DA iterations. Therefore, we would prefer to use DA to compute
the stabilizing solution for each E value. However, NM may be used to improve the
accuracy of the solution obtained by DA if there is a need to do so. For example,
when E = 5.64 we find that r res = 2×10−9 after 40 DA iterations, and starting with
this approximate solution we get r res = 3× 10−13 after 1 NM iteration.

Example 4.2. We consider a semi-infinite Hamiltonian operator for a heterostruc-
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tured semiconductor of the form

H(ψ, ~x) = −∇ ~
2ε(~x)

∇ψ + V (~x)ψ, ~x ≡
(
x1

x2

)
∈ Ω, (4.2)

where Ω ≡ Ω1 ∪ Ω2 with{
Ω1 = ([−9,−1]× (−∞, 0]) ∪ ([1, 9]× (−∞, 0]) ,
Ω2 = [−1, 1]× (−∞, 0],

~ is the reduced Planck constant, ψ is the associated wave function, ε(~x) is the electron
effective mass with

ε(~x) =

{
ε1, ~x ∈ Ω1,

ε2, ~x ∈ Ω2,

and V (~x) = ω1x
2
1 is the potential energy.
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Fig. 4.2. Relative residuals and the number of iterations for convergence of DA, P = 1000.

Let Tr be the tridiagonal matrix of dimension r with 4 on the main diagonal
and −1 on the two adjacent diagonals. We use the classical five-point central finite
difference method to discretize the Hamiltonian operator (4.2) on uniform grid points
in Ω with mesh size h. Then the corresponding matrices BL and AL in (1.8) are of
the forms

BL = δ1Tl ⊕ (2(δ1 + δ2))⊕ δ2Tm ⊕ (2(δ1 + δ2))⊕ δ1Tl
− δ1

(
el+1e

T
l + ele

T
l+1

)
− δ2

(
el+2e

T
l+1 + el+1e

T
l+2

)
− δ2

(
en+1e

T
n + ene

T
n+1

)
− δ1

(
en+2e

T
n+1 + en+1e

T
n+2

)
+ ω1h

2diag
(
(1− c)2, (2− c)2, . . . , (N − c)2

)
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and

AL = −
[
δ1Il ⊕

(
δ1 + δ2

2

)
⊕ δ2Im ⊕

(
δ1 + δ2

2

)
⊕ δ1Il

]
,

where δi = ~/2h2εi (i = 1, 2), ej denotes the jth vector of the identity matrix, l and
m are the numbers of grid points on the x1 axis in (−9,−1) and (−1, 1), respectively,
n = l +m+ 1, N = 2l +m+ 2, c = (N + 1)/2 and ⊕ denotes the direct sum of two
matrices.

In our tests we take l = 39, m = 9, δ1 = 1, δ2 = 0.1, and ω1 = 5 × 10−4. By
Theorem 2.6 we find ∆L = [0.00386, 8.0103]. We divide ∆L into P subintervals using
P + 1 equally spaced nodes Ei, i = 0, . . . , P . We now choose P = 1000 and take
η = 10−6 in (1.8). Let di be the distance between T and the set of eigenvalues of the
pencil (M0, L0) in (2.1), with E = Ei. We find that di < 10−5 whenever Ei ∈ ∆L.

We run DA for each Ei as well as for a few E values outside ∆L. The algorithm is
stopped when ‖Qk+1−Qk‖ < 10−8 andX = Qk+1 is taken to be a good approximation
to the stabilizing solution of (1.7). In Figure 4.2, we plot the relative residuals and
the number of iterations. We see that DA converges to the stabilizing solution of
(1.7) in about 26 iterations for E ∈ ∆L. We also see that r res < 10−9 for almost all
E values.

In this example, we have increased η from 10−10 to 10−6, and as a result the
usual number of DA iterations is reduced from 40 to 26. We have also tried η = 10−10

for this example and find that DA still works very well with the number of iterations
around 40, as in Example 4.1. In the nano literature, the smallest η used is 10−6 since
no powerful methods were available at that time. With DA studied in this paper, we
can also take η to be smaller than 10−10 if there is a need to do so.

Suppose we only use DA to find the stabilizing solution for E = E0 and use NM
(in the same way as in Example 4.1) to find the stabilizing solutions for E = Ei,
i = 1, . . . , P . In the notation of Example 4.1, we have q = P , m = 1, and Eff = S/P .
We find that Eff = 46.3% and 46.5% for P = 1000 and 2000, respectively. To have
Eff = 100% one would have to take an extremely large P , which is not practical.

Example 4.3. We consider Example 2.1 with t = 1. The matrices A and Q in (1.8)

are now given by A =
[
0 0
1 0

]
and Q = (E + iη)I2 −

[
2 1
1 2

]
. We take η = 10−10. For

0 ≤ E ≤ 4, the distance between T and the set of eigenvalues of the pencil (M0, L0)
in (2.1) is less than 10−8.

We run DA as before. In Figure 4.3 we plot the relative residuals and the number
of iterations for convergence of DA. In most cases, 37 iterations are needed. We know
from Theorem 3.1(c) that in exact arithmetic the approximate solution obtained after
37 DA iterations is the same as the approximate solution obtained after 237−1 (which
is over 137 billion) iterations of the basic fixed-point method (Algorithm 3.2). So we
would not try to use Algorithm 3.2 even for this small problem. But M FPM turns
out to be quite useful. We run M FPM for E = Ei = 0.004i, i = 0, 1, . . . , 1000.
The algorithm is stopped when r res < 10−10 or the number of iterations exceeds
10000. Figure 4.4 plots the relative residuals and the number of iterations. More
specificly, we find that M FPM converges in 37–100 iterations for 536 values of Ei
with i ∈ {37–301, 303–305, 695–697, 699–963}, converge in 0 iterations for E500 = 2,
and does not converge in 100 iterations for the other 464 values of Ei. Note that for
E500 = 2, the number of M FPM iterations is 0 since X0 = Q happens to be the
exact solution when η = 0 and since we take η = 10−10, which is very close to 0.
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Fig. 4.3. Relative residuals and the number of iterations for convergence of DA, η = 10−10.
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Fig. 4.4. Relative residuals and the number of iterations for convergence of M FPM, η = 10−10.

DA takes one iteration for E = 2 only because a different stopping criterion is used.
For E = Ei, i = 302, 698, the number of M FPM iterations is 102, exceeding 100 only
slightly. We may say that for this example, M FPM is more efficient than DA most
of the time. However, there is currently no theory about the convergence of M FPM
even for this simple example.
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5. Conclusion. We have studied a doubling algorithm for Green’s function cal-
culations in nano research. Its convergence to the desired solution is guaranteed. The
algorithm has been shown to be efficient and reliable. Newton’s method cannot be
used for this purpose by itself, but may be used as a correction method if very high
accuracy is required. A modified fixed-point method may be more efficient than the
doubling algorithm in some situations, but its convergence analysis remains an open
problem.
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