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Abstract. An exact line search method has been introduced by Benner and Byers [IEEE Trans.
Autom. Control, 43 (1998), pp. 101–107] for solving continuous algebraic Riccati equations. The
method is a modification of Newton’s method. A convergence theory is established in that paper for
the Newton-like method under the strong hypothesis of controllability, while the original Newton’s
method needs only the weaker hypothesis of stabilizability for its convergence theory. It is conjectured
there that the controllability condition can be weakened to the stabilizability condition. In this note
we prove that conjecture.
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1. Introduction. Consider the continuous algebraic Riccati equation (CARE)

R(X) = XDX −XA−AT X − C = 0,(1.1)

where A,D, C ∈ IRn×n, and DT = D, CT = C. Matrix equations of this form occur in
many important applications (see [11], [9]). We limit our attention to real equations,
since the complex analog of these equations can be studied in a similar manner. All
matrices in this note are real matrices.

For A,H ∈ IRn×n, the pair (A,H) is said to be controllable if

rank(H AH A2H · · · An−1H) = n.

The pair (A,H) is called stabilizable if there is a K ∈ IRn×n such that A − HK is
stable, i.e., all its eigenvalues are in the open left half-plane. Note that the matrix
K can be chosen to be symmetric if the matrix H is symmetric (see [9]). It is well
known that controllability implies stabilizability (see [9]). The order relation on the
set of symmetric matrices is the usual one: X ≥ Y if X − Y is positive semidefinite.
A symmetric solution X+ of (1.1) is called maximal if X+ ≥ X for every symmetric
solution X.

Let S be the set of symmetric matrices in IRn×n. The Riccati function R is clearly
a mapping from S into itself. Moreover, the first Fréchet derivative of R at a matrix
X is a linear map R′

X : S → S given by

R
′

X(S) = −{(A−DX)T S + S(A−DX)}.

When (A,D) is stabilizable, a Newton procedure for the solution of the Riccati equa-
tion (1.1) is then as follows.

Algorithm 1.1. Newton’s method for the CARE
1. Choose a symmetric matrix X0 for which A−DX0 is stable.
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2. For k = 0, 1, . . . do:
Solve the Lyapunov equation (A−DXk)T Nk + Nk(A−DXk) = R(Xk);
Compute Xk+1 = Xk + Nk.

Note that the matrix X0 in the above algorithm can be found by the method
described in [12]. The Lyapunov equation has a unique solution whenever the matrix
A − DXk is stable (see [9], for example). The unique solution Nk can be found
efficiently by the methods described in [1].

Concerning the convergence of Algorithm 1.1, we have the following result (see
[8], [4], [5], and [9]).

Theorem 1.2. Assume that D ≥ 0, CT = C, (A,D) is stabilizable, and there
exists a symmetric solution of the CARE (1.1). Then there is a maximal symmetric so-
lution X+ of (1.1) and all the eigenvalues of A−DX+ are in the closed left half-plane.
Moreover, Algorithm 1.1 determines a sequence of symmetric matrices {Xk}∞k=1 for
which A − DXk is stable for k = 1, 2, . . ., X1 ≥ X2 ≥ · · · , and limk→∞Xk = X+.
The convergence is quadratic if A−DX+ has no eigenvalues on the imaginary axis.

Remark 1.1. The situation where A−DX+ has eigenvalues on the imaginary axis
has been studied recently in [6]. It is shown in [6] that the convergence of Algorithm 1.1
is either quadratic or linear with rate 1/2 provided that all eigenvalues of A−DX+ on
the imaginary axis are semisimple. Whether quadratic convergence is indeed possible
remains an open problem. If the convergence is linear, the performance of Algorithm
1.1 can be improved dramatically by using a simple modification strategy (see [6] for
details). When A −DX+ has non-semisimple eigenvalues on the imaginary axis the
convergence behavior of Algorithm 1.1 also remains an open problem.

In this note we limit our attention to the case where A−DX+ has no eigenvalues
on the imaginary axis. In this case X+ is called a stabilizing solution.

It is important to note that X0 ≥ X1 is not true in general. As an example (see
[7]), consider the CARE (1.1) with A = 0, D = I, C = I. In this case X+ = I,
but if X0 = εI (ε is a small positive number), we have X1 = 1+ε2

2ε I. Thus ‖X1 −
X+‖∞ can be arbitrarily large even though ‖X0 − X+‖∞ < 1. In [7], some tests
are described to determine whether Newton refinement will improve an approximate
solution obtained by other methods. In [3], Benner and Byers introduced step size
control into Newton’s method for the generalized CARE. The generalized CARE they
considered can be reduced to the CARE of the form (1.1). Although the reduction
is not always numerically feasible, convergence analysis can always be made on the
reduced equation. We can therefore limit our attention to the CARE of the form
(1.1).

Algorithm 1.3. Exact line search method [3]
1. Choose a symmetric matrix X0 for which A−DX0 is stable.
2. For k = 0, 1, . . . do:

Solve the Lyapunov equation (A−DXk)T Nk + Nk(A−DXk) = R(Xk);
Find a minimizer tk of fk(t) = ‖R(Xk + tNk)‖2

F (0 ≤ t ≤ 2);
Compute Xk+1 = Xk + tkNk.

In the above algorithm, ‖ · ‖F is the Frobenius norm. The algorithm effectively
solves the problem of a potentially disastrous first Newton step and can be imple-
mented in such a way that the increased amount of computational work per iteration
is marginal (see [3] for details).

The following convergence result is proved in [3].
Theorem 1.4. Assume that D ≥ 0, CT = C, (A,D) is controllable, and there

is a stabilizing maximal solution X+ of the CARE (1.1). If the minimizer tk of
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fk(t) (0 ≤ t ≤ 2) satisfies tk ≥ tL > 0 for all k ≥ 0, where tL is a constant tolerance
threshold, then the sequence {Xk} in Algorithm 1.3 is well defined and Xk → X+

quadratically. If tk = 0 for some k ≥ 0, then Xk = X+.
In Theorem 1.2, we only need the stabilizability of (A,D) for the convergence

of Newton’s method. In the above theorem, however, the controllability of (A,D) is
required. Since Algorithm 1.3 is designed to improve the performance of Newton’s
method, it would be desirable to replace the controllability condition in the above
theorem by the stabilizability condition. It is conjectured in [3] that this can be done.
We will confirm the conjecture in this note.

2. Relaxing the controllability condition. Several interesting results are es-
tablished in [3] to prove Theorem 1.4. The following two lemmas will be utilized to
relax the controllability condition in Theorem 1.4.

Lemma 2.1 (see [3]). Assume that D ≥ 0, CT = C, and A −DX+ is stable. If
A−DXk is stable, then A−D(Xk + tNk) is also stable for any t ∈ [0, 2].

Remark 2.1. The controllability of (A,D) is not needed for this lemma. In the
proof (given in [3]) of Theorem 1.4, the controllability of (A,D) is required to prove
that the sequence {Xk} (already well defined by Lemma 2.1) is bounded. Otherwise
the stabilizability of (A,D) is sufficient for the proof of Theorem 1.4.

Lemma 2.2 (see [3]). Suppose that {Xk}∞k=1 is a sequence of symmetric matrices
such that {R(Xk)}∞k=1 is bounded. If (A,D) is controllable, then {Xk}∞k=1 is bounded.

Remark 2.2. In the above lemma, the controllability of (A,D) cannot be replaced
by the stabilizability of (A,D). This is illustrated by the CARE (1.1) with

D =
(

1 0
0 0

)
, A =

(
0 0
0 −1

)
, C =

(
1 0
0 0

)
(see Example 7.9.1 of [9]). Clearly, the pair (A,D) is stabilizable but not controllable.
The real symmetric solutions of the CARE can be found to be(

1 0
0 0

)
,

(
−1 b
b −b2/2

)
, b ∈ IR.

Note that the solution set of R(X) = 0 is already unbounded. Note however that
among these solutions, there is only one stabilizing solution, namely X+ = diag (1, 0).
The uniqueness of the stabilizing solution is actually a general result (see Theorem
9.3.1 of [9], for example).

The above observation leads us to formulate the following result (see also Ac-
knowledgments).

Lemma 2.3. Suppose that {Xk}∞k=1 is a sequence of symmetric matrices such
that {R(Xk)}∞k=1 is bounded. If (A,D) is stabilizable and A−DXk is stable for each
k ≥ 1, then {Xk}∞k=1 is bounded.

Proof. It is clear that we may assume C = 0 without loss of generality. Consider
the controllable subspace of (A,D):

C = Im(D AD A2D · · · An−1D).

If dim C = n, then (A,D) is controllable and the result follows directly from Lemma
2.2. If dim C = r < n, we can consider using the control (or Kalman) normal form
of (A,D) (see [9]). Thus, we take an orthonormal basis for C and expand it to an
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orthonormal basis of IRn. Under this basis, the matrices A and D have very simple
forms. More precisely, there is an orthogonal matrix U such that

A = UT

(
A1 A3

0 A2

)
U, D = UT

(
D1 0
0 0

)
U,

where A1, D1 ∈ IRr×r. Write accordingly

Xk = UT

(
Xk,1 Xk,3

XT
k,3 Xk,2

)
U.

Since A − DXk is stable for all k ≥ 1, we see immediately that A2 is stable and
A1 −D1Xk,1 is stable for all k ≥ 1. Moreover, it follows readily from dim C = r that

dim Im(D1 A1D1 · · · Ar−1
1 D1) = dim Im(D1 A1D1 · · · An−1

1 D1) = r.

Thus, (A1, D1) is controllable.
Since the sequence {R(Xk)} is bounded, direct computation shows that the ma-

trix sequences

{Xk,1D1Xk,1 −Xk,1A1 −AT
1 Xk,1},(2.1)

{Xk,1D1Xk,3 −Xk,1A3 −Xk,3A2 −AT
1 Xk,3},(2.2)

and

{XT
k,3D1Xk,3 −XT

k,3A3 −Xk,2A2 −AT
3 Xk,3 −AT

2 Xk,2}(2.3)

are all bounded. Since (2.1) is bounded and (A1, D1) is controllable, we know from
Lemma 2.2 that {Xk,1} is bounded. We then know from the boundedness of (2.2)
that {(A1 −D1Xk,1)T Xk,3 + Xk,3A2} is bounded. Since {A1 −D1Xk,1} is bounded,
A2 is stable, and A1 − D1Xk,1 is stable for all k ≥ 1, it follows from Lemma 2.4
below that {Xk,3} is bounded. Now that {Xk,3} has been shown to be bounded, it
follows from the boundedness of (2.3) that {Xk,2A2 + AT

2 Xk,2} is bounded. Since A2

is stable, {Xk,2} is also bounded by Lemma 2.4. Therefore, {Xk} is bounded.
The following lemma has been used in the proof of Lemma 2.3.
Lemma 2.4. Let A,B, and C be bounded sets of matrices of size m×m, n×n, and

m×n, respectively. Assume that the closure of
⋃

A∈A
σ(A) and the closure of

⋃
B∈B

σ(B)

are disjoint. Then the set

G = {X |AX −XB = C, A ∈ A, B ∈ B, C ∈ C}

is bounded.
Proof. For A ∈ clo(A), B ∈ clo(B), and C ∈ clo(C), the Sylvester equation

AX − XB = C has a unique solution X = F (A,B,C) by the assumption. See, for
example, [9] or [10]. It is clear that the function F is continuous on the compact set
clo(A)× clo(B)× clo(C). Therefore F maps this compact set onto a compact set. As
a result, G is bounded.

We can now relax the controllability condition in Theorem 1.4.
Theorem 2.5. The conclusions in Theorem 1.4 are valid if the pair (A,D) is

stabilizable.
Proof. This follows readily from Remark 2.1, Lemma 2.1, and Lemma 2.3. Note

that {R(Xk)}∞k=1 is bounded by Algorithm 1.3 itself.
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