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Abstract. We consider the quadratic eigenvalue problem (QEP) (λ2A+λB+
C)x = 0, where A,B, and C are Hermitian with A positive definite. The QEP

is called hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn.
We show that a relatively efficient test for hyperbolicity can be obtained by

computing the eigenvalues of the QEP. A hyperbolic QEP is overdamped if B

is positive definite and C is positive semidefinite. We show that a hyperbolic
QEP (whose eigenvalues are necessarily real) is overdamped if and only if

its largest eigenvalue is nonpositive. For overdamped QEPs, we show that all
eigenpairs can be found efficiently by finding two solutions of the corresponding
quadratic matrix equation using a method based on cyclic reduction. We also

present a new measure for the degree of hyperbolicity of a hyperbolic QEP.

1. Introduction

Quadratic eigenvalue problems (QEPs) appear in many applications. For a re-
cent survey on this topic, see [21]. The QEP is to find scalars λ and nonzero vectors
x satisfying

(1) Q(λ)x = (λ2A+ λB + C)x = 0, A,B,C ∈ Cn×n.

The vectors x are the eigenvectors corresponding to the eigenvalues λ. We will limit
our attention to QEPs where A,B,C are Hermitian and A is positive definite. We
denote by Hn the set of all n× n Hermitian matrices. For W1,W2 ∈ Hn, we write
W1 ≥W2 (W1 > W2) if W1−W2 is positive semidefinite (definite). Hyperbolic and
elliptic QEPs are disjoint classes of QEPs (see [16]).

In a recent paper by Higham, Tisseur, and Van Dooren [13], methods for de-
tecting a hyperbolic or elliptic QEP are discussed. They point out that testing
for ellipticity can be done straightforwardly by computing the eigenvectors of the
QEP, while testing for hyperbolicity is more complicated. They then show that
testing for hyperbolicity can be reduced to testing for definiteness of a Hermitian
pencil of twice the dimension. In Section 2 of this paper, we show that testing for
hyperbolicity can be done by computing all 2n eigenvalues of the QEP. In partic-
ular, testing for hyperbolicity is actually half as expensive as testing for ellipticity.
Our method is less expensive than the method proposed in [13], since that method
needs to compute all 4n eigenvalues of a 2n×2n QEP with complex matrices (even
if the matrices A,B and C are all real). Since hyperbolic QEPs include the class of
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overdamped QEPs, our method also provides a relatively easy way to check Duffin’s
overdamping condition [6].

We also mention that the hyperbolicity of a QEP is related to the stability of
the gyroscopic system L(λ) = λ2Ag + λBg + Cg, where Ag, Cg > 0 and Bg is
Hermitian indefinite and invertible. It is well known [2] that the system is stable
whenever |Bg| > kAg + k−1Cg for some real k > 0, where |Bg| is the positive
definite square root of (Bg)2. In other words, the gyroscopic system is stable
whenever the QEP (λ2Ag + λ|Bg|+ Cg)x = 0 is hyperbolic (Theorem 2 of Section
2 is used here). Thus, a method for testing hyperbolicity is also a method for
verifying the sufficient condition for the stability of gyroscopic systems. We note
that the sufficient condition can be replaced by a weaker sufficient condition [17].
However, the latter condition is more difficult to verify, and it is still related to the
hyperbolicity condition in some sense (see Theorem 2 of [17]).

The QEP (1) is closely related to the matrix equation Q(X) = AX2 + BX +
C = 0, whose solutions are also called the solvents of Q(X). For an overdamped
QEP, the eigenvalues are real, semisimple, and nonpositive; there is a gap between
the n largest eigenvalues (the primary eigenvalues) and the n smallest eigenvalues
(the secondary eigenvalues); and Q(X) has at least two solvents X(1) and X(2),
having as their eigenvalues the primary eigenvalues and the secondary eigenvalues,
respectively. See [6] and [15] for more details. We will refer to the solvents X(1)

and X(2) as the primary and the secondary solvents.
As noted in [13], a hyperbolic QEP becomes an overdamped QEP after a proper

shift is applied to the eigenvalue parameter. It is then easy to see that the afore-
mentioned properties for an overdamped QEP also holds for hyperbolic QEP except
that the eigenvalues are not necessarily nonpositive. In Section 2, we point out that
a hyperbolic QEP is overdamped if and only if all its eigenvalues are nonpositive.

The standard approach for finding the eigenvalues/eigenvectors of the QEP (1)
is by linearizations. However, for overdamped systems, solving the QEP (1) by
computing the primary and the secondary solvents can be more efficient. Indeed,
Higham and Kim [11] have already shown that the solvent approach can be more
efficient than the linearization approach when the two solvents are found by a
Bernoulli iteration, provided that the gap between the primary and the secondary
eigenvalues is large. We show in Section 3 that the solvent approach is usually more
efficient than the linearization approach when the two solvents are computed by the
cyclic reduction method, even if the gap between the primary and the secondary
eigenvalues is small. The advantage of the solvent approach is more conspicuous
when the more expensive QZ algorithm (rather than the QR algorithm) is needed
for the linearization approach, and when both eigenvalues and eigenvectors are
required. The solvent approach also leads to an even faster method for checking the
overdamping condition in Section 4. In Section 5, we show that the hyperbolicity
is lost exactly when the gap between the primary and the secondary eigenvalues is
lost. The gap is thus an easily computable measure for the degree of hyperbolicity
of a hyperbolic QEP.

2. Testing for hyperbolicity by computing 2n eigenvalues

The class of hyperbolic QEPs is defined as follows [16].
Definition 1. The QEP (1) is hyperbolic if A,B,C ∈ Hn, A > 0, and

(2) (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn.
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The next result follows from Lemmas 31.15 and 31.23 in [18]. For an alternative
proof, see [1].
Theorem 2. A QEP with A,B,C ∈ Hn and A > 0 is hyperbolic if and only if
Q(µ) < 0 for some µ ∈ R.

According to this result, testing for hyperbolicity can be done by solving the
one-dimensional global optimization problem minµ λmax(Q(µ)). It has been noted
in [13] that testing for hyperbolicity can be reduced to testing for definiteness of
a Hermitian pencil of twice the dimension. Here we point out that testing for
hyperbolicity can be done more easily. In fact:
Theorem 3. The QEP (1) with A,B,C ∈ Hn and A > 0 is hyperbolic if and only
if

(3) Q(λ) has 2n real eigenvalues λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n,

and

(4) Q(λ) < 0 for some (equivalently all) λ ∈ (λn+1, λn).

Proof. The “if” part is true by Theorem 2. For the “only if” part, (3) is already
known. We now prove (4). For each λ ∈ R, Q(λ) is a Hermitian matrix and
thus has n real eigenvalues µ1(λ), . . . , µn(λ). These n eigenvalues are continuously
dependent on λ. We know that λk is an eigenvalue of Q(λ) if and only if 0 is an
eigenvalue of the matrix Q(λk). Since Q(λk) is Hermitian, the algebraic multiplicity
of 0 as an eigenvalue of Q(λk) is equal to its geometric multiplicity, which is in turn
equal to the geometric multiplicity of λk as an eigenvalue of Q(λ). (This can be seen
easily by using the local Smith form of Q(λ) at λk; see [7], for example.) Since λk
is a semisimple eigenvalue of Q(λ), it follows that the algebraic multiplicity of 0 as
an eigenvalue of Q(λk) is equal to the algebraic multiplicity of λk as an eigenvalue
of Q(λ). Since A > 0, Q(λ) > 0 for any λ with sufficiently large absolute value.
Therefore, Q(λ) > 0 for λ ∈ (−∞, λ2n) and for λ ∈ (λ1,∞). Thus, Q(λ) has n
positive eigenvalues for each λ > λ1. We now decrease λ. If λ1 = · · · = λp >
λp+1 (1 ≤ p ≤ n), then 0 is an eigenvalue of Q(λ1) with algebraic multiplicity p.
Therefore, when λ crosses the point λ1, at most p eigenvalues of Q(λ) change from
positive to negative. We then move λ further toward λn+1, and conclude that the
number of negative eigenvalues of Q(λ) is less than n for λ ∈ [λn,∞). Similarly,
we can increase λ from the left of λ2n toward λn, and conclude that the number of
negative eigenvalues of Q(λ) is also less than n for λ ∈ (−∞, λn+1]. Since Q(λ) < 0
for some λ ∈ R, we conclude that Q(λ) has n negative eigenvalues for some (and
actually all) λ ∈ (λn+1, λn). �

The proof of the above theorem is quite standard. Similar arguments have
been used in [7] and [14]. From the proof we can see that Q(λ) < 0 holds for
all λ ∈ (λn+1, λn), and for no other values of λ. Therefore, if a QEP is actually
hyperbolic with λn ≈ λn+1, it would be very difficult to confirm the hyperbolicity
by trial and error to see if Q(λ) < 0 for some λ ∈ R.

The above theorem gives a numerical procedure to determine the hyperbolicity
of the QEP. It is more efficient than the one proposed in [13].
Algorithm 1.
Compute the 2n eigenvalues of the QEP (1).
If they do not satisfy (3), then the QEP is not hyperbolic.
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If they satisfy (3) and Q((λn+λn+1)/2) < 0, then the QEP is hyperbolic; otherwise
it is not hyperbolic.

Methods for finding the 2n eigenvalues of the QEP will be discussed in Section
3. To see if W = Q((λn + λn+1)/2) < 0, we can determine whether −W has a
Cholesky factorization or whether the largest eigenvalue of W is negative.

Overdamped QEPs are special hyperbolic QEPs.
Definition 4. The QEP (1) is overdamped if it is hyperbolic and B > 0, C ≥ 0.

As noted in [13], a hyperbolic problem becomes an overdamped problem if a
proper shift is used. Indeed, for any real number θ

Q(λ+ θ) = λ2A+ λ(B + 2θA) + C + θB + θ2A

= λ2Ã+ λB̃ + C̃ = Q̃(λ),

where Ã = A > 0, B̃ = B+ 2θA > 0 and C̃ = C+ θB+ θ2A ≥ 0 for a large enough
shift θ. By Theorem 2, condition (2) holds for (A,B,C) if and only if it holds for
(Ã, B̃, C̃) (for any θ).

The following result about the relationship between hyperbolic QEPs and over-
damped QEPs will turn out to be instructive later on.
Theorem 5. A hyperbolic QEP is overdamped if and only if λ1 ≤ 0.

Proof. The “only if” part is already known. For the “if” part, we know from the
proof of Theorem 3 that Q(λ) = λ2A + λB + C ≥ 0 for all λ ≥ λ1. In particular,
Q(0) = C ≥ 0. Assume that B is not positive definite. Then B + 2θA is singular
for some θ ≥ 0. Let x be a nonzero vector such that (B + 2θA)x = 0. Then

(x∗(B + 2θA)x)2 > 4(x∗Ax)(x∗(C + θB + θ2A)x)

fails. This contradicts the hyperbolicity of the QEP. Thus, B > 0. �

The next example, taken from [8], illustrates the usefulness of Algorithm 1.
Example 1. We consider the QEP (1) with

A =
[

1 0
0 1

]
, B = ε

[
1 0
0 6

]
, C =

[
1
2 1
1 7

]
,

where ε > 0 is a parameter.
For ε = 0.99, the four eigenvalues of the QEP are all real with λ2 = −0.7788

and λ3 = −1.1824. However, Q(λ) > 0 for λ = (λ2 + λ3)/2. Thus the QEP is not
overdamped at ε = 0.99.

For the QEP to be overdamped, we have to increase ε. For ε = 1.797789047,
the four eigenvalues are all real with λ2 = −1.1516555 and λ3 = −1.1516828,
and Q(λ) < 0 for λ = (λ2 + λ3)/2. Thus the QEP is overdamped. For ε =
1.797789046, the QEP has a pair of complex conjugate eigenvalues and the QEP is
not overdamped.

Thus, the QEP is overdamped for ε ≥ 1.797789047 and is not overdamped for
0 < ε ≤ 1.797789046.

If we use the sufficient condition

(λmin(B))2 > 4λmax(A)λmax(C),

we can only confirm that the QEP is overdamped for ε ≥ 5.35. (For this and other
examples in this paper, all computations are done in Matlab version 5.3 on a Sun
workstation.)
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When A,B > 0, C ≥ 0, the condition (2) is called the overdamping condition [6].
Our Algorithm 1 thus provides a relatively easy way to check the overdamping con-
dition. The overdamping condition is a sufficient condition for all eigenvalues of the
QEP to be real and nonpositive. In this regard, one might ask the following ques-
tion. If all 2n eigenvalues of the QEP have been found to be real and nonpositive,
does it really matter whether the overdamping condition is satisfied? The answer
is definitely yes. Indeed, if the overdamping condition is satisfied for the matrices
A,B,C, then for any matrices Â, B̂, Ĉ with 0 < Â ≤ A, B̂ ≥ B, 0 ≤ Ĉ ≤ C, the
overdamping condition is still satisfied and thus all eigenvalues of the corresponding
QEP are known to be real and nonpositive without any computation. On the other
hand, if we determine that all eigenvalues of the QEP (1) are real and nonpositive
using a cheaper method without verifying the overdamping condition, and then the
matrices A,B,C are changed to Â, B̂, Ĉ, there is no guarantee that the eigenvalues
will remain real and nonpositive (see Example 1). We would have to apply that
cheaper method to check this again.

Moreover, our Algorithm 1 can be modified so that the overdamping condition
can be checked by computing at most two eigenvalues. This will be discussed in
Section 4.

3. Solving hyperbolic QEPs

The standard approach for finding all 2n eigenpairs of the QEP is to use a
proper linearization and solve a 2n×2n generalized eigenvalue problem. A common
linearization of the QEP (1) is

(5) λ

[
I 0
0 A

]
−
[

0 I
−C −B

]
.

The linearization has the same eigenvalues as the QEP. Moreover, the partial
multiplicities of each eigenvalue are the same as those for the matrix polynomial
Q(λ). The eigenvectors for Q(λ) can be obtained by taking the first n components
of the eigenvectors of (5). See [21], for example.

We can use the QZ algorithm to find the eigenpairs of the pencil (5). To save
computational work, we can reduce the problem of finding the eigenpairs of the
pencil (5) to that of finding the eigenpairs of the matrix

(6)
[

0 I
−A−1C −A−1B

]
by the QR algorithm. However, there may be a loss of accuracy in doing this if A
is ill-conditioned. Although A is positive definite for hyperbolic QEPs, it may still
be ill-conditioned. Indeed, in the original paper [6] by Duffin, the matrix A is only
required to be positive semidefinite.

Another approach is based on the factorization of the matrix polynomial Q(λ).
Indeed, it is well known that Q(λ) admits the factorization

Q(λ) = (λA+AX +B)(λI −X)

if and only if X is a solution of the corresponding quadratic matrix equation

(7) Q(X) = AX2 +BX + C = 0

(see [15, Theorem 3.3] or [7, Corollary 3.6]). A solution of (7) is also called a solvent
of Q(X). When (7) has a solution X, the 2n eigenvalues of Q(λ) can be found by
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finding the eigenvalues of the matrix X and the matrix pencil λA+AX +B. This
solvent approach has been explored in [4] and [5], and more recently in [9] and [11].

Suppose that X(1) and X(2) are two solvents of Q(X) and the spectra of these
two solvents are disjoint. Then the eigenpairs of Q(λ) are obtained by gathering
the eigenpairs of the two solvents. It is easy to see that the partial multiplicities
of an eigenvalue of either solvent are the same as those of this eigenvalue for Q(λ).
Thus, qualitatively speaking, computing the eigenpairs of X(1) and X(2) is no more
difficult than computing the eigenpairs of (5).

The solvent approach will be more efficient than the linearization approach if
the solvents X(1) and X(2) exist and can be found efficiently. This is indeed the
case for an overdamped QEP, with X(1) and X(2) being the primary and secondary
solvents of Q(X), respectively. Note that any hyperbolic QEP can be changed to an
overdamped QEP as long as an upper bound for its largest eigenvalue λ1 is known
(see Theorem 5) and that such a bound can be obtained by applying the results in
[12]. We then limit our attention to overdamped QEPs.

The two solvents can be found efficiently by applying an algorithm based on
cyclic reduction (see [3], for example). The algorithm can be introduced as in [19].

From AX2 +BX + C = 0, we get an infinite block tridiagonal system

(8)


B A
C B A

C B
. . .

. . . . . .




X
X2

X3

...

 =


−C
0
0
...

 .
By recursively applying block cyclic reduction, i.e., an odd-even permutation of
block rows and block columns, followed by one step of Gaussian elimination, we
obtain the following sequence of infinite block tridiagonal systems:

(9)


Xi −Ai
−Ci Bi −Ai

−Ci Bi
. . .

. . . . . .




X

X2i+1

X2·2i+1

...

 =


−C
0
0
...

 , i ≥ 1,

where the matrices Xi, Ai, Bi, and Ci are defined by the algorithm we need:
Algorithm 2.

X0 = B, A0 = A, B0 = B, C0 = C,

Xi+1 = Xi −AiB−1
i Ci,

Ai+1 = AiB
−1
i Ai,

Bi+1 = Bi −AiB−1
i Ci − CiB−1

i Ai,

Ci+1 = CiB
−1
i Ci, i = 0, 1, . . . .

From (9), we get

(10) XiX −AiX2i+1 = −C, i ≥ 1.

If, for example, ρ(X) < 1 and {‖X−1
i Ai‖} is bounded (where ρ(·) is the spectral

radius and ‖ · ‖ is any matrix norm), then we see from (10) that −X−1
i C converges

to X rapidly.
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The presentation of Algorithm 2 here is slightly different from that in [3]. We
would have Ai+1 = −AiB−1

i Ai and Ci+1 = −CiB−1
i Ci in Algorithm 2 if we follow

[3] exactly. However, this difference has no effect on the sequences {Xi} and {Bi}.
When the algorithm is well defined, it is easily seen that the matrices Ai, Bi and
Ci are all Hermitian.

Most of the analysis of this algorithm can be found in [3]. For general matrices
A,B,C, the algorithm may breakdown (a singular Bi is encountered). Some con-
ditions are given in [3] to guarantee the invertibility of the matrices Bi. However,
it is not easy to verify those conditions for overdamped QEPs. We will now show
that the algorithm is well defined for all overdamped QEPs.

It is well known that the QEP (with A,B > 0, C ≥ 0) is overdamped if and only
if B > kA+k−1C for some real k > 0. (This follows readily from Theorem 2.) It is
natural to examine whether the overdamping condition is kept during the iteration.
Lemma 6. Algorithm 2 will not break down for any overdamped QEP. Moreover,

(11) Ai > 0, Ci ≥ 0, Bi > k2iAi + k−2iCi

for all i ≥ 0.

Proof. The proof is by induction. We know that (11) is true for i = 0. We assume
(11) is true for i (i ≥ 0). So, Bi > 0 and thus Ai+1, Bi+1, Ci+1 are defined and
Ai+1 > 0, Ci+1 ≥ 0. Now,

Bi+1 = Bi −AiB−1
i Ci − CiB−1

i Ai

= Bi − (k2iAi + k−2iCi)B−1
i (k2iAi + k−2iCi)

+k2i+1
AiB

−1
i Ai + k−2i+1

CiB
−1
i Ci

> k2i+1
Ai+1 + k−2i+1

Ci+1,

where we have used the fact that X − Y X−1Y > Y − Y Y −1Y = 0 whenever
X > Y > 0. �

This lemma implies that the sequence of QEPsQi(λ)(x) = (λ2Ai+λBi+Ci)x = 0
are all overdamped.
Theorem 7. Let the QEP (1) be overdamped, X(1) and X(2) be the primary and
secondary solvents of Q(X), respectively. Then the sequence {Xi} in Algorithm 2
converges quadratically to a nonsingular matrix X̂ with

(12) lim sup
i→∞

2i
√
‖Xi − X̂‖ = λn/λn+1 < 1,

where ‖ · ‖ is any matrix norm. Moreover,

(13) X(1) = −X̂−1C, X(2) = −A−1X̂∗.

Proof. We apply the results on cyclic reduction as presented in [3]. Let θ = (λn +
λn+1)/2. We have

θA(θ−1X(1))2 +B(θ−1X(1)) + θ−1C = 0,

and
θA+B(θ(X(2))−1) + θ−1C(θ(X(2))−1)2 = 0.

Note that ρ(θ−1X(1)) < 1 and ρ(θ(X(2))−1) < 1. We now apply Algorithm 2 with
the triple (A,B,C) replaced by (θA,B, θ−1C) (which also satisfies the overdamping
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condition) and generate the sequences {X̃i}, {Ãi}, {B̃i}, and {C̃i}. It is readily seen
that for all i ≥ 0

(14) X̃i = Xi, Ãi = θ2iAi, B̃i = Bi, C̃i = θ−2iCi.

By Theorem 16 of [3], the sequences {‖Bi‖}, {‖B−1
i ‖} are bounded and

lim sup
i→∞

2i
√
‖Ãi‖ ≤ ρ(θ(X(2))−1), lim sup

i→∞

2i
√
‖C̃i‖ ≤ ρ(θ−1X(1)).

In view of (10), we have for each i ≥ 1,

(15) θ−1C +Xi(θ−1X(1))− Ãi(θ−1X(1))2i+1 = 0.

We now define a new sequence {Yi} by

Y0 = B, Yi+1 = Yi − CiB−1
i Ai, i = 0, 1, . . . .

Then on the one hand, we have Yi = X∗i ; on the other hand, we get the analog of
(15):

(16) θA+ Yi(θ(X(2))−1)− C̃i(θ(X(2))−1)2i+1 = 0.

Since lim C̃i(θ(X(2))−1)2i+1 = 0 and A is nonsingular, it follows from (16) that
{Yi} converges to the nonsingular matrix Ŷ = −AX(2). Moreover,

lim sup
i→∞

2i
√
‖Yi − Ŷ ‖ = lim sup

i→∞

2i
√
‖θ−1C̃i(θ(X(2))−1)2i+1X(2)‖

≤ lim sup
i→∞

2i
√
‖C̃i‖ lim sup

i→∞

2i
√
‖(θ(X(2))−1)2i‖

≤ ρ(θ−1X(1)) ρ(θ(X(2))−1) = λn/λn+1 < 1.

Therefore, {Xi} converges to the nonsingular matrix X̂ = Ŷ ∗ and (12) holds. Since
X̂∗ = Ŷ = −AX(2), we get X(2) = −A−1X̂∗. Letting i → ∞ in (15), we get
X(1) = −X̂−1C. �

Corollary 8. The primary solution X(1) and the secondary solution X(2) are re-
lated by

X(1) = A−1((X(2))∗)−1C.

Proof. The relation is obtained by eliminating X̂ in (13). �

Before we apply Algorithm 2 to approximate the matrix X̂, we have to specify
how the matrix products in the algorithm are computed and what the stopping crite-
rion is. We assume that the matrices A,B,C are n×n real symmetric matrices. For
each iteration, we need to compute AiB−1

i Ci (note that CiB−1
i Ai = (AiB−1

i Ci)T )
and the symmetric matrices AiB−1

i Ai and CiB
−1
i Ci. These matrices can be com-

puted as follows. Let Bi = LiL
T
i be the Cholesky factorization of Bi, Vi = L−1

i Ai,
and Wi = L−1

i Ci. Then AiB
−1
i Ci = V Ti Wi, AiB−1

i Ai = V Ti Vi, and CiB
−1
i Ci =

WT
i Wi. Therefore, the computational work required for one iteration of Algorithm 2

is about 19
3 n

3 flops. The algorithm is stopped when ‖Xi+1 −Xi‖∞/‖Xi+1‖∞ < η,
a prescribed tolerance, and Xi+1 is taken to be an approximation to X̂. Unless
λn/λn+1 is very close to 1, usually 10 iterations of Algorithm 2 is enough to ap-
proximate X̂ with high precision, thanks to the quadratic convergence given by
(12).
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In a practical implementation of Algorithm 2, we should also guard against the
possibility of overflow during the computation. In the proof of Theorem 7, we have
already seen that if the triple (A,B,C) in Algorithm 2 is replaced by (θA,B, θ−1C),
then the relations (14) hold and the sequences {Ãi} and {C̃i} converge to zero. In
practice, the value of θ is not known beforehand and Algorithm 2 is applied to the
triple (A,B,C), rather than to (θA,B, θ−1C). In this case, it is possible that one
of the sequences {Ai} and {Ci} grows unbounded although ‖Ai‖‖Ci‖ = ‖Ãi‖‖C̃i‖
converges to zero. This problem is easily solved by adding a balancing procedure at
the end of each iteration. More precisely, at the end of the ith iteration (in which
Ai and Ci are obtained), we do the following:

αi =
√
‖Ci‖∞/‖Ai‖∞, Ai ← αiAi, Ci ← Ci/αi.

The balancing procedure ensures that ‖Ai‖∞ = ‖Ci‖∞, and thus both sequences
{Ai} and {Ci} converge to zero. Note that the balancing procedure does not change
the sequences {Xi} and {Bi} and that the cost of balancing is only O(n2).

In terms of computational work, the comparison between the solvent approach
and the linearization approach depends on several factors: (a) Do we use QR or
QZ? (b) Do we need eigenvectors along with eigenvalues? (c) How many iterations
are needed for Algorithm 2? If the QZ algorithm is needed for the linearization
approach and/or both eigenvalues and eigenvectors are needed, then the compu-
tational work for the solvent approach is typically less than 50% that of the lin-
earization approach. If the QR algorithm is used for both approaches and only
eigenvalues are needed, then the solvent approach is less expensive when Algorithm
2 requires at most 12 iterations. It will be seen in the next section that the solvent
approach can also be used to check the overdamping condition more efficiently for
any QEP with A,B > 0 and C ≥ 0.

For overdamped QEPs, there are situations in which the QZ algorithm is needed
for the linearization approach, while the QR algorithm is adequate for the sol-
vent approach. Indeed, the matrix X̂ is often well conditioned when B is well
conditioned, even if A and C are both ill-conditioned. Thus, we may apply the
QR algorithm to the matrices −X̂−1C and −(X̂∗)−1A to get the eigenpairs of
X(1) = −X̂−1C and X(2) = (−(X̂∗)−1A)−1 (see Theorem 7). Of course, we can
still apply the QZ algorithm to the pencils λX̂ + C and λA + X̂∗ to get possibly
higher accuracy.
Example 2. We consider the QEP (1) with n = 8 and

A = (1/(i+ j − 1)), B = tridiag(−1, 6,−1), C = (1/(i+ j)).

The QEP is overdamped with cond2(A) = 1.5 × 1010, cond2(C) = 5.6 × 1010, and
cond2(B) = 1.9. We compute the 16 eigenvalues by the QZ algorithm for the
linearization approach, and by the QR algorithm for the solvent approach. For the
solvent approach, the matrix X̂ is computed by Algorithm 2 in 5 iterations (with
η = 10−12 for the stopping criterion), and we have cond2(X̂) = 2.1. The eigenvalues
from both methods match very well. For example, for both methods we have

λ8 = −0.31548025829685, λ9 = −2.35473981343162.

If we use the QR algorithm in the linearization approach, we get

λ8 = −0.31548040167845, λ9 = −2.35473975092443.

Note that the last 8 digits are changed for each eigenvalue.
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Algorithm 2 provides an approximation to the matrix X̂. The accuracy of this
approximation is dependent on the conditioning of the matrices Bi in the algorithm.
Although Lemma 6 shows that all these matrices are positive definite, they can still
be ill-conditioned. Indeed, from the proof of Theorem 16 of [3] and the proof of
Theorem 7 we can see that the condition numbers of these matrices have an upper
bound that is dependent on the ratio λn/λn+1. If this ratio approaches 1, the upper
bound goes to infinity. This means that the matrices Bi are probably ill-conditioned
for large i when λn/λn+1 is very close to 1, even if B0 is well-conditioned. However,
the accuracy of the eigenvalues computed by the solvent approach is typically no
worse than that achieved by the linearization approach. The reason for this is
that in the limit case λn = λn+1, λn is typically a double eigenvalue with partial
multiplicity 2. Therefore, when λn/λn+1 is very close to 1, we can only expect half
of the machine precision for the linearization approach. For the solvent approach,
the eigenvalues λn and λn+1 are obtained separately from X(1) and X(2), although
the accuracy will be affected by the accuracy of X̂.
Example 3. We consider the QEP (1) with n = 2 and

A = WI2W
T , B = W ((4 + ε)I2)WT , C = W

[
2 2
2 2

]
WT ,

where W = [ 1 2
3 4 ] is introduced to make the data less simplified. The QEP is

overdamped for ε > 0 and the exact eigenvalues are

0,
−(4 + ε)±

√
8ε+ ε2

2
, −(4 + ε).

We first compute the 4 eigenvalues by the solvent approach. The matrix X̂ is com-
puted by Algorithm 2 in 25 iterations (with η = 10−12 for the stopping criterion),
and we have cond2(B24) = 3.5 × 105. The eigenvalues are then found from X(1)

and X(2) by the QR algorithm. They are

−3.10863× 10−15, −1.9999985860894,
−2.0000014139116, −4.0000000000010.

For the linearization approach, the 4 eigenvalues are obtained by applying the QR
algorithm to (6). They are

3.33067× 10−15, −1.9999985876094,
−2.0000014123916, −4.0000000000010.

We have also used the QZ algorithm for the linearization approach, but the results
are not any better. This suggests that the accuracy of the linearization approach
is affected by the closeness of λ2 and λ3, rather than by the conditioning of A. For
this example, we have λ2/λ3 = 0.9999986 and cond2(A) = 223. Since the exact
values for λ2 and λ3 are −1.99999858578 · · · ,−2.00000141421 · · · , respectively, the
solvent approach provides better accuracy for these two eigenvalues.

We end this section by a comment on the convergence rate of Algorithm 2. By
Theorem 7, the convergence rate is determined by the ratio λn/λn+1. Theorem 5 is
now instructive. By that theorem, new QEPs obtained by a shift in the eigenvalue
parameter are still overdamped as long as we still have λ1 ≤ 0 after the shift. The
computational work involved in changing one QEP into another by a shift is only
O(n2). We will have faster convergence for Algorithm 2 if we apply it to a new
QEP obtained by shifting the eigenvalues towards the origin. Thus, for a given
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overdamped QEP, the best possible ratio is (λn − λ1)/(λn+1 − λ1) when the shift
technique is used. Although the exact value of λ1 is not known in practice, a good
upper bound for λ1 works just fine. Such an upper bound can sometimes be found
by using the results in [12]. Better upper bounds may be obtained inexpensively
by approximating λ1 using a linearization and the Arnoldi method (see [20]) when,
for example, A = I and B,C are sparse. (Algorithm 2 does not exploit any sparse
structure for the matrices A,B, and C, and requires more than 6n3 flops each
iteration.) If a negative number b is an upper bound for λ1, we can shift the
eigenvalues to the right by |b| (λ ← λ + |b|) to improve convergence. Shifting
the eigenvalues to the right (left) by a large step can speed up (slow down) the
convergence of Algorithm 2 significantly.

Example 4. For Example 1 with ε = 2, X̂ can be obtained by Algorithm 2 in 7
iterations with η = 10−12. If we obtain a new QEP by shifting the eigenvalues to
the left by 100 (λ ← λ − 100) and apply Algorithm 2 to the new QEP, then 13
iterations will be needed.

4. Testing for hyperbolicity by computing at most two eigenvalues

Testing for hyperbolicity is the same as testing for the overdamping condition
after a proper shift has been applied to the eigenvalue parameter. So, once again,
we limit our attention to the QEP (1) with A,B > 0 and C ≥ 0. Algorithm 2 and
Theorem 7 provide a method for checking the overdamping condition by computing
at most two eigenvalues.

The idea is very simple. We apply Algorithm 2 to the QEP and use the Cholesky
factorization of Bi in the computation. If Bi does not have a Cholesky factorization
for some i, then Bi is not positive definite and thus the QEP is not overdamped.
If all matrices Bi have Cholesky factorization during the iteration in Algorithm
2 but the sequence {Xi} does not converge (quickly) to a nonsingular matrix X̂,
then the QEP is not overdamped. We now assume that {Xi} converges (quickly)
to a nonsingular matrix X̂. Then we compute the eigenvalue λ(1) of −X̂−1C with
the largest modulus (λ(1) is the candidate for λn). If λ(1) is not a nonpositive real
number, then the QEP is not overdamped. If λ(1) is a nonpositive real number, then
we compute the eigenvalue 1/λ(2) of −(X̂∗)−1A with the largest modulus (λ(2) is
the candidate for λn+1). If λ(2) is not a negative real number, then the QEP is not
overdamped. If λ(2) is a negative real number and λ(1) > λ(2) (otherwise the QEP is
not overdamped), then the QEP is overdamped if and only if Q((λ(1)+λ(2))/2) < 0.

We mention that it is possible to obtain good approximations for λ(1) and λ(2)

without computing all the eigenvalues of the two matrices. Significant saving may
be achieved by using the Arnoldi method to approximate these two eigenvalues,
when n is relatively large (say n = 1000). See [20], for example. We also note that
the computed values λ(1) and λ(2) need not be very accurate for the ultimate test
Q((λ(1) +λ(2))/2) < 0. What we need is (λ(1) +λ(2))/2 ∈ (λn+1, λn) when the QEP
is actually overdamped.

The above procedure is particularly useful in confirming that a given QEP is not
overdamped. In fact, when the QEP is not overdamped, Bi > 0 typically fails for
a small i, so no eigenvalue computation is necessary. We do not know if there are
any examples of non-overdamped QEPs for which Bi > 0 for all i. It may be safe
to say that Bi > 0 for all i ≤ 20 is a strong indication that the QEP is overdamped
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or nearly overdamped. Of course, to be certain we have to follow the procedure to
the end in order to confirm that a given QEP is overdamped.

Example 5. We consider the QEP (1), where A = I,

B = ε



20 −10
−10 30 −10

−10 30 −10

−10
. . . . . .
. . . 30 −10

−10 20


,

and

C =



15 −5
−5 15 −5

−5
. . . . . .
. . . . . . −5

−5 15


are 100× 100 matrices, and ε > 0 is a parameter. This is the example used in [11]
when ε = 1.

For ε = 0.5196152423, the sequence {Xi} from Algorithm 2 converges in 21
iterations (‖X21 − X20‖∞/‖X21‖∞ < η = 10−12). We then take X̂ = X21 and
find that λ(1) = −2.886723, λ(2) = −2.886779, and Q(λ) < 0 for λ = (λ(1) +
λ(2))/2. Thus the QEP is overdamped. For ε = 0.5196152422, B17 > 0 fails for
Algorithm 2, so the QEP is not overdamped. Therefore, the QEP is overdamped
for ε ≥ 0.5196152423 and is not overdamped for 0 < ε ≤ 0.5196152422. The exact
turning point is some ε∗ in the interval [0.5196152422, 0.5196152423]. Normally,
the convergence of Algorithm 2 is faster as ε moves away from ε∗ to the right. For
example, for ε = 0.519616, 0.5197, 0.52, 1, {Xi} converges in 14, 11, 10, 5 iterations,
respectively. Also, it is easier to confirm that the QEP is not overdamped as ε moves
away from ε∗ to the left. For example, for ε = 0.51961524, 0.519615, 0.5196, 0.51,
we do not have B15 > 0, B11 > 0, B8 > 0, B4 > 0, respectively. By the way, B1 > 0
fails for Example 1 with ε = 0.99.

5. A new measure for the degree of hyperbolicity

Once a QEP has been determined to be hyperbolic, the distance of this QEP to
the nearest non-hyperbolic QEP can be defined (see [10] and [13]). However, the
computation of this distance is very expensive. Without computing this distance,
we can still define the degree of hyperbolicity. As noted in [13], for a hyperbolic
QEP, a natural measure of the degree of hyperbolicity is the quantity

min
‖x‖2=1

√
(x∗Bx)2 − 4(x∗Ax)(x∗Cx).

However, this quantity is still very difficult to compute. Here we introduce a new
measure for the degree of hyperbolicity. The measure is based on the following
result.
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Theorem 9. Consider the QEP (1) with A,B,C ∈ Hn and A > 0. Let f(x) =
(x∗Bx)2 − 4(x∗Ax)(x∗Cx). If

min
‖x‖2=1

f(x) = f(x0) = 0,

then the QEP has 2n real eigenvalues with λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥ λ2n.
Moreover,

λn = λn+1 = − x∗0Bx0

2x∗0Ax0
,

and x0 is a corresponding eigenvector.

Proof. Without loss of generality, we assume that B > 0 and C ≥ 0. For any ε > 0,
Q̂(λ) = λ2A+ λ(B + εI) + C is overdamped. Its 2n eigenvalues are

(17) λ1(ε) ≥ · · · ≥ λn(ε) > λn+1(ε) ≥ · · · ≥ λ2n(ε).

By Theorem 3,

(18) Q((λn(ε) + λn+1(ε))/2) < 0.

By the proof of Theorem 7.7 in [15],

(19)
−b−

√
b2 − 4ac

2a
≤ λn+1(ε) < λn(ε) ≤ −b+

√
b2 − 4ac

2a
,

where
a = x∗0Ax0, b = x∗0(B + εI)x0, c = x∗0Cx0.

Letting ε → 0 in (17)–(19), we conclude that λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥ λ2n,
Q(λn) ≤ 0, and

λn = λn+1 = − x∗0Bx0

2x∗0Ax0
.

Since x∗0(−Q(λn))x0 = 0 and −Q(λn) ≥ 0, we have Q(λn)x0 = 0, i.e., x0 is an
eigenvector corresponding to λn. �

Theorem 9 suggests that the gap between the primary and the secondary eigen-
values can be used as a measure for the degree of hyperbolicity. We propose the
new measure as follows: If the QEP is hyperbolic, then the number

(20) d =
1
4

(λn+1 − λn)2

is a measure of the degree of hyperbolicity. If d is large, we may say that the QEP
is highly hyperbolic; if d is close to 0, we may say that the QEP is marginally
hyperbolic. Note that the number d is obtained immediately once a QEP has been
confirmed to be hyperbolic by computing the eigenvalues λn and λn+1.

To define the distance of a hyperbolic QEP to the nearest non-hyperbolic QEP,
we ask by how much the coefficient matrices must be perturbed for the hyperbolicity
to be lost. In [10] and [13], the perturbations are measured in the absolute sense.
The degree of hyperbolicity we have defined is invariant if we change Q(λ) to
Q(λ + c). More importantly, it is invariant if we change Q(λ) to cQ(λ) (c 6= 0).
Therefore, to make connection between our new measure and the distance studied
in [10] and [13], the perturbations of coefficient matrices will have to be measured
in the relative sense.

When d = 0, the QEP is “weakly hyperbolic” in the terminology of Markus [18].
By Theorem 31.10 of [18], each elementary divisor of the multiple eigenvalue λn
has degree at most two. The case for which the multiple eigenvalue λn has at least
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one elementary divisor of degree two is generic, although there are simple examples
for which λn is still semisimple.

The new measure puts the emphasis on hyperbolic QEPs that are nearly non-
hyperbolic. Suppose we have a weakly hyperbolic QEP with λn = λn+1, we can
perturb the triple (A,B,C) to (Ã, B̃, C̃) so that the corresponding QEP is hyper-
bolic. We assume that the multiple eigenvalue λn has at least one elementary divisor
of degree two and that neither of B and C is the zero matrix. Let ∆A = Ã − A,
∆B = B̃ −B, ∆C = C̃ − C, and let ‖ · ‖F be the Frobenius norm. So if

ε =
∥∥∥∥( ∆A
‖A‖F

,
∆B
‖B‖F

,
∆C
‖C‖F

)∥∥∥∥
F

,

we expect to have λ̃n ∼ λn + c1ε
1/2 and λ̃n+1 ∼ λn+1 − c2ε1/2 for the new QEP

when ε is small. We simplify the situation by assuming that c1 = c2 = 1. It
would be reasonable to say that the degree of hyperbolicity of the QEP given
by (Ã, B̃, C̃) is ε. To recover this ε from λ̃n and λ̃n+1, we can simply compute
1
4 (λ̃n+1 − λ̃n)2. Although the factor 1

4 in (20) is somewhat artificial, the square
sign is also suggested by Examples 1, 3 and 5. For Example 1, the QEP is not
overdamped for ε = 1.797789046; it is overdamped for ε = 1.797789047 with λn =
−1.1516555 and λn+1 = −1.1516828. For Example 5, the QEP is not overdamped
for ε = 0.5196152422; it is overdamped for ε = 0.5196152423 with λn = −2.886723
and λn+1 = −2.886779. For Example 3, the QEP is hyperbolic for all ε > 0 and
the hyperbolicity is lost when ε = 0. It is easily seen that d = 1

4 (λn+1 − λn)2 ∼
2ε (ε→ 0) for this example.
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