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Abstract. A shifted cyclic reduction algorithm has been proposed by He, Meini, and Rhee
[SIAM J. Matrix Anal. Appl., 23 (2001), pp. 673–691] for finding the stochastic matrix G associated
with discrete-time quasi-birth-death (QBD) processes. We point out that the algorithm has quadratic
convergence even for null recurrent QBDs. We also note that the approximations (to the matrix G)
obtained by their algorithm are always stochastic when they are nonnegative.
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1. Introduction. A discrete-time quasi-birth-death process (QBD) is a Markov
chain with state space {(i, j) | i ≥ 0, 1 ≤ j ≤ m}, which has a transition probability
matrix of the form

P =


C0 C1 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 ,

where C0, C1, A0, A1, and A2 arem×m nonnegative matrices such that P is stochastic.
In particular, (A0 +A1 +A2)e = e, where e is the column vector with all components
equal to one. The matrix P is also assumed to be irreducible.

We assume that A = A0 + A1 + A2 is irreducible. Thus, there exists a unique
vector α > 0 with αT e = 1 and αTA = αT . The vector α is called the stationary
probability vector of A. The QBD is positive recurrent if αTA0e > αTA2e, and null
recurrent if αTA0e = αTA2e.

The minimal nonnegative solution G of the matrix equation

G = A0 +A1G+A2G
2(1.1)

plays an important role in the study of the QBD (see [8]). We will also need the
equation

F = A2 +A1F +A0F
2,(1.2)

and let F be its minimal nonnegative solution. It is well known (see [8], for example)
that if the QBD is positive recurrent, then G is stochastic and F is substochastic
with spectral radius ρ(F ) < 1; if the QBD is null recurrent, then G and F are both
stochastic.

Recently, a shift technique has been introduced in [6] to a cyclic reduction (CR)
algorithm (see [3]) for finding the matrix G in the positive recurrent case, assuming
that the only eigenvalue of G on the unit circle is the simple eigenvalue 1. In this
note we will make some comments on that interesting paper.
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2. Comments. The shift technique introduced in [6] is H = G − euT , where
u > 0 and uT e = 1. Then the eigenvalues of H are those of G except that in H the
eigenvalue 1 of G is replaced by 0, and H is a solution of the new equation

H = B0 +B1H +B2H
2,(2.1)

where

B0 = A0(I − euT ), B1 = A1 +A2eu
T , B2 = A2.(2.2)

The shifted CR algorithm is obtained in [6] by applying the CR algorithm to (2.1).
For positive recurrent QBDs, it is shown in [6] that the convergence of the shifted
CR algorithm is quadratic and faster than that of the CR algorithm, provided that
no breakdown occurs. Here we point out that the same is true for null recurrent
QBDs. This is a very important feature of the shift technique. Without using the
shift technique, all previous methods for finding the matrix G have only linear or
sublinear convergence for null recurrent QBDs. For example, the convergence of the
Latouche–Ramaswami (LR) algorithm [7] is linear with rate 1/2 for null recurrent
QBDs (see [5]). Since the CR algorithm and the LR algorithm are closely related (see
[2]), the convergence of the CR algorithm is also linear with rate 1/2 for null recurrent
QBDs. Once we have shown that the shift technique recovers quadratic convergence
for the CR algorithm in the null recurrent case, the same is true for the LR algorithm.

Some work is needed to justify our claim about the shifted CR algorithm for null
recurrent QBDs.

Let

A(λ) = −A0 + (I −A1)λ−A2λ
2

be the matrix polynomial corresponding to (1.1), and

B(λ) = −B0 + (I −B1)λ−B2λ
2

be the matrix polynomial associated with (2.1). We first point out that there is a
simple proof for the following generalization of Theorem 3.1 in [6].

Lemma 2.1. The zeros of det(B(λ)) are obtained from the zeros of det(A(λ)) by
replacing one zero 1 by 0.

Proof. Since

A(λ) = (I −A1 −A2G− λA2)(λI −G),

B(λ) = (I −B1 −B2H − λB2)(λI −H),

and

I −B1 −B2H − λB2 = I − (A1 +A2eu
T )−A2(G− euT )− λA2

= I −A1 −A2G− λA2,

the assertion follows immediately.
Note that det(A(λ)) has two zeros 1 for null recurrent QBDs, as seen from the

following special case of Theorem 4 in [4].
Lemma 2.2. Assume that det(A(λ)) 6= 0 if |λ| = 1, λ 6= 1. Then
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(1) If the QBD is positive recurrent, then det(A(λ)) has m − 1 zeros inside the
unit circle, one zero 1, and m zeros outside the unit circle (zeros at infinity
are added, if the degree of det(A(λ)) is less than 2m).

(2) If the QBD is null recurrent, then det(A(λ)) has m− 1 zeros inside the unit
circle, two zeros 1, and m − 1 zeros outside the unit circle (zeros at infinity
are added, if the degree of det(A(λ)) is less than 2m).

We note that the assumption in Lemma 2.2 is equivalent to our earlier assumption
that the only eigenvalue of G on the unit circle is the simple eigenvalue 1 (see [4]).

Corollary 2.3. If the QBD is positive recurrent then det(B(λ)) has m zeros
inside the unit circle and no zeros on the unit circle; if the QBD is null recurrent then
det(B(λ)) has m zeros inside the unit circle, one (simple) zero 1 on the unit circle,
and m− 1 zeros outside the unit circle.

When the QBD is positive recurrent, uTFe < 1 and I − euTF is nonsingular (see
[6]). The following result plays a crucial role in [6] for the convergence analysis of the
shifted CR algorithm.

Lemma 2.4. [6] When the QBD is positive recurrent,

K = (I − euTF )F (I − euTF )−1(2.3)

is a solution of

K = B2 +B1K +B0K
2.(2.4)

When the QBD is null recurrent, we have Fe = e. Thus, (I − euTF )e = 0 and
I − euTF is singular. The question then arises as to whether the norm of the matrix
K in (2.3) will get arbitrarily large when the QBD becomes nearly null recurrent. As
noted in [6], there is a K-dependent operator norm ‖ · ‖K such that ‖K‖K = ρ(K) =
ρ(F ) < 1. However, the norm ‖ · ‖K would be drastically different from practically
useful norms like ‖ · ‖∞ as the QBD becomes nearly null recurrent, if ‖K‖∞ couldn’t
be bounded independent of the nearness to null recurrence. We have the following
positive result in this regard. The result will also be the basis for proving quadratic
convergence of the shifted CR algorithm in the null recurrent case.

Lemma 2.5. If the QBD is positive recurrent, then for the matrix K in (2.3)

‖K‖∞ < 3 +
2

min1≤i≤m ui
,

where ui is the ith component of u. In particular, ‖K‖∞ < 3 + 2m if u = 1
me.

Proof. By the Sherman–Morrison–Woodbury formula,

(I − euTF )−1 = I +
1

1− uTFe
euTF = I +

1
uT (e− Fe)

euTF.

Thus,

K = (I − euTF )F +
1

uT (e− Fe)
(I − euTF )FeuTF.

Note that

(I − euTF )FeuTF = (I − euTF )euTF − (I − euTF )(e− Fe)uTF
= euT (e− Fe)uTF − (I − euTF )(e− Fe)uTF.
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Therefore,

K = (I − euTF )F + euTF − 1
uT (e− Fe)

(I − euTF )(e− Fe)uTF.

It follows that

‖K‖∞ ≤ ‖I − euTF‖∞‖F‖∞ + ‖euTF‖∞ + ‖I − euTF‖∞‖uTF‖∞
‖e− Fe‖∞
uT (e− Fe)

.

Since Fe ≤ e, uTFe < 1 and euTFe < e, we have ‖F‖∞ ≤ 1, ‖uTF‖∞ < 1 and
‖euTF‖∞ < 1. Thus, ‖I − euTF‖∞ < 2 and

‖K‖∞ < 3 +
2

min1≤i≤m ui
.

This completes the proof.
For the null recurrent case, the role of Lemma 2.4 will be assumed by the following

result.
Theorem 2.6. If the QBD is null recurrent, then (2.4) has a solution K having

one eigenvalue 1 and m− 1 eigenvalues inside the unit circle.
Proof. Since the QBD is irreducible, A2 6= 0. Suppose that A2(i, j), the (i, j)

element of A2, is positive. For any ε with 0 < ε < A2(i, j), define

A0(ε) = A0, A1(ε) = A1 + εEij , A2(ε) = A2 − εEij ,

where Eij is the matrix with one in the (i, j) position and zeros elsewhere. Since
αTA0(ε)e > αTA2(ε)e, where α is the stationary probability vector of A = A0 +
A1 + A2 = A0(ε) + A1(ε) + A2(ε), the QBD corresponding to (A0(ε), A1(ε), A2(ε)) is
positive recurrent. We now define

B0(ε) = A0(ε)(I − euT ), B1(ε) = A1(ε) +A2(ε)euT , B2(ε) = A2(ε)

and let Fε be the minimal nonnegative solution of

F = A2(ε) +A1(ε)F +A0(ε)F 2.

Thus, ρ(Fε) < 1. Moreover, Kε = (I − euTFε)Fε(I − euTFε)−1 is a solution of

K = B2(ε) +B1(ε)K +B0(ε)K2

by Lemma 2.4. Let the sequence {εn} be such that 0 < εn < A2(i, j) and lim εn = 0.
Since the sequence {Kεn} is bounded by Lemma 2.5, it has a limit point K. It is clear
that this matrix K is a solution of (2.4). Since ρ(Kεn) < 1, we have ρ(K) ≤ 1. Since
the zeros of det(B̂(λ)), where

B̂(λ) = −B2 + (I −B1)λ−B0λ
2,

are the reciprocals of the zeros of det(B(λ)) and the eigenvalues of K are part of the
zeros of det(B̂(λ)), we know from Corollary 2.3 that K has m− 1 eigenvalues inside
the unit circle and one eigenvalue 1.

The shifted CR algorithm generates a sequence B̂(n)
1 (if no breakdown occurs)

and approximations H̃n to the matrix H is obtained by H̃n = (I − B̂(n)
1 )−1B0 (see
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[6]). Approximations G̃n to the matrix G can be obtained using G̃n = H̃n + euT . It
is noted in [6] that we also have G̃n = (I − B̂(n)

1 )−1A0.
For the null recurrent case, the spectral properties of the matrix K in Theorem 2.6

are crucial to show the quadratic convergence of the sequence {G̃n}. Once Theorem
2.6 is proved, quadratic convergence follows from known results.

Let K be the solution of (2.4) given by Lemma 2.4 for the positive recurrent case
and given by Theorem 2.6 for the null recurrent case. We have from the discussions
in [6] or from Theorem 16 and Remark 17 of [1] that

lim sup
n→∞

2n
√
‖G̃n −G‖∞ ≤ ρ(K)ρ(H) = ρ(F )ρ(H) < 1.(2.5)

In particular, G̃n converges to G quadratically for both positive recurrent and null
recurrent QBDs. If we apply the CR algorithm directly to (1.1), the approximations
Gn for G are such that

lim sup
n→∞

2n
√
‖Gn −G‖∞ ≤ ρ(F )ρ(G) ≤ 1.(2.6)

Thus, the convergence of {Gn} is slower than that of {G̃n}. One good thing
about the sequence {Gn} is that it is monotonically increasing to G (see [3]). Thus,
‖Gne− e‖∞ = ‖(Gn−G)e‖∞ = ‖Gn−G‖∞. So, the actual error ‖Gn−G‖∞ can be
obtained easily even though G is not known. For the sequence {G̃n}, the actual error
‖G̃n−G‖∞ cannot be obtained in this way. In fact, since B0e = A0(I−euT )e = 0, we
have H̃ne = 0 and G̃ne = e for each n ≥ 0. Therefore, the matrices G̃n are stochastic
when they are nonnegative, and we always have ‖G̃ne−e‖∞ = 0 (in exact arithmetic)
no matter how large ‖G̃n −G‖∞ is. Nevertheless, computing the values ‖G̃ne− e‖∞
in the presence of rounding errors is still of interest. If these values are close to the
machine epsilon, we could reasonably assume that the effect of rounding errors on the
algorithm is minor. On the other hand, we would have to use the residual error to
measure the accuracy of the approximation G̃n.

We define functions FA, FB : Rm×m → R
m×m by

FA(X) = X −A0 −A1X −A2X
2, FB(X) = X −B0 −B1X −B2X

2.

In [6], the accuracy of the approximations G̃n and Gn is compared using the resid-
ual errors ‖FA(G̃n)‖∞ and ‖FA(Gn)‖∞. The reported values for ‖FA(G̃n)‖∞ and
‖FA(Gn)‖∞ are roughly of the same magnitude. We note that this does not mean
that G̃n and Gn have roughly the same accuracy. In fact, G̃n is typically much more
accurate than Gn when the QBD is null recurrent or nearly null recurrent. The reason
for this is the following. When the QBD is null recurrent, the Fréchet derivative of FA
at the solution G is a singular map. Thus, in general, ‖Gn −G‖∞ is not of the order
of ‖FA(Gn)‖∞ = ‖FA(Gn)−FA(G)‖∞. On the other hand, the Fréchet derivative of
FB at the solution H is a nonsingular map. Using H̃ne = 0, it is easy to show that
FA(G̃n) = FB(H̃n). Thus,

‖G̃n −G‖∞ = ‖H̃n −H‖∞ = O(‖FB(H̃n)−FB(H)‖∞) = O(‖FA(G̃n)‖∞).
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