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Abstract. When Newton’s method is applied to find the maximal symmetric solution of a dis-
crete algebraic Riccati equation (DARE), convergence can be guaranteed under moderate conditions.
In particular, the initial guess does not need to be close to the solution. The convergence is quadratic
if the Fréchet derivative is invertible at the solution. When the closed-loop matrix has eigenvalues on
the unit circle, the derivative at the solution is not invertible. The convergence of Newton’s method
is shown to be either quadratic or linear with common ratio 1

2
, provided that the eigenvalues on the

unit circle are all semi-simple. The linear convergence appears to be dominant, and the efficiency of
the Newton iteration can be improved significantly by applying a double Newton step at the right
time.
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1. Introduction. Algebraic Riccati equations occur in many important appli-
cations [18], [20]. In a previous paper [11] we considered Newton’s method for contin-
uous algebraic Riccati equations (CARE). In this paper we consider discrete algebraic
Riccati equations (DARE) of the form

−X + AT XA + Q− (C + BT XA)T (R + BT XB)−1(C + BT XA) = 0,(1.1)

where A,Q ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n, R ∈ IRm×m, and QT = Q,RT = R. We
denote by R(X) the left-hand side of (1.1). The function R(X) and its derivatives are
much more complicated than their CARE counterparts. Nevertheless, it will be shown
that most analytical properties established in [11] for the CARE can be extended to
the DARE. The analysis here is more involved, but the line of attack is the same.

Let S be the set of symmetric matrices in IRn×n. For any matrix norm (not neces-
sarily multiplicative) S is a Banach space. LetD = {X ∈ S | R+BT XB is invertible}.
We have R : D → S. The first Fréchet derivative of R at a matrix X ∈ D is a linear
map R′X : S → S given by

R′X(S) = −S + ÂT SÂ,(1.2)

where Â = A−B(R +BT XB)−1(C +BT XA). Also the second derivative at X ∈ D,
R′′X : S × S → S, is given by

R′′X(S1, S2) = −ÂT S1HS2Â− ÂT S2HS1Â,(1.3)

where H = B(R + BT XB)−1BT .
For A ∈ IRn×n and B ∈ IRn×m, the pair (A,B) is said to be d-stabilizable if there

is a K ∈ IRm×n such that A−BK is d-stable, i.e., all its eigenvalues are in the open
unit disk. For real symmetric matrices X and Y , we write X ≥ Y (X > Y ) if X−Y is
positive semidefinite (definite). A symmetric solution X+ of (1.1) is called maximal if
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X+ ≥ X for every symmetric solution X. The following result is essentially the real
version of Theorem 13.1.1 in [18]. See also [22].

Theorem 1.1. Let (A,B) be a d-stabilizable pair and assume that there is a sym-
metric solution X̃ of the inequality R(X) ≥ 0 for which R + BT X̃B > 0. Then there
exists a maximal symmetric solution X+ of R(X) = 0. Moreover, R + BT X+B > 0
and all the eigenvalues of A−B(R + BT X+B)−1(C + BT X+A) lie in the closed unit
disk.

Remark 1.1. In Theorem 13.1.1 of [18], the matrix R is required to be invertible.
This requirement is needed for some later developments in [18], but is not necessary
for the conclusions of Theorem 13.1.1. The proof of that theorem should be slightly
modified. We have only to replace expressions of the form Q − CT R−1C + (L −
R−1C)T R(L−R−1C) by expressions of the form Q+LT RL−CT L−LT C. That the
invertibility of R is not necessary for the conclusions of Theorem 1.1 has also been
noted in [2]. As noted in [3], the matrix R may well be singular in applications.

A symmetric solution X of (1.1) is called stabilizing (resp. almost stabilizing) if
all the eigenvalues of A−B(R+BT XB)−1(C +BT XA) are in the open (resp. closed)
unit disk. Such solutions play important roles in applications. Theorem 1.1 tells us
that, under the given conditions, the maximal solution is at least almost stabilizing.

The Newton method for the solution of (1.1) is

Xi = Xi−1 − (R′Xi−1
)−1R(Xi−1), i = 1, 2, . . . ,(1.4)

given that the maps R′Xi
(i = 0, 1, . . .) are all invertible. The iteration (1.4) is closely

related to the solution of the Stein equation described in the following classical result.
Theorem 1.2 (cf. [18, p. 100]). For any given matrices A,B, Γ ∈ IRn×n the

Stein equation S − BSA = Γ has a unique solution (necessarily real) if and only if
λrµs 6= 1 for any λr ∈ σ(A), µs ∈ σ(B).

It follows from Theorem 1.2 that, under the conditions of Theorem 1.1, R′X+
is

invertible if and only if A−B(R + BT X+B)−1(C + BT X+A) is d-stable.
When we apply Newton’s method to the DARE (1.1) with (A,B) d-stabilizable,

the initial matrix X0 is taken such that A − B(R + BT X0B)−1(C + BT X0A) is d-
stable. The usual way to generate such an X0 is as follows. We choose L0 ∈ IRm×n

such that A0 = A − BL0 is d-stable, and take X0 to be the unique solution of the
Stein equation

X0 −AT
0 X0A0 = Q + LT

0 RL0 − CT L0 − LT
0 C.(1.5)

In view of (1.2), the Newton iteration (1.4) can be rewritten as

Xi −AT
i XiAi = Q + LT

i RLi − CT Li − LT
i C, i = 1, 2, . . . ,(1.6)

where

Li = (R + BT Xi−1B)−1(C + BT Xi−1A)(1.7)

and

Ai = A−BLi.(1.8)

Theorem 1.3. Under the same conditions as in Theorem 1.1 and for any L0 ∈
IRm×n such that A0 = A − BL0 is d-stable, starting with the symmetric matrix X0

determined by (1.5), the recursion (1.6) determines a sequence of symmetric matrices
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{Xi}∞i=0 for which A − B(R + BT XiB)−1(C + BT XiA) is d-stable for i = 0, 1, . . . ,
X0 ≥ X1 ≥ · · · , and limi→∞Xi = X+.

The maximal solution can thus be found by the Newton iteration with an initial
guess not necessarily close to the solution. The proof of the above theorem can be
found in [18, pp. 308–311] (with some slight modifications as pointed out in Remark
1.1). See also [13] and [22]. Note that an L0 can be produced by automatic stabilizing
procedures such as the one in [24]. It should also be noted that X0 ≥ X1 is generally
not true, if X0 is not obtained from (1.5).

It is readily seen that R′X , as a function of X, is Lipschitz continuous on a closed
ball centered at X+ and contained in D. Thus the well known locally quadratic
convergence of Newton’s method (see [15], [21]), in combination with Theorem 1.3,
yields the following result.

Theorem 1.4. If A− B(R + BT X+B)−1(C + BT X+A) is d-stable in Theorem
1.3, then for the sequence {Xi}∞i=0 there is a constant c > 0 such that, for i = 0, 1, . . .,
‖Xi+1 −X+‖ ≤ c‖Xi −X+‖2, where ‖ · ‖ is any given matrix norm.

When the closed-loop matrix A−B(R+BT X+B)−1(C+BT X+A) has eigenvalues
on the unit circle, R′X+

is not invertible. This situation happens in some important
applications (see [4], for example). We will show that the convergence of Newton’s
method is either quadratic or linear with common ratio 1

2 , provided that the eigenval-
ues on the unit circle are all semi-simple (i.e. all elementary divisors corresponding
to these eigenvalues are linear). The linear convergence appears to be dominant and,
when this is the case, the efficiency of the Newton iteration can be improved signif-
icantly by applying a double Newton step at the right time. Numerical results are
also given to illustrate these phenomena.

As in [11] we apply the following general formulation of Newton’s method (see
[5], [6], [7], [16], [17], [23]). Let F be a smooth map from a Banach space E into
itself. Assume that there is an x∗ ∈ E such that F (x∗) = 0 and the Fréchet derivative
at x∗, F ′(x∗), has a null space N of dimension d with 0 < d < ∞. Also, it is
assumed that F ′(x∗) has closed range M and that there is a direct sum decomposition
E = N ⊕M . Then we may define PN to be the projection onto N parallel to M and
let PM = I −PN . Assume further that the following regularity condition holds: there
is a φ0 ∈ N such that the map B on N given by B = PNF ′′(x∗)(φ0, ·) is invertible.
These ideas can now be used to formulate sufficient conditions for local convergence.

Theorem 1.5 (cf. [16, Theorem 1.1]). Let E = N ⊕M , let φ0 be chosen so that
B is invertible, and let N = span{φ0} ⊕N1 for some subspace N1. Write x̃ = x− x∗

and let

W (ρ, θ, η) = {x | 0 < ‖x̃‖ < ρ, ‖PM x̃‖ ≤ θ‖PN x̃‖,
(1.9)

‖(PN − P0)x̃‖ ≤ η‖PN x̃‖},

where P0 is the projection onto span{φ0} parallel to M ⊕ N1. If x0 ∈ W (ρ0, θ0, η0)
for ρ0, θ0, η0 sufficiently small, then the Newton sequence {xi} is well defined and
‖F ′(xi)−1‖ ≤ c‖x̃i‖−1 for all i ≥ 1 and some constant c > 0. Moreover,

lim
i→∞

‖x̃i+1‖
‖x̃i‖

=
1
2
, lim

i→∞

‖PM x̃i‖
‖PN x̃i‖2

= 0.

The regularity condition is very important for the above theorem. Without this
condition, the behaviour of Newton’s method can be very erratic (see, e.g., [10]).
Before we can apply Theorem 1.5 to the DARE (1.1), we need to check the direct
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sum condition and the regularity condition for the DARE. The direct sum condition
will be discussed in Sections 2 and 3. The regularity condition is satisfied for the
DARE whenever the matrix pair (A,B) is d-stabilizable. This will be discussed in
Section 4.

If the matrix pair (A,B) is not d-stabilizable, a generalized Newton’s method
may be used for the solution of the DARE (1.1). For differential periodic Riccati
equations without the stability condition, the convergence of a generalized Newton’s
method has been established in [12]. The ideas used in that paper can also be used
for CAREs or DAREs without the stabilizability condition. In this paper, however,
we restrict ourselves to the standard Newton’s method and assume that the matrix
pair (A,B) is d-stabilizable.

2. Interpretation of the direct sum condition for the DARE. We now go
back to the discussion of the DARE (1.1) and assume throughout that the conditions
of Theorem 1.1 are satisfied. Let X+ be the maximal solution of (1.1) with R′X+

not
invertible. Let N = KerR′X+

, M =ImR′X+
. We have the following interpretation of

the direct sum condition.
Theorem 2.1. S = N ⊕M if and only if all eigenvalues of

A+ = A−B(R + BT X+B)−1(C + BT X+A)

on the unit circle are semi-simple.
Proof. Let J be the real Jordan canonical form for A+ with P−1A+P = J and

a real matrix P . We find that K ∈ N if and only if K = P−T LP−1 for some
L ∈ NJ = {Y ∈ S | − Y + JT Y J = 0}. Also W ∈ M if and only if W = P−T UP−1

for some U ∈ MJ = {Y ∈ S | Y = −V + JT V J for some V ∈ S}. Therefore,
S = N ⊕M if and only if S = NJ ⊕MJ .

If all eigenvalues of A+ on the unit circle are semi-simple, we gather the Jordan
blocks of J in several groups:

J = diag(G1, G2, G3, . . . , Gp−1, Gp).(2.1)

Here G1 = −Ir1 , G2 = Ir2 , Gp ∈ IRrp×rp consists of real Jordan blocks associated with
eigenvalues in the open unit disk, and for i = 3, . . . , p− 1,

Gi = diag
((

ai bi

−bi ai

)
, . . . ,

(
ai bi

−bi ai

))
∈ IRri×ri ,(2.2)

where −1 < a3 < · · · < ap−1 < 1, bi > 0, and a2
i + b2

i = 1 for i = 3, . . . , p − 1. Using
block matrix multiplications and applying Theorem 1.2 repeatedly, we can show that
S = NJ ⊕MJ . The detailed expressions for NJ and MJ will be given in Lemma 2.2
below and will be needed in the sequel.

If A+ has nonlinear elementary divisors corresponding to eigenvalues on the unit
circle, we can arrange the Jordan blocks so that the first Jordan block J1 has one of
the following two forms:

(i) J1 =


a 1

a
. . .
. . . 1

a

 , a = ±1.
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(ii) J1 =


B I

B
. . .
. . . I

B

 , B =
(

a b
−b a

)
, b > 0, a2 + b2 = 1.

For the first case, D1 = diag(0, . . . , 0, 1, 0, . . . , 0) ∈ NJ ∩MJ , where the element 1
appears at the same position as the last diagonal element of J1. Note that D1 =
−V1 + JT V1J for

V1 =
1
2
sign(a)


0

0 1
1 0

0

 ,

where the 2 × 2 matrix in the center appears at the same position as the southeast
corner of J1. For the second case, D2 = diag(0, . . . , 0, I, 0, . . . , 0) ∈ NJ ∩MJ , where
the 2× 2 identity matrix I appears at the same position as the last diagonal block of
J1. Note that D2 = −V2 + JT V2J for

V2 =
1
2b


0

0 T
−T 0

0

with T =
(

0 −1
1 0

)
,

where the 4 × 4 matrix in the center appears at the same position as the southeast
corner of J1. Therefore, S 6= NJ ⊕MJ .

In order to give an explicit construction of the spaces NJ and MJ , we introduce,
as in [11], the matrices

E1 =
(

1 0
0 1

)
, E2 =

(
0 1
−1 0

)
, E3 =

(
1 0
0 −1

)
, E4 =

(
0 1
1 0

)
,

and let Sk be the linear space of real symmetric matrices of order k. For 3 ≤ j ≤ p−1,
we define subspaces Sj , Tj ⊂ Srj by

Sj = {X ⊗ E1 + Y ⊗ E2 | X symmetric, Y anti-symmetric; both have order
rj

2
};

Tj = {X ⊗ E3 + Y ⊗ E4 | X, Y symmetric of order
rj

2
}.

Here, ⊗ denotes the Kronecker product (see p. 97 of [18], for example).
Lemma 2.2. If all eigenvalues of A+ on the unit circle are semi-simple, then

N = {P−T NP−1 | N ∈ NJ}, M = {P−T MP−1 | M ∈MJ}

with

NJ = {N = diag(N1, . . . , Np) | Ni ∈ IRri×ri , 1 ≤ i ≤ p;
NT

1 = N1, N
T
2 = N2, Np = 0, Ni ∈ Si, 3 ≤ i ≤ p− 1},

MJ = {M = (Mij) | Mij ∈ IRri×rj ,MT
ij = Mji, 1 ≤ i, j ≤ p;

M11 = 0,M22 = 0,Mii ∈ Ti, 3 ≤ i ≤ p− 1}.

Proof. The statement can be verified using block matrix multiplications and
Theorem 1.2.
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3. Characterization of the direct sum condition via a matrix pencil. We
have given in §2 a characterization of the direct sum condition, in which the sought
after solution X+ appears. In order to give a characterization which is independent
of X+, we consider the matrix pencil λFe −Ge with

Fe =

 I 0 0
0 AT 0
0 −BT 0

 , Ge =

 A 0 B
−Q I −CT

C 0 R

 .

Matrix pencils of this type were first introduced in [8] and [25], but for a different
purpose. See also [14].

Lemma 3.1. If (1.1) has a Hermitian solution X, then

(λFe −Ge)

 I 0 0
X I 0
Z 0 I

 =

 I 0 0
AT X I ZT

−BT X 0 I

 (λMe −Ne),(3.1)

where Z = −(R + BT XB)−1(C + BT XA) and

Me =

 I 0 0
0 (A + BZ)T 0
0 −BT 0

 , Ne =

 A + BZ 0 B
0 I 0
0 0 R + BT XB

 .

Proof. It can be easily verified by direct computation.
Note that, in contrast with Proposition 15.2.1 of [18], the equality (3.1) does not

require the invertibility of R.
Corollary 3.2. If (1.1) has a Hermitian solution X, then λFe−Ge is a regular

pencil. Moreover, α 6= 0 is an eigenvalue of A + BZ if and only if α and ᾱ−1 are
eigenvalues of λFe −Ge. A unimodular α is an eigenvalue of A + BZ with algebraic
multiplicity k if and only if it is an eigenvalue of λFe−Ge with algebraic multiplicity
2k.

Proof. We have by Lemma 3.1

det(λFe −Ge) = (−1)m det(R + BT XB) det(λI − (A + BZ)) det(λ(A + BZ)T − I).

If det(λI − (A + BZ)) = (λ − λ1) · · · (λ − λn), we have det(λ(A + BZ)T − I) =
(λ̄1λ− 1) · · · (λ̄nλ− 1). The conclusions in the corollary now follow easily.

If all unimodular eigenvalues of λFe−Ge are of algebraic multiplicity two, then all
unimodular eigenvalues of A+BZ are simple and the direct sum condition is satisfied.
To give a complete characterization, we need to consider the relationship between the
elementary divisors of A + BZ and λFe −Ge.

Theorem 3.3. Let α be a complex number with |α| = 1 and X be a solution of
(1.1) with R + BT XB > 0. If

rank(αI −A B) = n,

then the elementary divisors of A+BZ corresponding to α have degrees k1, . . . , ks(1 ≤
k1 ≤ · · · ≤ ks ≤ n) if and only if the elementary divisors of λFe − Ge corresponding
to α have degrees 2k1, . . . , 2ks.

Proof. Suppose the elementary divisors of A + BZ corresponding to α have
degrees k1, . . . , ks. By the local Smith form (see [9], for example), we can find matrix
polynomials Eα(λ) and Fα(λ) invertible at α such that

λI − (A + BZ) = Eα(λ)
(

I 0
0 D

)
Fα(λ),(3.2)
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where D = diag((λ − α)k1 , . . . , (λ − α)ks). Replacing λ by λ̄−1 in (3.2), and then
taking conjugate transpose (denoted by ∗), we get

(A + BZ)T − λ−1I = Kα(λ)
(

I 0
0 D

)
Lα(λ),(3.3)

where Kα(λ) and Lα(λ) = (Eα(λ̄−1))∗ are rational matrix functions invertible at
α. For any rational matrix functions F (λ) and G(λ), we will write F (λ) ∼ G(λ) if
there are rational matrix functions K(λ) and L(λ) invertible at α such that F (λ) =
K(λ)G(λ)L(λ).

Now, in view of Lemma 3.1, we have

λFe −Ge ∼

 λI − (A + BZ) 0 −B
0 (A + BZ)T − λ−1I 0
0 −BT −(R + BT XB)

 .

By (3.2) and (3.3) we have further (for λ in a neighborhood of α)

λFe −Ge ∼


I 0 0 0 B11 B12

0 D 0 0 B21 B22

0 0 I 0 0 0
0 0 0 D 0 0
0 0 C11 C12 S11 S12

0 0 C21 C22 S21 S22

 ,

where we have written

−(Eα(λ))−1B = (Bij), −((Eα(λ̄−1))−1B)∗ = (Cij), −(R + BT XB) = (Sij).

Since rank(αI −A B) = n, rank(λI − (A + BZ) −B) = n at λ = α. Therefore,
at λ = α,

rank
(

I 0 B11 B12

0 D B21 B22

)
= n

and thus rank(B21 B22) = s. Note also that Eα(λ̄−1) = Eα(λ) at λ = α. We may
then assume that B21 and C12 are invertible in a neighborhood of α. Now we obtain
by block elimination

λFe −Ge ∼ W (λ) =


I 0 0 0 0 0
0 D 0 0 I 0
0 0 I 0 0 0
0 0 0 D 0 0
0 0 0 I V11 V12

0 0 0 0 V21 V22

 ,

where

V (λ) = (Vij) =
(

C−1
12 0

−C22C
−1
12 I

)
(Sij)

(
B−1

21 −B−1
21 B22

0 I

)
is a rational matrix function with −V (α) > 0 (we have used R + BT XB > 0 here).
It is clear that no principal minors of V (λ) are zero at α.
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All nonzero minors of order i for W (λ) have the form (λ − α)lq(λ), where l ≥ 0
and α is neither a zero nor a pole of the rational function q(λ). For 2n+m−s+1 ≤ i ≤
2n+m, the smallest l turns out to be li = Σs+i−2n−m

j=1 2kj . For 1 ≤ i ≤ 2n+m−s, the
smallest l is li = 0. By the Binet-Cauchy formula (see [19], for example), we can see
that (λ−α)li is also the greatest common divisor (of the form (λ−α)l) of all minors
of order i for λFe − Ge. Thus the elementary divisors of λFe − Ge corresponding to
α are (λ− α)2k1 , . . . , (λ− α)2ks . This proves the “only if” part of the theorem. The
“if” part follows readily from the “only if” part.

Corollary 3.4. If the conditions of Theorem 1.1 are satisfied and R′X+
is not

invertible, then S = N ⊕M if and only if all the elementary divisors of λFe − Ge

corresponding to the eigenvalues on the unit circle are of degree two.
A previous result of the same nature as Theorem 3.3 can be found in [26]. That

result is applicable to the DARE (1.1) with C = 0, R > 0, and Q ≥ 0.

4. Convergence rate of the Newton method. When S = N⊕M, we let PN
denote the projection onto N parallel to M and let PM = I − PN . For the DARE
(1.1), we start the Newton iteration with the symmetric matrix X0 obtained from
the Stein equation (1.5). By Theorem 1.3, the Newton sequence is well-defined and
converges to X+. The following result shows there is some possibility of quadratic
convergence.

Lemma 4.1. For any fixed θ > 0, let Q = {i | ‖PM(Xi − X+)‖ > θ‖PN (Xi −
X+)‖}. Then there exist an integer i0 and a constant c > 0 such that ‖Xi −X+‖ ≤
c‖Xi−1 −X+‖2 for all i in Q for which i ≥ i0.

Proof. Let X̃i = Xi − X+, i = 0, 1, . . ., and let L+ = (R + BT X+B)−1(C +
BT X+A) (thus A+ = A−BL+). We have (see [18, p. 314])

X̃i −AT
+X̃iA+ = (L+ − Li)T (R + BT XiB)(L+ − Li)

and ‖L+ − Li‖ = O(‖X̃i−1‖). We also have

L+ − Li+1 = {(R + BT X+B)−1 − (R + BT XiB)−1}(C + BT X+A)
−(R + BT XiB)−1BT X̃iA

= (R + BT XiB)−1BT X̃iBL+ − (R + BT XiB)−1BT X̃iA

= −(R + BT X+B)−1BT X̃iA+ + O(‖X̃i‖2),

where we have written O(‖X̃i‖2) for a term W (Xi) satisfying ‖W (Xi)‖ = O(‖X̃i‖2).
Now, in view of (1.1) and (1.7),

R(Xi) = R(Xi)−R(X+)
= −X̃i + AT X̃iA− (C + BT XiA)T Li+1 + (C + BT X+A)T L+

= −X̃i + AT
+X̃iA+ −AT

+X̃iA+ + AT X̃iA

−{(C + BT XiA)T − (C + BT X+A)T }Li+1

+(C + BT X+A)T (L+ − Li+1)
= O(‖X̃i−1‖2)−AT

+X̃iA+ + AT X̃iA

−AT X̃iBL+ + O(‖X̃i‖2)− (BL+)T X̃iA+

= O(‖X̃i−1‖2) + O(‖X̃i‖2).

Thus for i large enough,

‖R(Xi)‖ ≤ c1‖X̃i−1‖2 + c2‖X̃i‖2(4.1)
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for some constants c1 and c2.
On the other hand, for i in Q and large enough, we have as in [23]

‖R(Xi)‖ ≥ (c3(θ−1 + 1)−1 − c4‖X̃i‖)‖X̃i‖(4.2)

for some constants c3 and c4. Since Xi 6= X+ for any i, we have by (4.1) and (4.2)

c3(θ−1 + 1)−1 − c4‖X̃i‖ ≤ c2‖X̃i‖+ c1‖X̃i−1‖2/‖X̃i‖.

Therefore, we can find an i0 such that ‖X̃i‖ ≤ c‖X̃i−1‖2 for all i in Q for which i ≥ i0.

Corollary 4.2. Assume that, for given θ > 0, ‖PM(Xi −X+)‖ > θ‖PN (Xi −
X+)‖ for all i large enough. Then Xi → X+ quadratically.

The condition in Corollary 4.2 appears to be not easily satisfied. In fact, quadratic
convergence has never been observed in our numerical experiments. We do not know
if there are any examples of quadratic convergence in our setting. The next result
describes what will happen if the convergence of the Newton iteration is not quadratic.

Theorem 4.3. Assume S = N ⊕M. If the convergence of the Newton sequence
{Xi} is not quadratic, then ‖(R′Xi

)−1‖ ≤ c‖Xi − X+‖−1 for all i ≥ 1 and some
constant c > 0. Moreover,

lim
i→∞

‖Xi+1 −X+‖
‖Xi −X+‖

=
1
2
, lim

i→∞

‖PM(Xi −X+)‖
‖PN (Xi −X+)‖2

= 0.

The proof of this theorem will be an application of Theorem 1.5. We first establish
some preliminary results.

Lemma 4.4. Let J and P be as in the proof of Theorem 2.1. Then

rank(λI − J P−1B(R + BT X+B)−1BT P−T ) = n

for every complex number λ with |λ| ≥ 1.
Proof. In view of Theorem 4.5.6(b) of [18], we need only to show that the pair

(J, P−1B(R + BT X+B)−1BT P−T ) is d-stabilizable, or equivalently,

(A−BL+, B(R + BT X+B)−1BT ) is d-stabilizable.(4.3)

Since (A,B) is d-stabilizable and Im(B(R + BT X+B)−1BT ) = ImB, (4.3) follows
from Lemma 4.5.3 of [18].

Lemma 4.5 ([11, Lemma A.3]). Let W be a Hermitian positive semidefinite
matrix. If the determinant of a principal submatrix of W is zero, then the rows of W
containing this submatrix must be linearly dependent.

We now set out to check the regularity condition needed in Theorem 1.5. For
fixed Z ∈ N , we consider the map BZ : N → N defined by

BZ(Y ) = PNR′′X+
(Z, Y ).

By Lemma 2.2, we can write Y = P−T YJP−1, Z = P−T ZJP−1 with YJ , ZJ ∈ NJ .
Let H+ = B(R + BT X+B)−1BT . We have by (1.3)

BZ(Y ) = −PN (AT
+ZH+Y A+ + AT

+Y H+ZA+)

= −P−T PNJ
(JT ZJD+YJJ + JT YJD+ZJJ)P−1,
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where D+ = P−1B(R + BT X+B)−1BT P−T , and PNJ
is the projection onto NJ par-

allel to MJ . Let ZJ = diag(Z1, . . . , Zp), YJ = diag(Y1, . . . , Yp) and diag(D1, . . . , Dp)
be the block diagonal of D+. Let Si = Sri for i = 1, 2. We have further

BZ(Y ) = −P−T diag(FZ1(Y1),FZ2(Y2), . . . ,FZp−1(Yp−1), 0)P−1,(4.4)

where we define linear transformations FZi : Si → Si by

FZi
(Yi) = ZiDiYi + YiDiZi, i = 1, 2,

FZi
(Yi) = PSi

(GT
i (ZiDiYi + YiDiZi)Gi), i = 3, . . . , p− 1

with PSi
being the projection onto Si parallel to Ti. The matrices Gi were defined in

(2.1) and (2.2).
For k = 1, 2, . . . , p− 1, let

Uk = {Zk ∈ Sk | FZk
: Sk → Sk is not invertible }.

Lemma 4.6. For k = 1, 2, . . . , p− 1, the set Uk has measure zero in Sk.
Proof. Case 1: k = 1, 2. We prove the result for k = 1, since the proof for k = 2

is similar. As in [11], we can show that U1 has measure zero in S1 unless detD1 = 0.
Note that D+ = P−1B(R+BT X+B)−1BT P−T is symmetric positive semidefinite. If
detD1 = 0, the first r1 rows of D+ would be linearly dependent by Lemma 4.5. Thus
rank(−I − J D+) < n , which contradicts Lemma 4.4.

Case 2: k = 3, . . . , p−1. We will first find a more explicit expression for FZk
(Yk).

It is easily seen that

Gk = akI ⊗ E1 + bkI ⊗ E2.(4.5)

By Lemma 2.2, we can write

Yk = Ms ⊗ E1 + Ma ⊗ E2, Zk = Ns ⊗ E1 + Na ⊗ E2,(4.6)

where Ms and Ns are symmetric; Ma and Na are anti-symmetric. Let

Dk = (Dij)
rk/2
i,j=1 with Dij =

(
dij
1 dij

3

dij
4 dij

2

)
,

Qs = (qs
ij)

rk/2
i,j=1 with qs

ij =
1
2
(dij

1 + dij
2 ),

Qa = (qa
ij)

rk/2
i,j=1 with qa

ij =
1
2
(dij

3 − dij
4 ).

Then

Dk = Qs ⊗ E1 + Qa ⊗ E2 + Rs ⊗ E3 + Ts ⊗ E4,(4.7)

where Qs, Rs and Ts are symmetric; Qa is anti-symmetric. Using (4.5)–(4.7) to expand
GT

k (ZkDkYk + YkDkZk)Gk, we find that each map FZk
has the same form as in

the CARE case (see [11]). Thus, as in [11], each Uk has measure zero in Sk unless
det(Qs + iQa) = 0.

To complete the proof, we need to show det(Qs + iQa) 6= 0. By Lemma 4.4 we
have rank((ak+bki)I−J D+) = n. Let E(i, j(m)) be the elementary matrix obtained
from I by adding m times row j to row i. Let tk = r1 + · · ·+ rk−1 and

U = E(tk + rk − 1, (tk + rk)(−i)) · · ·E(tk + 3, (tk + 4)(−i))E(tk + 1, (tk + 2)(−i)).
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Then

rank(U((ak + bki)I − J) UD+U∗) = n.

Since the (tk +1)th, (tk +3)th, . . . , (tk +rk−1)th rows of the matrix U((ak +bki)I−J)
are all zero, the corresponding rows of the Hermitian positive semidefinite matrix
UD+U∗ must be linearly independent. By Lemma 4.5, the principal submatrix (of
order rk/2) of UD+U∗ contained in these rows must have a nonzero determinant.
The principal submatrix is exactly 2(Qs + iQa). Therefore det(Qs + iQa) 6= 0.

Lemma 4.7. If S = N ⊕M then

U = {Z ∈ N | BZ : N → N is not invertible }

has measure zero in N . In particular, the regularity condition holds.
Proof. The result follows from (4.4) and Lemma 4.6, as in [11].
Proof of Theorem 4.3. Note that the map R can be extended to a smooth map

on S without changing its values on a closed ball centered at X+ and contained in D.
Now, as in [11], the proof can be completed by applying Theorem 1.3, Theorem 1.5,
Corollary 4.2 and Lemma 4.7.

When all elementary divisors of the closed-loop matrix corresponding to the eigen-
values on the unit circle are linear, we know from Theorem 4.3 that the convergence
of the Newton iteration is either quadratic or linear with rate 1

2 . Quadratic conver-
gence, however, has not been observed in numerical experiments when the closed-loop
matrix has eigenvalues on the unit circle. The convergence has been observed to be
linear with rate 1

p√2
, where p is the highest degree of elementary divisors associated

with eigenvalues on the unit circle. The next example gives a little theoretical support
for the observation. A general theory for the case p > 1 would be a topic for future
research.

Example 4.1. Consider the DARE (1.1) with n = 2,m = 1 and

A =
(

1 0
1 1

)
, B =

(
1
0

)
, C = 0, Q = 0, R = 1.

Clearly (A,B) is d-stabilizable and X+ = 0 (0 is the unique almost stabilizing solution
in this case. See Theorem 13.5.2 of [18], for example). Note that (λ− 1)2 is the only
elementary divisor of A+ = A. The Newton sequence {Xi} is well defined and we
write for i = 0, 1, . . . ,

Xi =
(

ai ci

ci bi

)
.

Since A − B(R + BT XiB)−1(C + BT XiA) is d-stable, we can deduce that ci 6= 0.
Since Xi ≥ 0, we also have ai, bi > 0.

By (1.6)–(1.8), we find for i = 0, 1, . . .

ai+1 =
2a2

i + 3aici + 2ci

(2ai − ci + 4)ai
,(4.8)

bi+1 =
((2 + ai)ai+1 − ai)ci

2(1 + ai)2
,(4.9)

ci+1 =
(1 + ai+1)ci

2(1 + ai)
.(4.10)
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Since Xi → 0, we get from (4.10)

lim
i→∞

ci+1

ci
=

1
2
.(4.11)

It follows from (4.8) that

lim
i→∞

ci

ai
= 0.(4.12)

It then follows from (4.9), (4.11) and (4.12) that limi→∞ bi/ai = 0. If the convergence
of the Newton iteration is linear with rate µ, then limi→∞ ai+1/ai = µ. Now by (4.8)
and (4.12),

lim
i→∞

ai+1

ai
=

1
2

(
1 + lim

i→∞

ci

a2
i

)
.(4.13)

If limi→∞ ci/a2
i = 0, we would have limi→∞ ai+1/ai = 1/2 by (4.13) and further

limi→∞ ci/a2
i = ∞ by (4.11), which is a contradiction. Therefore, limi→∞ ci/a2

i 6= 0.
Thus we get from (4.11) that µ = 1/

√
2.

The above example can also serve to show that X0 ≥ X1 is generally not true if
X0 is not determined by (1.5). Take

X0 =
(

εα ε
ε δ

)
with α > 1, 0 < ε < 1, and δ real. It is easily checked that A−B(R+BT X0B)−1(C +
BT X0A) is d-stable. We see from (4.8) that a1 ∼ 0.5ε1−α as ε → 0. Thus X0 ≥ X1

cannot be true for small ε. As ε and δ go to zero, we have ‖X0 − X+‖ → 0, but
‖X1 −X+‖ → ∞.

5. Using the double Newton step. We have shown that the convergence of
Newton’s method is either quadratic or linear with rate 1

2 , provided that the unimod-
ular eigenvalues of the closed-loop matrix are all semi-simple. Quadratic convergence
has not been observed in our numerical experiments. Therefore, we should always be
prepared for linear convergence. In this section we will show that the efficiency of the
Newton iteration (when it is linearly convergent) can be improved significantly if a
double Newton step is used at the right time. However, since the second derivative of
the Riccati function is no longer constant, the improvement will not be as dramatic
as in the CARE case.

Lemma 5.1. In the setting of Theorems 1.1 and 1.3, assume that Xk is close
enough to X+ with Xk − X+ ∈ N and that ‖(R′Xk

)−1‖ ≤ c‖Xk − X+‖−1 with c
independent of k. If Yk+1 = Xk−2(R′Xk

)−1R(Xk), then ‖Yk+1−X+‖ ≤ c1‖Xk−X+‖2
for some constant c1 independent of k.

Proof. By Taylor’s Theorem,

R(Xk) =
1
2
R′′X+

(Xk −X+, Xk −X+) + O(‖Xk −X+‖3),

and then

R′Xk
(Xk −X+) = R′′X+

(Xk −X+, Xk −X+) + O(‖Xk −X+‖3)
= 2R(Xk) + O(‖Xk −X+‖3).
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Thus

Xk −X+ = 2(R′Xk
)−1R(Xk) + O(‖Xk −X+‖2).

When the direct sum condition is satisfied and the convergence of the Newton
sequence {Xk} is not quadratic, we have ‖(R′Xk

)−1‖ ≤ c‖Xk − X+‖−1 for all k (cf.
Theorem 4.3). Moreover, the error Xk −X+ will be dominated by its N -component
for large k. A much better approximate solution can then be obtained by applying
the double Newton step. More precisely, we have the following result.

Theorem 5.2. Assume S = N ⊕M and the convergence of the Newton iteration
is not quadratic. If for some k, ‖Xk −X+‖ is small enough and ‖PM(Xk −X+)‖ ≤
ε‖PN (Xk −X+)‖ with ε sufficiently small, and Yk+1 = Xk − 2(R′Xk

)−1R(Xk), then
‖Yk+1 −X+‖ ≤ c1ε + c2‖Xk −X+‖2 for some constants c1 and c2 independent of ε
and k.

Proof. The result follows from Lemma 5.1 and the argument used in the proof of
[11, Theorem 3.2].

In contrast to the CARE case, the error estimate for Yk+1 contains the term
c2‖Xk −X+‖2. For a problem which produces a large c2, the error ‖Yk+1 −X+‖ will
be small only when ‖Xk −X+‖ is already sufficiently small. In this case the double
Newton step will be useful only at a very late stage of the iteration.

In the CARE case (as described in [11]), the iterate produced by the double
Newton step is at least almost stabilizing (see the discussions in [2]). For the DARE
case, however, it can happen that the matrix Yk+1 in Theorem 5.2 is neither stabilizing
nor almost stabilizing.

Example 5.1 (cf. [18, Example 13.2.1]). Consider the DARE (1.1) with Q = C = 0
and A = B = R = I. Clearly (A,B) is d-stabilizable and X+ = 0. All eigenvalues
of the closed-loop matrix are on the unit circle and semi-simple. For L0 = I, the
Newton iterates are found to be

Xk =
1

2k+1 − 1
I, k = 0, 1, . . . .

Thus, the convergence is linear with rate 1/2. If we compute Yk+1 as in Theorem 5.2,
we get

Yk+1 = − 1
(2k+1 − 1)(2k+2 − 1)

I.

Although Yk+1 is much more accurate than Xk+1 for large k, it is neither stabilizing
nor almost stabilizing.

The double Newton step is useful in that it can significantly improve the accuracy
of the current Newton iterate and thus find more correct digits of the exact solution.
The potential problem of getting a slightly non-stabilizing approximate solution is not
our concern here. Even if an exact solution with infinite number of decimals is known,
we will probably get a slightly non-stabilizing approximate solution by keeping only
a finite number of decimals.

Theorem 5.2 suggests the following modification of the Newton method.
Algorithm (Modified Newton method for DARE).
1. Choose a matrix L0 for which A−BL0 is d-stable.
2. Find X0 from (1.5).
3. For k = 0, 1, . . . do:

Solve R′Xk
(H) = R(Xk);
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Compute Xk+1 = Xk − 2H;
If ‖R(Xk+1)‖ < ε, stop;
Otherwise, compute Xk+1 = Xk −H;
If ‖R(Xk+1)‖ < ε, stop.

In the above algorithm, ‖ · ‖ is an easily computable matrix norm (e.g. 1-norm)
and ε is a prescribed accuracy. The equation R′Xk

(H) = R(Xk) can be rewritten as
a Stein equation H − AT

k+1HAk+1 = −R(Xk), which can be solved efficiently by a
variation of the Bartels/Stewart algorithm [1]. See also [20]. According to Theorem
5.2, the double Newton step will be efficient only when the current iterate is already
reasonably close to the solution. This is a major difference between the CARE case
and the DARE case. We may try the double Newton step only when the norm of
the residual is small enough (less than

√
ε, say) and save a little more computational

work. In the above algorithm, all iterates except the last one are identical to those
produced by the original Newton method. Thus all good properties of the Newton
method are retained.

6. Numerical results. In this section we give two simple examples to illustrate
the performance of the modified Newton method.

Example 6.1. We consider the DARE (1.1) with n = m = 2 and

A =
(

0 −1
0 2

)
, B =

(
1 0
1 1

)
, C = 0, Q =

(
1 0
0 0

)
, R =

(
4 2
2 1

)
.

Note that A and R are both singular. It can be easily verified that X+ = diag(1, 0) is
the only solution of the DARE and the closed-loop eigenvalues are 0 and 1. We take
L0 = diag(0, 2) so that A0 = A − BL0 is d-stable, and apply the modified Newton
method with ε = 10−10. The numerical results are recorded in Table 6.1. The last
iterate is produced by the double Newton step.

Table 6.1
Performance of the modified Newton method for Example 6.1

k ‖Xk −X+‖1 ‖R(Xk)‖1
0 0.5000D + 01 0.4545D + 01
1 0.4167D + 00 0.1894D + 00
2 0.1471D + 00 0.3342D − 01
3 0.6410D − 01 0.7284D − 02
4 0.3012D − 01 0.1711D − 02
5 0.1462D − 01 0.4153D − 03
6 0.7205D − 02 0.1023D − 03
7 0.3577D − 02 0.2540D − 04
8 0.1782D − 02 0.6328D − 05
9 0.3170D − 05 0.2009D − 10

Example 6.2. We consider the DARE (1.1) with n = m = 8 and

A = diag

 −1
1

1

 ,

( √
3

2
1
2

− 1
2

√
3

2

)
,

 1
2 1

1
2 1

1
2

 ,

B =


1
1 1

. . . . . .
1 1

 , C = 0, Q = 0, R = I.
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For this example, X+ = 0 and the closed-loop eigenvalues are those of A. The uni-
modular eigenvalues are all semi-simple. We take L0 = diag(−1, 1, 1, 1, 1, 0.1, 0.1, 0.1)
so that A0 = A − BL0 is d-stable, and apply the modified Newton method with
ε = 10−10. The results are recorded in Table 6.2. Again, the last iterate is produced
by the double Newton step.

Table 6.2
Performance of the modified Newton method for Example 6.2

k ‖Xk −X+‖1 ‖R(Xk)‖1
0 0.2344D + 02 0.2327D + 02
1 0.2273D + 01 0.1855D + 01
2 0.3733D + 00 0.1766D + 00
3 0.1419D + 00 0.2444D − 01
4 0.6291D − 01 0.6681D − 02
5 0.2987D − 01 0.1611D − 02
6 0.1458D − 01 0.3826D − 03
7 0.7204D − 02 0.9472D − 04
8 0.3581D − 02 0.2357D − 04
9 0.1785D − 02 0.5877D − 05
10 0.8914D − 03 0.1467D − 05
11 0.4454D − 03 0.3666D − 06
12 0.2226D − 03 0.9161D − 07
13 0.3986D − 07 0.1312D − 10

In both examples, the convergence of the Newton method is linear and the final
double Newton step reduces the error significantly. We have by (4.1) that ‖R(Xk)‖ ≤
c‖Xk −X+‖2, where Xk are the Newton iterates. The last iterate, Yl, is produced by
the double Newton step and ‖R(Yl)‖ ≤ c‖Yl−X+‖2 is not necessarily true. Typically,
for l large enough, the error ‖Yl −X+‖ is comparable to ‖R(Xl−1)‖.
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