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Abstract. We consider the iterative solution of a class of nonsymmetric algebraic Riccati
equations, which includes a class of algebraic Riccati equations arising in transport theory. For any
equation in this class, Newton’s method and a class of basic fixed-point iterations can be used to find
its minimal positive solution whenever it has a positive solution. The properties of these iterative
methods are studied and some practical issues are addressed. An algorithm is then proposed to find
the minimal positive solution efficiently. Numerical results are also given.
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1. Introduction. In transport theory, we encounter nonsymmetric algebraic
Riccati equations of the form

XCX −XD −AX + B = 0(1.1)

(see [10]), where A,B, C, D ∈ IRn×n have the following structures:

A = diag(δ1, δ2, . . . , δn)− eqT ,(1.2)
B = eeT ,(1.3)
C = qqT ,(1.4)

and

D = diag(d1, d2, . . . , dn)− qeT .(1.5)

In the above,

δi =
1

cwi(1 + α)
, di =

1
cwi(1− α)

,(1.6)

and

e = (1, 1, . . . , 1)T , q = (q1, q2, . . . , qn)T with qi =
ci

2wi
,(1.7)

where 0 < c ≤ 1, 0 ≤ α < 1, and

0 < wn < · · · < w2 < w1 < 1,

n∑
i=1

ci = 1, ci > 0, i = 1, 2, . . . , n.
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For descriptions on how these equations arise in transport theory, see [10] and ref-
erences cited therein. Here we only note that the constants c and α have physical
meanings and the constants ci and wi appear in a numerical quadrature formula of
the form

∫ 1

0
f(w)dw ≈

∑n
i=1 cif(wi).

For any matrices A,B ∈ IRm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. We can then define positive matrices, nonnegative matrices, etc. The
existence of positive solutions of (1.1) has been shown in [9] and [10]. However, only
the minimal positive solution is physically meaningful.

The minimal positive solution of (1.1) can be found by basic fixed-point iterations
(see [9], for example). It is mentioned in [10] that the convergence of these fixed-point
iterations can be very slow when c ≈ 1 and α ≈ 0. In [10], the minimal positive
solution of (1.1) is constructed explicitly. The solution formula needs all the zeros
of a certain secular equation. To get a good approximation of the minimal positive
solution, the secular equation must be solved very accurately. We note that Newton’s
method is not always valid as a correction method when c ≈ 1 and α ≈ 0. This point
will be made clear in later discussions.

General nonsymmetric algebraic Riccati equations of the form

R(X) = XCX −XD −AX + B = 0,(1.8)

where A,B, C, D are real matrices of sizes m×m,m × n, n×m,n × n, respectively,
have also been studied in the literature. See [18], for example. All the solutions of
(1.8) can be found, in theory, by finding all the Jordan chains of the matrix

H =
(

D −C
B −A

)
(1.9)

(see Theorem 7.1.2 of [14]). Iterative methods have also been studied for the solution
of (1.8). For example, a convergence result for Newton’s method is given in [4] under
a certain condition on the matrices A,B, C, and D.

Iterative methods with good convergence properties are not available for (1.8)
in its full generality. However, for a certain class of these equations, a fairly com-
plete theory can be established for Newton’s method and a class of basic fixed-point
iterations. Our paper is devoted to the study of these iterative methods.

We start with some definitions. A real square matrix A is called a Z-matrix if
all its off-diagonal elements are nonpositive. It is clear that any Z-matrix A can be
written as sI − B with B ≥ 0. A Z-matrix A is called an M -matrix if s > ρ(B),
where ρ(·) is the spectral radius. It is called a singular M -matrix if s = ρ(B). Note
that A is an M -matrix if and only if AT is so. Note also that a singular M -matrix
is indeed singular (ρ(B) is an eigenvalue of B by the theory of nonnegative matrices;
see [21], for example).

The following result is well known (see [2] and [5], for example).
Theorem 1.1. For a Z-matrix A, the following are equivalent:

1. A is an M -matrix.
2. A−1 ≥ 0.
3. Av > 0 for some vector v > 0.
4. All eigenvalues of A have positive real parts.

The next result is also standard (see [17], for example).
Theorem 1.2. Let A ∈ IRn×n be an M -matrix. If the elements of B ∈ IRn×n

satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 6= j, 1 ≤ i, j ≤ n,
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then B is also an M -matrix.
In this paper we consider nonsymmetric algebraic Riccati equations (1.8) with

the following conditions:

B > 0, C > 0, I ⊗A + DT ⊗ I is an M -matrix,(1.10)

where ⊗ is the Kronecker product (for basic properties of the Kronecker product, see
[15], for example).

Remark 1.1. It is clear that I⊗A+DT ⊗I is a Z-matrix if and only if both A and
D are Z-matrices. Since any eigenvalue of I ⊗A+DT ⊗ I is the sum of an eigenvalue
of A and an eigenvalue of D (see [15], for example), it follows from the equivalence of
1. and 4. in Theorem 1.1 that I ⊗ A + DT ⊗ I is an M -matrix when A,D are both
M -matrices. That the converse is not true is shown by A = I and D = 0.

The matrices A and D in (1.1) are both M -matrices by Theorem 1.1 since Aw > 0
and DT w > 0 for w = (w1, w2, . . . , wn)T . Therefore, (1.1) with A,B,C, D defined by
(1.2)–(1.7) is a special case of (1.8) with the conditions in (1.10).

From now on, when we speak of (1.8), we always assume that the conditions in
(1.10) are satisfied.

2. Newton’s method. We now consider the application of Newton’s method
to the Riccati equation (1.8). For any matrix norm IRm×n is a Banach space, and the
Riccati function R is a mapping from IRm×n into itself. The first Fréchet derivative
of R at a matrix X is a linear map R′

X : IRm×n → IRm×n given by

R′X(Z) = −
(
(A−XC)Z + Z(D − CX)

)
.(2.1)

Also, the second derivative at X, R′′

X : IRm×n × IRm×n → IRm×n, is given by

R
′′

X(Z1, Z2) = Z1CZ2 + Z2CZ1.(2.2)

The Newton method for the solution of (1.8) is

Xi+1 = Xi − (R
′

Xi
)−1R(Xi), i = 0, 1, . . . ,(2.3)

given that the maps R′

Xi
are all invertible. In view of (2.1), the iteration (2.3) is

equivalent to

(A−XiC)Xi+1 + Xi+1(D − CXi) = B −XiCXi, i = 0, 1, . . . .(2.4)

Theorem 2.1. If there is a positive matrix X such that R(X) ≤ 0, then (1.8)
has a positive solution S such that S ≤ X for every positive matrix X for which
R(X) ≤ 0. In particular, S is the minimal positive solution of (1.8). For the Newton
iteration (2.3) with X0 = 0, the sequence {Xi} is well defined, X0 < X1 < · · ·, and
limXi = S. Furthermore, the matrix S is such that

MS = I ⊗ (A− SC) + (D − CS)T ⊗ I

is either an M -matrix or a singular M -matrix.
Proof. Let X be any positive matrix such that

XCX −XD −AX + B ≤ 0.(2.5)
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For the Newton iteration (2.4) with X0 = 0, we have

AX1 + X1D = B.

This equation is equivalent to

(I ⊗A + DT ⊗ I)vecX1 = vecB,(2.6)

where the vec operator stacks the columns of a matrix into one long vector (see [14,
p. 99], for example). Since I ⊗ A + DT ⊗ I is an M -matrix by assumption, we get
from (2.6) that vecX1 > 0, i.e., X1 > 0. Therefore, the statement

Xk < Xk+1, Xk < X, I ⊗ (A−XkC) + (D − CXk)T ⊗ I is an M -matrix(2.7)

is true for k = 0.
We now assume that (2.7) is true for k = i ≥ 0. By (2.4) and (2.5) we have

(A−XiC)(Xi+1 −X) + (Xi+1 −X)(D − CXi)
= B −XiCXi −AX + XiCX −XD + XCXi(2.8)
≤ −(X −Xi)C(X −Xi).

Since Xi < X and I ⊗ (A−XiC) + (D − CXi)T ⊗ I is an M -matrix, it follows from
(2.8) that Xi+1 < X. By (2.4)

(A−Xi+1C)Xi+1 + Xi+1(D − CXi+1)
=

(
A−XiC − (Xi+1 −Xi)C

)
Xi+1 + Xi+1

(
D − CXi − C(Xi+1 −Xi)

)
(2.9)

= B − (Xi+1 −Xi)C(Xi+1 −Xi)−Xi+1CXi+1.

It follows from (2.9) and (2.5) that

(A−Xi+1C)(Xi+1 −X) + (Xi+1 −X)(D − CXi+1)
≤ −(Xi+1 −Xi)C(Xi+1 −Xi)− (Xi+1 −X)C(Xi+1 −X) < 0.

Therefore, (
I ⊗ (A−Xi+1C) + (D − CXi+1)T ⊗ I

)
vec(X −Xi+1) > 0.

Thus I⊗ (A−Xi+1C)+ (D−CXi+1)T ⊗ I is an M -matrix by Theorem 1.1. By (2.9)
and (2.4)

(A−Xi+1C)(Xi+1 −Xi+2) + (Xi+1 −Xi+2)(D − CXi+1)
= −(Xi+1 −Xi)C(Xi+1 −Xi) < 0.

Therefore, Xi+1 < Xi+2. We have thus proved that (2.7) is true for k = i + 1.
Hence, by the principle of mathematical induction, (2.7) is true for all k ≥ 0. The
Newton sequence is now well defined, monotonically increasing, and bounded above.
Let limk→∞Xk = S. Then S is a solution of (1.8) by (2.4). Since S ≤ X for any X
such that R(X) ≤ 0, S is the minimal positive solution of (1.8). For all i ≥ 0, we
can write I ⊗ (A − XiC) + (D − CXi)T ⊗ I = rI − Ti with Ti ≥ 0 and ρ(Ti) < r.
Now, MS = rI − T with T = limi→∞ Ti. Since ρ(T ) ≤ r, the matrix MS is either an
M -matrix or a singular M -matrix.
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Remark 2.1. The above result is similar in nature to Theorem 9.1.1 of [14].
The result is also somewhat related to a monotone convergence result on Newton’s
method for convex operators in partially ordered spaces, as described in Theorem 5.1
of [20]. In order to apply that theorem, we need to know that there is a positive
matrix X such that R(X) ≤ 0 and I ⊗ (A−XC) + (D −CX)T ⊗ I is an M -matrix.
When this is true, that theorem implies that the Newton sequence with X0 = 0 is
well defined, X0 ≤ X1 ≤ · · · , and lim Xk = X∗ ≤ X is a solution of R(X) = 0.
With the hindsight from Theorem 2.1, such a positive matrix X does not exist if
I ⊗ (A − SC) + (D − CS)T ⊗ I is a singular M -matrix for the minimal positive
solution S. In fact, the existence of such an X would imply S ≤ X by Theorem 2.1,
which would in turn imply that I ⊗ (A − SC) + (D − CS)T ⊗ I is an M -matrix by
Theorem 1.2.

Remark 2.2. Even if A and D are both M -matrices, it is not necessarily true that
A− SC and D−CS are both M -matrices or singular M -matrices. This is shown by
the scalar case with B = C = 1, D = 1/2, and A = 3/2. For this example, S = 1,
A − SC = 1/2, and D − CS = −1/2. This example also shows that the matrix MS

in Theorem 2.1 can indeed be a singular M -matrix.
The following comparison result is an immediate consequence of Theorem 2.1.
Corollary 2.2. Let S be the minimal solution of (1.8). If any element of B

or C decreases but remains positive, or if any diagonal element of I ⊗ A + DT ⊗ I
increases, or if any off-diagonal element of I ⊗ A + DT ⊗ I increases but remains
nonpositive, then the equation so obtained also has a minimal positive solution S̃.
Moreover, S̃ ≤ S.

Proof. Let the new equation be

R̃(X) = XC̃X −XD̃ − ÃX + B̃ = 0.

It is clear that R̃(S) ≤ 0. Since I ⊗ Ã + D̃T ⊗ I is still an M -matrix by Theorem 1.2,
the conclusions follow from Theorem 2.1.

Remark 2.3. As an easy consequence of the above corollary, we can conclude that
the minimal positive solution of (1.1) increases in c. In [10], it is also concluded that
the minimal solution decreases in α. This conclusion is not a consequence of the above
corollary and is, in fact, not valid.

Example 2.1. Consider the Riccati equation (1.1) with n = 2 and

c1 = c2 = 1/2, w1 = 3/4, w2 = 1/4, c = 1/2.

If α = 0.1, then the minimal solution (to four digits without rounding) is(
0.2758 0.1196
0.1344 0.0766

)
.

If α = 0.2, then the minimal solution (to four digits without rounding) is(
0.2639 0.1087
0.1372 0.0746

)
.

This example shows the minimal solution does not necessarily decrease in α.
As to the convergence rate of Newton’s method, the following result is immediate.
Theorem 2.3. If the matrix MS in Theorem 2.1 is an M -matrix, then for X0 = 0

the Newton sequence {Xk} converges to S quadratically.
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Proof. If MS is an M -matrix, then the Fréchet derivative R′

S is an invertible
map. Since R is a smooth function, the convergence of the Newton sequence must be
quadratic (see [11] and [19], for example).

If the matrix MS is a singular M -matrix, the map R′

S is not invertible and the
convergence of Newton’s method is more complicated. The convergence behavior of
Newton’s method in this case will be clarified by following the strategy used in [8] for
symmetric algebraic Riccati equations and using a theorem on Newton’s method at
singular points (see [3, Theorem 1.2] and [12, Theorem 1.1], for example).

Lemma 2.4. If MS is a singular M -matrix, then 0 is a simple eigenvalue of MS.
Let N = Ker(R′

S) and M = Im(R′

S). Then N is one-dimensional, IRm×n = N ⊕M,
and the map B : N → N given by

B(N) = PNR
′′

S(N0, N)

is invertible for nonzero N0 ∈ N , where PN is the projection on the null space N
parallel to the range M.

Proof. We write MS = rI − T with T ≥ 0 and ρ(T ) = r > 0. Since T is clearly
irreducible, we know by the Perron-Frobenius Theorem (see [21]) that ρ(T ) is a simple
eigenvalue of T with a positive eigenvector. Thus, we can find mn orthonormal vectors
u1, u2, . . . , umn such that u1 > 0 and

U−1MSU =
(

0 0
0 M22

)
,(2.10)

where U = (u1 u2 · · ·umn) and M22 is an (mn − 1) × (mn − 1) nonsingular matrix.
Now, R′

S(N) = −(A− SC)N −N(D −CS) = 0 if and only if MSvecN = 0. In view
of (2.10), MSvecN = 0 if and only if vecN = U(a, 0, . . . , 0)T = a u1 for some a ∈ IR,
in which case we write N = aunvecu1 (i.e., the unvec operator is the inverse of the
vec operator). Thus N = {aunvecu1 | a ∈ IR}. Similarly, M = {b2unvecu2 + · · · +
bmnunvecumn | b2, . . . , bmn ∈ IR}. Therefore, N is one-dimensional and IRm×n = N ⊕
M. To prove the map B is invertible, we only need to show PN (unvecu1Cunvecu1) 6= 0
(see (2.2)). Since u1 > 0 and vec(unvecu1Cunvecu1) = k1u1 + k2u2 + · · · + kmnumn

for some real numbers k1, k2, . . . , kmn, we have

k1 = uT
1 vec(unvecu1Cunvecu1) > 0.

Thus, PN (unvecu1Cunvecu1) = k1unvecu1 6= 0, as required.
Lemma 2.5. For any fixed θ > 0, let

Q = {i : ‖PM(Xi − S)‖ > θ‖PN (Xi − S)‖}.

Then there exist an integer i0 and a constant η > 0 such that ‖Xi+1−S‖ ≤ η‖Xi−S‖2
for all i in Q for which i ≥ i0.

Proof. The proof is analogous to that of [8, Theorem 2.2], although the algebraic
Riccati equations considered in that paper are different from the Riccati equations
being considered here.

Corollary 2.6. Assume that , for given θ > 0, ‖PM(Xi−S)‖ > θ‖PN (Xi−S)‖
for all i large enough. Then Xi → S quadratically.

We are now ready to clarify the convergence behavior of Newton’s method when
the matrix MS is a singular M -matrix.
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Theorem 2.7. If MS is a singular M -matrix and the convergence of the Newton
sequence {Xi} in Theorem 2.1 is not quadratic, then ‖(R′

Xi
)−1‖ ≤ β‖Xi − S‖−1 for

all i ≥ 1 and some constant β > 0. Moreover,

lim
i→∞

‖Xi+1 − S‖
‖Xi − S‖

=
1
2
, lim

i→∞

‖PM(Xi − S)‖
‖PN (Xi − S)‖2

= 0.

Proof. The result follows from Theorem 2.1, Lemma 2.4, Corollary 2.6, and [12,
Theorem 1.1].

3. A class of fixed-point iterations. If we write

A = A1 −A2, D = D1 −D2,

(1.8) becomes

A1X + XD1 = XCX + XD2 + A2X + B.

We use only those splittings of A and D such that A2, D2 ≥ 0, and A1 and D1 are Z-
matrices. In these situations, the matrix I⊗A1 +DT

1 ⊗I is an M -matrix by Theorem
1.2. We then have a class of fixed-point iterations

Xk+1 = L−1(XkCXk + XkD2 + A2Xk + B),(3.1)

where the linear operator L is given by

L(X) = A1X + XD1.

Since I ⊗A1 + DT
1 ⊗ I is an M -matrix, the operator L is invertible and L−1(X) > 0

for X > 0.
Theorem 3.1. If R(X) ≤ 0 for some positive matrix X, then for the fixed-point

iterations (3.1) and X0 = 0, we have for any k ≥ 1

X0 < X1 < · · · < Xk < X.(3.2)

Moreover, limk→∞Xk = S.
Proof. The order relation (3.2) can easily be proved by induction. The limit X∗

is then a solution of R(X) = 0 and must be the minimal positive solution S, since
X∗ ≤ X for any positive matrix X such that R(X) ≤ 0.

Remark 3.1. The comparison result on the minimal positive solution (Corollary
2.2) also follows from the above simple result.

The following result is concerned with the convergence rates of these fixed-point
iterations.

Theorem 3.2. For the fixed-point iterations (3.1) with X0 = 0, we have

lim sup
k→∞

k
√
‖Xk − S‖ = ρ

(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

Proof. By a theorem on general fixed-point iterations (see [13, p. 21], for exam-
ple), we have

lim sup
k→∞

k
√
‖Xk − S‖ ≤ ρ(G

′

S),(3.3)
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where G′

S is the Fréchet derivative at S of the map G given by

G(X) = L−1(XCX + XD2 + A2X + B).

It is easily found that G′

S is given by

G
′

S(H) = L−1
(
(A2 + SC)H + H(D2 + CS)

)
.

We now show that, in fact, equality holds in (3.3). We may assume the norm in
(3.3) is the Frobenius norm.

Let Ek = S −Xk. We have Ek+1 = Pk(Ek), where the operator Pk is given by

Pk(H) = L−1
(
(A2 + SC)H + H(D2 + CXk)

)
.(3.4)

Note that limk→∞ Pk = G′

S . Thus, for any ε > 0, we can find an integer l such that

ρ(Pl) ≥ ρ(G
′

S)− ε.

Now, since 0 = X0 < X1 < · · ·, we have

lim sup
k→∞

k
√
‖Xk − S‖ = lim sup

k→∞

k
√
‖Pk−1 · · ·PlPl−1 · · ·P0(S)‖

≥ lim sup
k→∞

k

√
‖(Pl)k−l(P0)l(S)‖.

Since (P0)l(S) > 0, we have (P0)l(S) > clE, where cl > 0 is a constant and E is the
matrix with all its elements equal to one. Also, ‖(Pl)k−l‖ = ‖(Pl)k−l(Sl,k)‖, where
Sl,k ∈ IRm×n is such that ‖Sl,k‖ = 1 and Sl,k ≥ 0. Now,

lim sup
k→∞

k
√
‖Xk − S‖ ≥ lim sup

k→∞

k

√
‖cl(Pl)k−l(E)‖

≥ lim sup
k→∞

k

√
cl‖(Pl)k−l(Sl,k)‖

= lim sup
k→∞

k

√
‖(Pl)k−l‖

= ρ(Pl) ≥ ρ(G
′

S)− ε.

Since ε > 0 is arbitrary, we have

lim sup
k→∞

k
√
‖Xk − S‖ = ρ(G

′

S).

A number λ is an eigenvalue of G′

S if and only if for some H 6= 0,

L−1
(
(A2 + SC)H + H(D2 + CS)

)
= λH,

which is the same as

(A2 + SC)H + H(D2 + CS) = λ(A1H + HD1).

or

(I ⊗A1 + DT
1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)vecH = λvecH.
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Thus,

ρ(G
′

S) = ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)
.

This completes the proof.
We can say something more about the spectral radius in Theorem 3.2.
Theorem 3.3. If MS is a singular M -matrix, then

ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

= 1.

If MS is an M -matrix, and A = Ã1 − Ã2, D = D̃1 − D̃2 are such that 0 ≤ Ã2 ≤ A2

and 0 ≤ D̃2 ≤ D2, then

ρ
(
(I ⊗ Ã1 + D̃T

1 ⊗ I)−1(I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)
)

≤ ρ
(
(I ⊗A1 + DT

1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)
)

< 1.

Proof. Since

MS = (I ⊗A1 + DT
1 ⊗ I)− (I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)

and

MS = (I ⊗ Ã1 + D̃T
1 ⊗ I)− (I ⊗ (Ã2 + SC) + (D̃2 + CS)T ⊗ I)

are regular splittings [21] of MS , the second conclusion follows from the standard
results in [21]. If MS is a singular M -matrix, then MSv = 0 for some v 6= 0. Thus,

(I ⊗A1 + DT
1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)v = v,

and the first conclusion follows.
Therefore, the convergence of these iterations is linear if MS is an M -matrix.

When MS is a singular M -matrix, the convergence is sublinear. Within this class
of iterative methods, three iterations are worthy of special mention. The first one is
obtained when we take A1 and D1 to be the diagonal part of A and D, respectively.
This is the simplest iteration in the class and will be called FP1. The second one is
obtained when we take A1 to be the lower triangular part of A and take D1 to be
the upper triangular part of D. This iteration will be called FP2. The last one is
obtained when we take A1 = A and D1 = D. This is the fastest iteration in this class
(see second part of Theorem 3.3) and will be called FP3.

4. Some practical issues and an overall algorithm. If (1.8) has a positive
solution, the minimal positive solution can thus be found by the Newton iteration
or some basic fixed-point iterations. Starting with the zero matrix, each of these
iterations produces a monotonically increasing sequence, the limit of which is the
minimal positive solution S. The matrix MS associated with S is either an M -matrix
or a singular M -matrix. When MS is an M -matrix, the convergence of Newton’s
method is quadratic and the convergence of the basic fixed-point iterations is linear.
When MS is a singular M -matrix, the convergence of Newton’s method is at least
linear and the convergence of the basic fixed-point iterations is sublinear. Therefore,
Newton’s method is always much faster than the other methods in terms of iteration
counts. It must be noted, however, that the computational work involved in one step



10 CHUN-HUA GUO AND ALAN J. LAUB

of Newton’s method is much higher than that involved in one step of a basic fixed-
point iteration. For the Newton iteration (2.3), the equation −R′

Xk
(H) = R(Xk), i.e.,

(A−XkC)H + H(D−CXk) = R(Xk), can be solved by the algorithms described in
[1] and [6]. If we use the Bartels-Stewart algorithm [1] to solve the Sylvester equation,
the computational work for each Newton iteration is about 62n3 flops when m = n
(see [7] for the definition of a “flop”). By comparison, FP1 and FP2 need about 8n3

flops for each iteration. For FP3 we can use the Bartels-Stewart algorithm for the first
iteration. It needs about 54n3 flops. For each subsequent iteration, it needs about
14n3 flops.

For the basic fixed-point iteration (3.1), the error reduction at the (k + 1)th step
is determined by the operator Pk in (3.4). Since 0 = X0 < X1 < · · · , we can see that
the error reduction is more significant initially. For Newton’s method, of course, the
error reduction is much more significant at a late stage of iteration unless the matrix
MS is nearly singular. It is therefore advisable to start with some basic fixed-point
iteration and switch to Newton’s method after the residual error has been reduced
to a certain level. From Theorem 2.1 we know that Newton’s method, starting with
the zero matrix, produces a monotonically increasing sequence. Now, with the initial
guess produced by some basic fixed-point iteration, will the Newton sequence still be
monotonic?

Proposition 4.1. Assume that R(X) ≤ 0 for some positive matrix X. If
{Xk}k0

k=1 is produced by basic fixed-point iteration (3.1) with X0 = 0 and {Xk}∞k=k0+1

is produced by Newton’s method with Xk0 as an initial guess, then

0 < X1 < X2 < · · · < Xk0 < Xk0+1 < · · · ,

and limk→∞Xk = S, the minimal positive solution.
Proof. We already know from Theorem 3.1 that 0 < X1 < X2 < · · · < Xk0 < S.

Now, for 1 ≤ k ≤ k0, we have

R(Xk) = XkCXk + XkD2 + A2Xk + B −A1Xk −XkD1

= XkCXk −Xk−1CXk−1 + (Xk −Xk−1)D2 + A2(Xk −Xk−1) > 0.

Since Xk0+1 is obtained from Xk0 by Newton’s method, −R′

Xk0
(Xk0+1 − Xk0) =

R(Xk0). Thus, (A−Xk0C)(Xk0+1−Xk0)+(Xk0+1−Xk0)(D−CXk0) > 0. Since Xk0 <
S and I⊗ (A−SC)+(D−CS)T ⊗I is either an M -matrix or a singular M -matrix, it
follows from the Perron-Frobenius Theorem that I ⊗ (A−Xk0C) + (D−CXk0)

T ⊗ I
is an M -matrix. Therefore, Xk0+1 > Xk0 . Once this is proved, it follows as in the
proof of Theorem 2.1 that Xk0 < Xk0+1 < · · ·, and limk→∞Xk = S.

Remark 4.1. We may apply the above strategy without knowing whether (1.8)
has a positive solution. If we find that Xk < Xk+1 is not true for some k ≥ k0,
then we can conclude that (1.8) does not have a positive solution. Note however that
Xk < Xk+1 is true for all 0 ≤ k < k0, even if (1.8) has no positive solutions. This is
another difference between Newton’s method and the basic fixed-point iterations.

Remark 4.2. The results in Section 2 are still valid when the Newton iteration is
started with a matrix produced by a basic fixed-point iteration as in Proposition 4.1.

The convergence behavior of the iterative methods we have discussed depends on
the matrix MS = I ⊗ (A− SC) + (D−CS)T ⊗ I, in which S is the minimal positive
solution to be found. The matrix MS is a singular M -matrix if and only if λi +µj = 0
for some eigenvalue λi of A− SC and some eigenvalue µj of D − CS. There is some
connection between the eigenvalues of A − SC (or D − CS) and the eigenvalues of
the matrix H in (1.9). In fact, the following result is true.
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Proposition 4.2. If X is any solution of (1.8), then any eigenvalue of D−CX
is an eigenvalue of H and any eigenvalue of A−XC is the negative of some eigenvalue
of H.

Proof. It is easy to verify that(
I 0
X I

)−1 (
D −C
B −A

) (
I 0
X I

)
=

(
D − CX −C

0 −(A−XC)

)
.

The conclusions follow immediately.
However, when we are going to use iterative methods to find the minimal positive

solution, we would not bother to find all the eigenvalues of the matrix H. Even if
we know all the eigenvalues of H, Proposition 4.2 is not adequate to determine all
the eigenvalues of A − SC and D − CS. For (1.1), we know from the results in [10]
that MS is a singular M -matrix if and only if c = 1 and α = 0. This explains why
Newton’s method may not be valid as a correction method when c ≈ 1 and α ≈ 0. For
(1.8), whether the matrix MS is a singular M -matrix (or nearly so) can be inferred
from the speed of convergence of the iterative method we are using. For example,
very slow convergence of a basic fixed-point iteration indicates that the matrix MS is
a singular M -matrix or nearly so. By Proposition 4.1 we can always use the Newton
iteration when the convergence of the fixed-point iteration is unsatisfactory.

When the matrix MS is singular and the convergence of Newton’s method is not
quadratic, we know from Theorem 2.7 that the convergence must be linear with rate
1/2 and the error will rapidly be dominated by the null space component. As is
the case for symmetric algebraic Riccati equations (see Theorems 3.1 and 3.2 of [8]),
very accurate approximation for the minimal positive solution can be obtained by
computing Yk+1 = Xk − 2(R′

Xk
)−1R(Xk) when ‖PM(Xk − S)‖ ≤ ε‖PN (Xk − S)‖

and ε is very small. Note that ‖Xk − S‖ need not be very small when ε is very
small. In this case, the Sylvester equation −R′

Xk
(H) = R(Xk) is not nearly singular

and can be solved by the Bartels-Stewart algorithm very accurately. Without this
double Newton step, Newton’s method will take many more iterations. Even linear
convergence with rate 1/2 can fail to be realized due to a nearly singular Jacobian
at a late stage. Therefore, when we apply Newton’s method, we can try a double
Newton step first. If the approximation obtained fails to satisfy a given stopping
criterion, then we use the original Newton iteration instead and try a double Newton
step with the new iterate, i.e., we have an algorithm similar to Algorithm 3.3 of [8] for
symmetric algebraic Riccati equations. Although the added cost of trying the double
Newton step is minor, the strategy can be used in a wiser way. That is, we can try
the double Newton step only when there are indications that we are solving a problem
with R′

S singular (or nearly singular) and that the error is already essentially in the
null space (or approximate null space). The next result shows how we can get such
indications.

Proposition 4.3. Assume that R′

S is singular and {Xk}∞k=k0
is the Newton

sequence in Proposition 4.1. If Xk − S ∈ N (k ≥ k0), then

Xk+1 − S =
1
2
(Xk − S), R(Xk+1) =

1
4
R(Xk).

Furthermore,

lim
rk→0

‖Xk+1 − S‖
‖Xk − S‖

=
1
2
, lim

rk→0

R(Xk)
‖Xk − S‖2

= C0,(4.1)
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where

rk =
‖PM(Xk − S)‖
‖PN (Xk − S)‖2

and C0 is a constant positive matrix. In particular,

lim
rk→0

‖R(Xk+1)‖
‖R(Xk)‖

=
1
4
.

Proof. As in Theorem 3.1 of [8], we have Xk+1 − S = 1
2 (Xk − S) ∈ N when

Xk − S ∈ N . Thus, in view of (2.2),

R(Xk+1) = R(S) +R
′

S(Xk+1 − S) +
1
2
R

′′

S(Xk+1 − S, Xk+1 − S)

= (Xk+1 − S)C(Xk+1 − S) =
1
4
(Xk − S)C(Xk − S) =

1
4
R(Xk).

If rk is sufficiently small, we have as in Theorem 3.2 of [8]

‖Xk − 2(R
′

Xk
)−1R(Xk)− S‖ ≤ γ

‖PM(Xk − S)‖
‖PN (Xk − S)‖

(4.2)

for some constant γ. Since the left-hand side of (4.2) can be written as ‖2(Xk+1 −
S) − (Xk − S)‖, the first limit in (4.1) follows easily. Now, let N = span{N0} with
N0 > 0 and ‖N0‖ = 1. Since

R(Xk) = R(S) +R
′

S(Xk − S) +
1
2
R

′′

S(Xk − S, Xk − S)

= R
′

S(PM(Xk − S)) + (Xk − S)C(Xk − S),

we get easily that

lim
rk→0

R(Xk)
‖Xk − S‖2

= N0CN0 > 0.

The proof is thus complete.
When R′

S is singular, we know from Theorem 2.7 that limk→∞ rk = 0 unless the
convergence of Newton’s method is quadratic. The above proposition tells us that we
may choose to try the double Newton step with a current Newton iterate Xk only
when ‖R(Xk)‖/‖R(Xk−1)‖ ≈ 1/4.

We now propose the following algorithm for finding the minimal positive solution
S of (1.8) whenever it has a positive solution. The algorithm may also detect that
the equation actually does not have a positive solution. The choices of the splittings
and parameters in step 1 of the algorithm can be made according to the guidelines
provided immediately after the algorithm.

Algorithm 4.4.
1. Choose splittings A = A1 −A2 and D = D1 −D2;

choose parameters k0, ε, η1, η2, η3 > 0.
2. Set X0 = 0, T (X0) = B, r0 = ‖B‖∞.
3. For k = 1, 2, . . ., do:

solve A1Xk + XkD1 = T (Xk−1);
compute R(Xk), rk = ‖R(Xk)‖∞;
if rk/r0 < η1 or k ≥ k0, goto 4;
compute T (Xk) = T (Xk−1) +R(Xk).
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4. For p = k, k + 1, . . . , do:
solve −R′

Xk
(H) = R(Xk) for H = (hij);

if hij < −η2‖H‖∞ for some (i, j), then stop (no solution);
compute Xp+1 = Xp + H, R(Xp+1), rp+1 = ‖R(Xp+1)‖∞;
if rp+1/r0 < ε, then stop and S ≈ Xp+1;
if | rp+1

rp
− 1

4 | < η3, then
compute Z = Xp + 2H, r = ‖R(Z)‖∞;
if r/r0 < ε, then stop and S ≈ Z.

In the above algorithm, we can select a particular basic fixed-point iteration by
choosing proper splittings of A and D. Normally we can use FP1 or FP2. Although
FP2 is faster in general, FP1 may take advantage of the structures in a specific
equation more easily. In the algorithm, ε is the required precision and is usually
much smaller than η1. The small number η2 is introduced to numerically check if
H > 0 has been violated. This number should be related to the unit roundoff. The
small number η3 is used to determine if the double Newton step should be tried. A
smaller η3 should be used for a smaller ε. If (1.8) does not have a positive solution,
the criterion rk/r0 < η1 in step 3 of the algorithm may never be satisfied. In the
algorithm, we have let k0 be the maximal number of fixed-point iterations allowed.
The nonexistence of a positive solution can often be detected by Newton’s method
in step 4. When (1.8) has a positive solution, the algorithm will produce a finite
sequence approaching the minimal positive solution. The sequence is obtained by a
fixed-point iteration followed by ordinary Newton’s method, with the exception that
the last term in the sequence is possibly obtained by the double Newton step. It
should be noted that the matrix Z produced by the double Newton step is not used
in subsequent Newton iterations.

5. Numerical results. We first give a simple example to illustrate the perfor-
mance of the iterative methods we have studied.

Table 5.1
Iteration counts for Example 5.1, α = 6.0

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 3 4 4 5 5 5
FP1 11 22 33 44 54 65
FP2 10 19 29 38 48 57
FP3 7 15 23 31 38 46

Table 5.2
Iteration counts for Example 5.1, α = 4.27

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 5 7 8 9 9 10
FP1 40 245 533 822 1112 1402
FP2 36 222 480 739 998 1257
FP3 29 182 396 611 827 1042

Example 5.1. Consider (1.8) with m = n = 2 and

A =
(

α −2
−1 6

)
, B =

(
1 1
2 1

)
, C =

(
3 4
2 1

)
, D =

(
5 −1

−1 4

)
.
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Table 5.3
Iteration counts for Example 5.1, α = 4.267191

ε 10−2 10−4 10−6 10−8 10−10 10−12

NM 5 8 11 14 15 15
FP1 40 450 4477 25328 54350 83603
FP2 37 414 4119 23000 49020 75239
FP3 29 335 3339 18899 40559 62395

For α = 4.26, we apply Newton’s method with X0 = 0 and find

X6 =
(

0.3865 0.4048
0.3583 0.2943

)
, X7 =

(
0.3713 0.3872
0.3490 0.2836

)
.

Since X6 < X7 is not true, the equation has no positive solutions in this case. Ex-
periments show that the equation has a positive solution for α = 4.267191. Thus,
it has positive solutions for all α ≥ 4.267191 by Corollary 2.2. In Tables 5.1–5.3,
we have recorded, for three values of α, the number of iterations needed to have
‖R(Xk)‖∞ < ε for Newton’s method (NM) and the three basic fixed-point iterations.
For all four methods, we use X0 = 0. From the tables, we can see that the three
basic fixed-point iterations have similar efficiency. For α = 6.0, the basic fixed-point
iterations are still adequate. For α = 4.27 and α = 4.267191, however, the advantage
of Newton’s method is very clear. In all three cases, the basic fixed-point iterations
are useful for initial error reduction. We may consider using Newton’s method after
a certain number of fixed-point iterations. However, other features of Algorithm 4.4
have no role to play, since the existence of a positive solution is known for each α and
quadratic convergence of Newton’s method is visible even for α = 4.267191.

Example 5.2. We now consider (1.1) for n = 64 and n = 128. The constants ci and
wi are given by a numerical quadrature formula on the interval [0, 1], which is obtained
by dividing [0, 1] into n/4 subintervals of equal length and applying Gauss-Legendre
quadrature with 4 nodes to each subinterval.

We apply Algorithm 4.4 with the splittings of A and D being those corresponding
to FP1, and take k0 = 200, ε = 10−12, η1 = 10−3, η2 = 10−6, and η3 = 10−6. For this
example it is actually unnecessary to introduce the parameter η2, since the existence
of positive solutions has been guaranteed by the theoretical results in [9] and [10].
We carry out the computation for n = 64 and n = 128. The parameter pair (α, c) is
taken to be (0.5, 0.5), (10−8, 0.999999), (10−14, 1), and (0, 1). The results are recorded
in Tables 5.4–5.5. For example, when n = 64 and (α, c) = (0, 1), the residual is
reduced to 0.9916D-03r0 after 170 FP1 iterations (r0 is the initial residual). The
residual is then reduced to 0.4937D-05r0 after 4 Newton iterations. The fifth Newton
iteration fails to achieve the required accuracy, but the double Newton step (DN)
works (it reduces the residual to 0.1763D-13r0). The double Newton step is also
tried with the fourth Newton iteration, but without success. For this example, R′

S is
singular when (α, c) = (0, 1).

6. Conclusions. We have discussed the iterative solution of a class of nonsym-
metric algebraic Riccati equations, which includes a class of algebraic Riccati equa-
tions arising in transport theory. The coefficient matrices of any equation in this larger
class have a special sign structure. Using this structure and the theory of M -matrices,
we have shown that Newton’s method and a class of basic fixed-point iterations can
be used to find its minimal positive solution whenever it has a positive solution. We
have also proposed an overall algorithm for the solution of the nonsymmetric algebraic
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Table 5.4
Convergence history for Example 5.2, n = 64

(0.5, 0.5) (10−8, 0.999999) (10−14, 1) (0, 1)
5 FP1 170 FP1 170 FP1 170 FP1

0.6844D-03 0.9889D-03 0.9916D-03 0.9916D-03
2 NM 7 NM 4 NM 4 NM

0.5464D-15 0.5832D-14 0.4937D-05 0.4937D-05
no DN tries no DN tries DN (second try) DN (second try)

0.1671D-13 0.1763D-13

Table 5.5
Convergence history for Example 5.2, n = 128

(0.5, 0.5) (10−8, 0.999999) (10−14, 1) (0, 1)
5 FP1 170 FP1 170 FP1 170 FP1

0.6847D-03 0.9915D-03 0.9942D-03 0.9942D-03
2 NM 7 NM 4 NM 4 NM

0.1117D-14 0.5677D-14 0.4953D-05 0.4953D-05
no DN tries no DN tries DN (second try) DN (second try)

0.1606D-13 0.1650D-13

Riccati equation. The algorithm is basically a combination of Newton’s method and
a basic fixed-point iteration, but it has two additional features: the algorithm can
detect that an equation actually does not have a positive solution; it can also detect
and solve a singular or nearly singular problem efficiently. There are still, however,
some unsolved problems about the nonsymmetric algebraic Riccati equation. For ex-
ample, it is of interest to know what reasonable conditions on the coefficient matrices
of the equation will ensure the existence of a positive solution. It is also of interest
to determine if quadratic convergence is really possible for Newton’s method in the
singular case. For symmetric algebraic Riccati equations, subspace methods are fre-
quently used (see [16], for example). It would be worthwhile to consider whether the
minimal positive solution of the equation can also be found efficiently by subspace
methods.
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