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Abstract. We study iterative methods for finding the maximal Hermitian
positive definite solutions of the matrix equations X + A∗X−1A = Q and

X − A∗X−1A = Q, where Q is Hermitian positive definite. General conver-

gence results are given for the basic fixed point iteration for both equations.
Newton’s method and inversion free variants of the basic fixed point itera-

tion are discussed in some detail for the first equation. Numerical results are
reported to illustrate the convergence behaviour of various algorithms.

1. Introduction

In this paper, we are concerned with the iterative solution of the matrix equations

(1.1) X +A∗X−1A = Q,

and

(1.2) X −A∗X−1A = Q.

In both cases, the matrix Q is m ×m Hermitian positive definite and Hermitian
positive definite solutions are required. These two equations have been studied
recently by several authors (see [1], [2], [3], [4], [16], [17]). For the application areas
in which the equations arise, see the references given in [1] and [4].

For Hermitian matrices X and Y , we write X ≥ Y (X > Y ) if X − Y is positive
semidefinite (definite). A Hermitian solution X+ of a matrix equation is called
maximal if X+ ≥ X for any Hermitian solution X of the matrix equation. A
minimal solution can be defined similarly.

It is proved in [3] that if (1.1) has a positive definite solution, then it has a
maximal Hermitian solution X+ and a minimal Hermitian solution X−. Indeed,
we have 0 < X− ≤ X ≤ X+ for any Hermitian solution X of (1.1). Moreover, we
have ρ(X−1

+ A) ≤ 1 (see, e.g., [16]), where ρ(·) is the spectral radius.
When the matrix A is nonsingular, the minimal positive definite solution of (1.1)

can be found via the maximal solution of another equation of the same type (cf.
[3, Thm. 3.3]). In [3], an algorithm was presented to find the minimal solution of
the equation (1.1) for the case where A is singular. The algorithm was based on
a recursive reduction process. The reduction process is useful in showing that the
minimal positive definite solution of (1.1) exists even if the matrix A is singular.
However, it is usually impossible to find the minimal solution using that algorithm.
The reason is that the minimal solution, as a function of (A,Q), is generally not
continuous at a singular matrix A for fixed Q. The situation is already clear for
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the scalar equation X + ε2X−1 = 1. The minimal solution of this equation is not
continuous at ε = 0. We will therefore limit our discussion to the maximal solution.

The equation (1.2) is quite different. As the scalar case suggests, it always has
a unique positive definite solution, which is the maximal solution (see [4]).

In Section 2, we discuss the convergence behaviour of the basic fixed point it-
eration for the maximal solution of (1.1) and (1.2). In Section 3, we study the
convergence behaviour of inversion free variants of the basic fixed point iteration.
In general, these algorithms are linearly convergent and do not perform well when
there are eigenvalues of X−1

+ A on, or near, the unit circle. However, Newton’s
method can be applied. This has a global convergence property when applied to
(1.1) and, although it is step-wise expensive, offers considerable advantages in this
situation. Sections 4 and 5 are devoted to properties of the Newton iteration. In
Section 6, we give matrix pencil descriptions for the eigenvalues of X−1

+ A. This
admits the computation of these eigenvalues without prior knowledge of X+. Some
numerical examples are reported in Section 7.

Throughout the paper, ‖ · ‖ will be the spectral norm for square matrices unless
otherwise noted.

2. Basic fixed point iteration

The maximal solution X+ of (1.1) can be found by the following basic fixed point
iteration:
Algorithm 2.1.

X0 = Q,

Xn+1 = Q−A∗X−1
n A, n = 0, 1, . . . .

For Algorithm 2.1, we have X0 ≥ X1 ≥ · · · , and limn→∞Xn = X+ (see, e.g.,
[3]).

The following result is given in [16].
Theorem 2.2. For any ε > 0,

‖Xn+1 −X+‖ ≤ (‖X−1
+ A‖+ ε)2‖Xn −X+‖

for all n large enough.
We now show that the above result can be improved considerably.

Theorem 2.3. For all n ≥ 0,

‖Xn+1 −X+‖ ≤ ‖X−1
+ A‖2‖Xn −X+‖.

Moreover,
lim sup
n→∞

n
√
‖Xn −X+‖ ≤ (ρ(X−1

+ A))2.

Proof. Since Xn+1 = Q−A∗X−1
n A and X+ = Q−A∗X−1

+ A, we have

Xn+1 −X+ =A∗(X−1
+ −X−1

n )A

=A∗(X−1
+ +X−1

n −X−1
+ )(Xn −X+)X−1

+ A

=A∗X−1
+ (Xn −X+)X−1

+ A

−A∗X−1
+ (Xn −X+)X−1

n (Xn −X+)X−1
+ A.

Thus,

(2.1) 0 ≤ Xn+1 −X+ ≤ A∗X−1
+ (Xn −X+)X−1

+ A.
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Therefore,

‖Xn+1 −X+‖ ≤ ‖A∗X−1
+ (Xn −X+)X−1

+ A‖ ≤ ‖X−1
+ A‖2‖Xn −X+‖.

By repeated application of (2.1), we get

0 ≤ Xn −X+ ≤ (A∗X−1
+ )n(X0 −X+)(X−1

+ A)n.

Hence,
‖Xn −X+‖ ≤ ‖(X−1

+ A)n‖2‖X0 −X+‖,
and

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ lim

n→∞
n

√
‖(X−1

+ A)n‖2‖X0 −X+‖

= (ρ(X−1
+ A))2.

In the last equality, we have used the fact that lim ‖Bn‖1/n = ρ(B) for any square
matrix B and any norm. �

We mentioned earlier that ρ(X−1
+ A) ≤ 1 is always true. From the second part

of the above result, we know that the convergence of the fixed point iteration is R-
linear whenever ρ(X−1

+ A) < 1. For detailed definitions of the rates of convergence,
see [13]. Zhan asked in [16] whether ρ(X−1

+ A) ≤ 1 implies ‖X−1
+ A‖ ≤ 1. This is

not the case and, in fact, it is possible to have ‖X−1
+ A‖ > 1 when ρ(X−1

+ A) < 1. If
ρ(X−1

+ A) = 1, the convergence of the fixed point iteration is typically sublinear.

Example 2.1. We consider the scalar case of (1.1) with A = 1
2 and Q = 1, i.e.,

X +
1
4
X−1 = 1.

Clearly, X+ = 1
2 and ρ(X−1

+ A) = 1. For the fixed point iteration

X0 = 1,

Xn+1 = 1− 1
4
X−1
n , n = 0, 1, . . . ,

we have X0 > X1 > · · · , and limn→∞Xn = 1
2 . Note that

Xn+1 −
1
2

= Xn −
1
2
− (Xn −

1
2

)2X−1
n .

Thus,

lim
n→∞

n

√
Xn −

1
2

= lim
n→∞

Xn+1 − 1
2

Xn − 1
2

= 1,

i.e., the convergence is sublinear.
For the matrix equation (1.2), the maximal solution X+ can also be found by a

fixed point iteration similar to that of Algorithm 2.1. Thus, we consider:
Algorithm 2.4.

X0 = Q,

Xn+1 = Q+A∗X−1
n A, n = 0, 1, . . . .

For Algorithm 2.4, we have X0 ≤ X2 ≤ X4 ≤ · · · , X1 ≥ X3 ≥ X5 ≥ · · · , and
limn→∞Xn = X+ (see [4]).

The following result is immediate (cf. Theorem 2.2).
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Theorem 2.5. For Algorithm 2.4 and any ε > 0,

‖Xn+1 −X+‖ ≤ (‖X−1
+ A‖2 + ε)‖Xn −X+‖

for all n large enough.
However, more can be said about Algorithm 2.4.

Theorem 2.6. For Algorithm 2.4, we have

(2.2) ‖X2k −X+‖ ≤ ‖X−1
+ A‖2‖X2k−1 −X+‖

for all k ≥ 1, and

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ (ρ(X−1

+ A))2 < 1.

Proof. Observe that

Xn+1 −X+ =−A∗X−1
n (Xn −X+)X−1

+ A

=−A∗X−1
+ (Xn −X+)X−1

+ A

+A∗X−1
+ (Xn −X+)X−1

n (Xn −X+)X−1
+ A.

We have

(2.3) 0 ≤ X+ −X2k ≤ A∗X−1
+ (X2k−1 −X+)X−1

+ A,

from which (2.2) follows. We also have

X2k+1 −X+ =A∗X−1
+ (X+ −X2k)X−1

+ A

+A∗X−1
+ (X+ −X2k)X−1

2k (X+ −X2k)X−1
+ A

=A∗X−1
+ (X+ −X2k)1/2

[I + (X+ −X2k)1/2X−1
2k (X+ −X2k)1/2](X+ −X2k)1/2X−1

+ A.

For any ε > 0, there exists a k0 such that

(X+ −X2k)1/2X−1
2k (X+ −X2k)1/2 ≤ εI

for all k ≥ k0. Therefore,

(2.4) 0 ≤ X2k+1 −X+ ≤ (1 + ε)A∗X−1
+ (X+ −X2k)X−1

+ A

for all k ≥ k0. Combining (2.3) and (2.4), we obtain for k ≥ k0

0 ≤ X2k+1 −X+ ≤ (1 + ε)k−k0+1(A∗X−1
+ )2(k−k0)+1(X+ −X2k0)(X−1

+ A)2(k−k0)+1.

Thus,

‖X2k+1 −X+‖ ≤ (1 + ε)k−k0+1‖(X−1
+ A)2(k−k0)+1‖2‖X+ −X2k0‖.

Similarly,

‖X2k+2 −X+‖ ≤ (1 + ε)k−k0+1‖(X−1
+ A)2(k−k0)+2‖2‖X+ −X2k0‖.

Therefore,
lim sup
n→∞

n
√
‖Xn −X+‖ ≤

√
1 + ε (ρ(X−1

+ A))2.

Since ε > 0 is arbitrary, we have

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ (ρ(X−1

+ A))2.

Since
X+ − (X−1

+ A)∗X+(X−1
+ A) = Q,
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with Q > 0 and X+ > 0, we have ρ(X−1
+ A) < 1 (see, e.g., [12, p. 451]). �

3. Inversion free variant of the basic fixed point iteration

In [16], Zhan proposed an inversion free variant of the basic fixed point iteration
for the maximal solution of (1.1) when Q = I. For general positive definite Q,
Zhan’s algorithm takes the following form:
Algorithm 3.1. Take X0 = Q,Y0 = Q−1. For n = 0, 1, . . . , compute

Xn+1 = Q−A∗YnA,
Yn+1 = Yn(2I −XnYn).

The convergence of Algorithm 3.1 was established in [16] for Q = I. Zhan’s
result can easily be transplanted and we have
Theorem 3.2. If (1.1) has a positive definite solution then, for Algorithm 3.1,
X0 ≥ X1 ≥ · · · , Y0 ≤ Y1 ≤ · · · , and limn→∞Xn = X+, limn→∞ Yn = X−1

+ .
The problem of convergence rate for Algorithm 3.1 was not solved in [16]. We

now establish the following result:
Theorem 3.3. For any ε > 0, we have

(3.1) ‖Yn+1 −X−1
+ ‖ ≤ (‖AX−1

+ ‖+ ε)2‖Yn−1 −X−1
+ ‖

and

(3.2) ‖Xn+1 −X+‖ ≤ ‖A‖2‖Yn −X−1
+ ‖

for all n large enough. If A is nonsingular, we also have

(3.3) ‖Xn+1 −X+‖ ≤ (‖X−1
+ A‖+ ε)2‖Xn−1 −X+‖

for all n large enough.

Proof. We have from Algorithm 3.1

Yn+1 = Yn(2I − (Q−A∗Yn−1A)Yn)

= 2Yn − YnQYn + YnA
∗(X−1

+ + Yn−1 −X−1
+ )AYn

= 2Yn − YnX+Yn + YnA
∗(Yn−1 −X−1

+ )AYn.

Thus,

X−1
+ − Yn+1 = X−1

+ − Yn + YnX+Yn − Yn + YnA
∗(X−1

+ − Yn−1)AYn

= (X−1
+ − Yn)X+(X−1

+ − Yn) + YnA
∗(X−1

+ − Yn−1)AYn.
(3.4)

The inequality (3.1) follows since ‖Yn−X−1
+ ‖ ≤ ‖Yn−1−X−1

+ ‖ and limYn = X−1
+ .

The inequality (3.2) is true since

(3.5) Xn+1 −X+ = A∗(X−1
+ − Yn)A.

If A is nonsingular, we have by (3.4) and (3.5)

Xn+1 −X+ = (Xn −X+)A−1X+(X−1
+ − Yn−1)A+A∗Yn−1(Xn−1 −X+)Yn−1A.

Therefore, since ‖Xn−X+‖ ≤ ‖Xn−1−X+‖, (3.3) is true for all n large enough. �

The above proof shows that Algorithm 3.1 should be modified as follows to
improve the convergence properties:
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Algorithm 3.4. Take X0 = Q, 0 < Y0 ≤ Q−1. For n = 0, 1, . . . , compute
Yn+1 = Yn(2I −XnYn),

Xn+1 = Q−A∗Yn+1A.

Note that one convenient choice of Y0 is Y0 = I/‖Q‖∞. We can also use this
choice of Y0 in Algorithm 3.1. Theorems 3.2 and 3.3 remain true for any Y0 such
that 0 < Y0 ≤ Q−1.
Lemma 3.5 (cf. [16]). If C and P are Hermitian matrices of the same order with
P > 0, then CPC + P−1 ≥ 2C.
Theorem 3.6. If (1.1) has a positive definite solution and {Xn}, {Yn} are de-
termined by Algorithm 3.4, then X0 ≥ X1 ≥ · · · , limn→∞Xn = X+;Y0 ≤ Y1 ≤
· · · , limn→∞ Yn = X−1

+ .

Proof. It is clear that

(3.6) X0 ≥ X1 ≥ · · · ≥ Xn ≥ X+, Y0 ≤ Y1 ≤ · · · ≤ Yn ≤ X−1
+

is true for n = 1. Assume (3.6) is true for n = k. We have by Lemma 3.5

Yk+1 = 2Yk − YkXkYk ≤ X−1
k ≤ X−1

+ .

Therefore,
Xk+1 = Q−A∗Yk+1A ≥ Q−A∗X−1

+ A = X+.

Since Yk ≤ X−1
k−1 ≤ X

−1
k , we have Y −1

k ≥ Xk. Thus,

Yk+1 − Yk = Yk(Y −1
k −Xk)Yk ≥ 0,

and
Xk+1 −Xk = −A∗(Yk+1 − Yk)A ≤ 0.

We have now proved (3.6) for n = k + 1. Therefore, (3.6) is true for all n, and the
limits limn→∞Xn and limn→∞ Yn exist. As in [16], we have limXn = X+, and
limYn = X−1

+ . �

Theorem 3.7. For Algorithm 3.4 and any ε > 0, we have

‖Yn+1 −X−1
+ ‖ ≤ (‖AX−1

+ ‖+ ε)2‖Yn −X−1
+ ‖

and

(3.7) ‖Xn −X+‖ ≤ ‖A‖2‖Yn −X−1
+ ‖

for all n large enough. If A is nonsingular, we also have

‖Xn+1 −X+‖ ≤ (‖X−1
+ A‖+ ε)2‖Xn −X+‖

for all n large enough.

Proof. The proof is very similar to that of Theorem 3.3. �

We see from the estimates in Theorem 3.3 and Theorem 3.7 that Algorithm 3.4
can be faster than Algorithm 3.1 by a factor of 2. Compared with Algorithm 2.1,
Algorithm 3.4 needs more computational work per iteration. However, Algorithm
3.4 has better numerical properties since matrix inversions have been avoided. Algo-
rithm 3.4 is particularly useful on a parallel computing system, since matrix-matrix
multiplication can be carried out in parallel very efficiently (see, e.g., [6]).

For Algorithm 3.4, R-linear convergence can be guaranteed whenever ρ(X−1
+ A) <

1. This will be a consequence of the following general result.
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Theorem 3.8 (cf. [10, p. 21]). Let T be a (nonlinear) operator from a Banach
space E into itself and x∗ ∈ E be a solution of x = Tx. If T is Fréchet differentiable
at x∗ with ρ(T

′

x∗) < 1, then the iterates xn+1 = Txn (n = 0, 1, . . .) converge to x∗,
provided that x0 is sufficiently close to x∗. Moreover, for any ε > 0,

‖xn − x∗‖ ≤ c(x0; ε)(ρ(T
′

x∗) + ε)n,

where ‖ · ‖ is the norm in E and c(x0; ε) is a constant independent of n.
Corollary 3.9. For Algorithm 3.4, we have

(3.8) lim sup
n→∞

n
√
‖Xn −X+‖ ≤ (ρ(X−1

+ A))2.

Proof. For Algorithm 3.4, we have

Yn+1 = T (Yn), n = 0, 1, . . . ,

where the operator T is defined on Cm×m (m is the order of Q) by

T (Y ) = 2Y − Y QY + Y A∗Y AY.

It is found that the Fréchet derivative T
′

Y : Cm×m → Cm×m is given by

T
′

Y (Z) = 2Z − ZQY − Y QZ + ZA∗Y AY + Y A∗Y AZ + Y A∗ZAY.

Therefore,
T
′

X−1
+

(Z) = X−1
+ A∗ZAX−1

+ .

The spectrum of T
′

X−1
+

consists of eigenvalues only. If λ is an eigenvalue of T
′

X−1
+

,

we have

(3.9) X−1
+ A∗ZAX−1

+ = λZ

for some Z 6= 0. If |λ| > (ρ(X−1
+ A))2, the equation (3.9) would have zero as the only

solution (see, e.g. [11, p. 100]). Therefore, ρ(T
′

X−1
+

) ≤ (ρ(X−1
+ A))2. In fact, we have

ρ(T
′

X−1
+

) = (ρ(X−1
+ A))2, since (3.9) has a nonzero solution for λ = (ρ(X−1

+ A))2.

By Theorem 3.8, we have

lim sup
n→∞

n

√
‖Yn −X−1

+ ‖ ≤ ρ(T
′

X−1
+

) = (ρ(X−1
+ A))2.

In view of (3.7), we also have (3.8). �

For equation (1.2), we can also have an algorithm similar to Algorithm 3.4.
However, the algorithm is not always convergent.

4. Preliminaries on Newton’s method

For equations (1.1) and (1.2), the convergence of the algorithms in the above
two sections may be very slow when X−1

+ A has eigenvalues close to (or even on)
the unit circle. In these situations, Newton’s method can be recommended.

The equation (1.1) is a special discrete algebraic Riccati equation (DARE), if we
are willing to relax certain restrictions normally imposed on such equations for the
purpose of analysis. Therefore, we will start with a review of some previous results
on Newton’s method for DAREs.

We consider a DARE of the form

(4.1) −X +A∗XA+Q− (C +B∗XA)∗(R+B∗XB)−1(C +B∗XA) = 0,
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where A,Q ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, R ∈ Cm×m, and Q∗ = Q,R∗ = R. We
denote by R(X) the left-hand side of (4.1).

Let H be the set of Hermitian matrices in Cn×n and let D = {X ∈ H | R +
B∗XB is invertible}. We have R : D → H. It is assumed throughout that D is
nonempty and that there is an X ∈ D such that R+B∗XB > 0. The first Fréchet
derivative of R at a matrix X ∈ D is a linear map R′X : H → H given by

(4.2) R′X(H) = −H + Â∗HÂ,

where Â = A−B(R+B∗XB)−1(C +B∗XA).
For A ∈ Cn×n and B ∈ Cn×m, the pair (A,B) is said to be d-stabilizable if

there is a K ∈ Cm×n such that A − BK is d-stable, i.e., all its eigenvalues are in
the open unit disk. The following result is a modification of Theorem 13.1.1 in [11].
It has been noted in [7] that the matrix R does not need to be invertible.
Theorem 4.1. Let (A,B) be a d-stabilizable pair and assume that there is a Her-
mitian solution X̃ of the inequality R(X) ≥ 0 for which R+B∗X̃B > 0. Then there
exists a maximal Hermitian solution X+ of R(X) = 0. Moreover, R+B∗X+B > 0
and all the eigenvalues of A − B(R + B∗X+B)−1(C + B∗X+A) lie in the closed
unit disk.

The Newton method for the solution of (4.1) is

(4.3) Xi = Xi−1 − (R′Xi−1
)−1R(Xi−1), i = 1, 2, . . . ,

given that the maps R′Xi(i = 0, 1, . . .) are all invertible.
When we apply Newton’s method to the DARE (4.1) with (A,B) d-stabilizable,

the initial matrix X0 is chosen so that A − B(R + B∗X0B)−1(C + B∗X0A) is d-
stable. The usual way to generate such an X0 is as follows. We choose L0 ∈ Cm×n

such that A0 = A−BL0 is d-stable, and then take X0 to be the unique solution of
the Stein equation

(4.4) X0 −A∗0X0A0 = Q+ L∗0RL0 − C∗L0 − L∗0C.
In view of (4.2), the Newton iteration (4.3) can be rewritten as

(4.5) Xi −A∗iXiAi = Q+ L∗iRLi − C∗Li − L∗iC, i = 1, 2, . . . ,

where
Li = (R+B∗Xi−1B)−1(C +B∗Xi−1A)

and
Ai = A−BLi.

Theorem 4.2. Under the conditions of Theorem 4.1 and for any L0 ∈ Cm×n such
that A0 = A−BL0 is d-stable, starting with the Hermitian matrix X0 determined by
(4.4), the recursion (4.5) determines a sequence of Hermitian matrices {Xi}∞i=0 for
which A−B(R+B∗XiB)−1(C+B∗XiA) is d-stable for i = 0, 1, . . . , X0 ≥ X1 ≥ · · · ,
and limi→∞Xi = X+.

An important feature of Newton’s method applied to the Riccati equation is that
the convergence is not local. The application of Newton’s method to the Riccati
equation was initiated in [8] under some conditions which, with the wisdom of
hind-sight, are seen to be restrictive. Similarly, Theorem 4.2 was established in the
proof of [14, Thm. 3.1] under the additional condition that R > 0. The positive
definiteness of R was replaced by the invertibility of R in the proof of [11, Thm.
13.1.1]. It has been noted in [7] that the invertibility of R is also unnecessary. It is
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the removal of this restriction that will allow its application to the matrix equation
(1.1).
Theorem 4.3 (cf. [7]). If A − B(R + B∗X+B)−1(C + B∗X+A) is d-stable in
Theorem 4.2, then the sequence {Xi}∞i=0 converges to X+ quadratically.
Theorem 4.4 (cf. [7]). Under the conditions in Theorem 4.1 and assuming that all
eigenvalues of A−B(R+B∗X+B)−1(C+B∗X+A) on the unit circle are semisimple,
the Newton sequence {Xi} converges to X+ either quadratically, or linearly with rate
1/2.

5. Applications of Newton’s method

We now let m = n in DARE (4.1), and take A = 0, R = 0, B = I. The equation
becomes X +C∗X−1C = Q, which has the same form as (1.1), and the hypotheses
of Theorem 4.1 are trivially satisfied whenever it has a positive definite solution.
We can then apply the results we have just reviewed to the equation (1.1) (the
matrix A in (1.1) has taken the place of the matrix C in (4.1)).

The next result is an immediate consequence of Theorem 4.1. The first conclusion
has been proved in [3]. The second conclusion has been noted in [16].
Theorem 5.1. If (1.1) has a positive definite solution, then it has a maximal
positive definite solution X+ and ρ(X−1

+ A) ≤ 1.
By taking L0 = 0 in (4.4), we obtain A0 = 0 (which is certainly d-stable) and

the following algorithm for equation (1.1):
Algorithm 5.2 (Newton’s method for (1.1)). Take X0 = Q. For i = 1, 2, . . . ,
compute Li = X−1

i−1A, and solve

(5.1) Xi − L∗iXiLi = Q− 2L∗iA.

Note that the Stein equation (5.1) is uniquely solvable when ρ(Li) < 1. From
Theorems 4.2, 4.3 and 4.4 we have:
Theorem 5.3. If (1.1) has a positive definite solution, then Algorithm 5.2 de-
termines a sequence of Hermitian matrices {Xi}∞i=0 for which ρ(Li) < 1 for i =
0, 1, . . . , X0 ≥ X1 ≥ · · · , and limi→∞Xi = X+. The convergence is quadratic if
ρ(X−1

+ A) < 1. If ρ(X−1
+ A) = 1 and all eigenvalues of X−1

+ A on the unit circle are
semisimple, then the convergence is either quadratic or linear with rate 1/2.

Note also that if there are eigenvalues of X−1
+ A on the unit circle and linear con-

vergence is identified then, as shown in [7], a double-step modification of Newton’s
method can be used to great advantage.

We now turn our attention to the equation (1.2). In [4] it is shown that, if A
is nonsingular, the maximal solution X+ of (1.2) is also the maximal Hermitian
solution of the DARE

X = Q+ FXF ∗ − FX(R+X)−1XF ∗,

where F = A∗A−1, R = AQ−1A∗. The maximal solution X+ can then be found by
direct application of Newton’s method for the DARE (4.1). However, the overhead
costs of Newton’s method are higher than for equation (1.1), and comparison with
the basic fixed point iteration is less favorable.

If we apply Newton’s method directly to equation (1.2), convergence cannot be
guaranteed if the initial guess is not close to X+. However, Newton’s method still
has local quadratic convergence and can be used as an efficient correction method.
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Algorithm 5.4 (Newton correction for (1.2)). For given Xk sufficiently close to
X+ and i = k + 1, k + 2, . . . , compute Li = X−1

i−1A, and solve

(5.2) Xi + L∗iXiLi = Q+ 2L∗iA.

The equations (5.1) and (5.2) can be solved by a complex version of the algorithm
described in [5]. The computational work per iteration for Algorithm 5.2 or 5.4 is
roughly 10 ∼ 15 times that for Algorithm 2.1 or 2.4.

In contrast to the equation (5.1), the equation (5.2) is not necessarily nearly
singular when X−1

+ A has eigenvalues very close to the unit circle. This makes the
Newton correction even more attractive.

6. Matrix pencils

As we have seen in the previous sections, the convergence rates of various algo-
rithms for equation (1.1) or (1.2) are dependent on the eigenvalues of X−1

+ A, where
X+ is the solution of (1.1) or (1.2) that we seek. In this section, we will relate the
eigenvalues of X−1

+ A to the eigenvalues of a matrix pencil which is independent of
X+.

As we have seen, the equation (1.1) is a special case of the DARE (4.1). For
(4.1) we consider the matrix pencil λFe −Ge with

Fe =

 I 0 0
0 A∗ 0
0 −B∗ 0

 , Ge =

 A 0 B
−Q I −C∗
C 0 R

 .

Matrix pencils of this type were first introduced in [15].
Theorem 6.1 (cf. [7]). If (4.1) has a Hermitian solution X, then λFe − Ge is a
regular pencil. Moreover, α is an eigenvalue of

(6.1) A−B(R+B∗XB)−1(C +B∗XA)

if and only if α and ᾱ−1 are eigenvalues of λFe − Ge. If we assume further that
(A,B) is d-stabilizable and R + B∗XB > 0, then a unimodular α is an eigenvalue
of (6.1) with partial multiplicity k if and only if it is an eigenvalue of λFe − Ge
with partial multiplicity 2k.
Corollary 6.2. For equation (1.1), the eigenvalues of X−1

+ A are precisely the eigen-
values of the matrix pencil

λF1 −G1 ≡ λ

 −I 0 0
0 0 0
0 I 0

−
 0 0 −I

Q −I A∗

−A 0 0


inside or on the unit circle, with half of the partial multiplicities for each eigenvalue
on the unit circle.

According to [3, Thm. 2.1], the equation (1.1) has a positive definite solution if
and only if the rational matrix-valued function ψ(λ) = Q+ λA+ λ−1A∗ is regular
(i.e., detψ(λ) 6= 0 for some λ) and ψ(λ) ≥ 0 for all λ on the unit circle. In particular,
(1.1) has a positive definite solution if ψ(λ) > 0 for all λ on the unit circle.

Let r(T ) be the numerical radius of T ∈ Cm×m, defined by r(T ) = max{|x∗Tx| :
x ∈ Cm, x∗x = 1}. Note that r(T ) ≤ ‖T‖ ≤ 2r(T ) (see [9], for example). The
following lemma has been proved in [3].
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Lemma 6.3. ψ(λ) > 0 for all λ on the unit circle if and only if

r(Q−1/2AQ−1/2) <
1
2
.

As we have seen in Theorem 5.3, the convergence of Algorithm 5.2 is quadratic
if ρ(X−1

+ A) < 1. Our final theorem clarifies this condition.

Theorem 6.4. For equation (1.1), ρ(X−1
+ A) < 1 if and only if

r(Q−1/2AQ−1/2) <
1
2
.

Proof. By Corollary 6.2, it is enough to show r(Q−1/2AQ−1/2) < 1
2 if and only if

the pencil λF1 − G1 has no eigenvalues on the unit circle. By appropriate block
elimination we find that

det(λF1 −G1) = det

 −λI 0 I
−Q I −A∗
A λI 0


= det

 0 0 I
−Q− λA∗ I −A∗

A λI 0


= det

(
−Q− λA∗ I

A λI

)
= det

(
−Q− λA∗ I

A+ λ(Q+ λA∗) 0

)
= (−1)mλmdet(Q+ λ−1A+ λA∗).

Therefore, λF1−G1 has no eigenvalues on the unit circle if and only if ψ(λ) > 0 for
all λ on the unit circle, the latter is equivalent to r(Q−1/2AQ−1/2) < 1

2 by Lemma
6.3. �

We now turn our attention to the equation (1.2). In this case, the eigenvalues of
X−1

+ A are related to the eigenvalues of the matrix pencil λF2 −G2 with

F2 =

 I 0 0
0 0 0
0 −I 0

 , G2 =

 0 0 −I
Q −I −A∗
−A 0 0

 .

Lemma 6.5. If X is a solution of (1.2), then

(λF2 −G2)

 I 0 0
X I 0

−X−1A 0 I

 =

 I 0 0
0 I A∗X−1

−X 0 I

 (λM −N),

where

M =

 I 0 0
0 A∗X−1 0
0 −I 0

 , N =

 X−1A 0 −I
0 −I 0
0 0 −X

 .

Proof. The result is easily verified by direct computation. �

Corollary 6.6. The eigenvalues of X−1
+ A are precisely the eigenvalues of λF2−G2

inside the unit circle.
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Proof. Taking X = X+ in the above Lemma, we get

det(λF2 −G2) = det(λM −N)

= det(X+)det(λI −X−1
+ A)det(λA∗X−1

+ + I).

Since ρ(X−1
+ A) < 1, the zeros of det(λA∗X−1

+ + I) = 0 are outside the unit circle.
The conclusion in the corollary follows readily. �

7. Numerical results

In this section, we give some examples to illustrate the convergence behaviour of
various algorithms we have discussed. Double precision is used in all computations.
Example 7.1. Consider equation (1.1) with

A =
(

2 1
3 4

)
, Q =

(
6.0 5.0
5.0 8.6

)
.

The maximal solution (with the first 9 digits) is found to be

X+ =
(

3.88319247 2.40094202
2.40094202 4.34595701

)
.

We compare the number of iterations required for Algorithms 2.1, 3.1 and 3.4 to
get the first 6 correct digits.

Algorithm 2.1 needs 16 iterations with

X16 =
(

3.88319512 2.40094422
2.40094422 4.34595998

)
.

Algorithm 3.1 needs 34 iterations with

X34 =
(

3.88319648 2.40094414
2.40094414 4.34595965

)
.

Algorithm 3.4 needs 19 iterations with

X19 =
(

3.88319736 2.40094456
2.40094456 4.34595963

)
.

We have used Y0 = I/‖Q‖∞ for Algorithms 3.1 and 3.4. If we use Y0 = Q−1, the
numbers of iterations are 32 and 17, respectively.

The convergence is linear for all three algorithms. The convergence of Algorithm
2.1 is slightly faster than that of Algorithm 3.4, while the convergence of Algorithm
3.4 is faster than that of Algorithm 3.1 by roughly a factor of 2. These are consistent
with the convergence results in Section 2 and Section 3. For this example, we have
ρ(X−1

+ A) = 0.6708, ‖X−1
+ A‖ = 1.3829, and ‖AX−1

+ ‖ = 0.8321.
The next two examples will show that, for equation (1.1), Algorithm 5.2 can be

much more efficient than Algorithm 2.1. Of course, for easy problems the basic
fixed point iteration needs no more than 30 iterations to get a good approximate
solution. In these cases we cannot expect Newton’s method to perform better, since
two or three iterations are usually necessary for the Newton iteration. For these
two examples, we use the practical stopping criterion

(7.1) ‖Xn +A∗X−1
n A−Q‖∞ < ε

for both Algorithm 5.2 and Algorithm 2.1, where ε is a prescribed tolerance.
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Example 7.2. We consider the equation (1.1) with Q = I and

A =

 0.20 0.20 0.10
0.20 0.15 0.15
0.10 0.15 0.25

 .

For this example, A is Hermitian (and hence normal). The exact maximal solution
can be found according to the formula

X+ =
1
2

[I + (I − 4A∗A)1/2],

which is valid for any normal matrix A with ‖A‖ ≤ 1/2 (see [17]).
Since r(A) = ‖A‖ = 1/2 for this example, we have ρ(X−1

+ A) = 1 (cf. Thm.
6.4). The convergence of Algorithm 2.1 turns out to be sublinear. It needs 7071
iterations to satisfy (7.1) for ε = 10−8, with

XF
7071 =

 0.82656902 −0.16835309 −0.15814522
0.83167296 −0.16324916

symm. 0.82146509

 .

On the other hand, the convergence of Algorithm 5.2 is linear with rate 1/2 (cf.
Thm. 5.3). The stopping criterion is satisfied after 12 iterations, with

XN
12 =

 0.82656580 −0.16835631 −0.15814844
0.83166974 −0.16325238

symm. 0.82146187

 .

We find that both XF
7071 and XN

12 have four correct digits, with XN
12 slightly better.

If we use a double Newton step following XN
12, the resulting approximate solution

with the first 8 digits (without rounding) is

X13 =

 0.82654545 −0.16837666 −0.15816879
0.83164938 −0.16327272

symm. 0.82144151

 .

All digits are the same as in the exact solution. This example shows that New-
ton’s method can be much more efficient than the basic fixed point iteration when
r(Q−1/2AQ−1/2) is equal or very close to 1/2.
Example 7.3. We consider the equation (1.1) with

A =

 0.37 0.13 0.12
−0.30 0.34 0.12

0.11 −0.17 0.29

 , Q =

 1.20 −0.30 0.10
−0.30 2.10 0.20

0.10 0.20 0.65

 .

For this example, r(Q−1/2AQ−1/2) < 1/2. Thus the Newton iteration converges
quadratically to the maximal solution. It needs 8 iterations to satisfy the stopping
criterion (7.1) for ε = 10−12. The computed maximal solution is

X+ =

 0.94632675 −0.19866482 −0.05960039
1.86737567 0.32524233

symm. 0.41582003

 .

The basic fixed point iteration needs 332 iterations to satisfy the same criterion.
The convergence is linear since ρ(X−1

+ A) < 1. Note that ‖X−1
+ A‖ > 1 for this

example.
The last example is devoted to equation (1.2).
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Example 7.4. Consider equation (1.2) with

A =
(

50 20
10 60

)
, Q =

(
3 2
2 4

)
.

The maximal solution can be found to be

X+ =
(

51.7993723118 16.0998802679
16.0998802679 62.2516164469

)
.

Using Algorithm 2.4, we get after 100 iterations

X100 =
(

51.4950332009 16.0137829200
16.0137829200 61.8891412657

)
.

After 300 more iterations, we get

X400 =
(

51.7993723016 16.0998802648
16.0998802648 62.2516164347

)
.

If we use Newton correction (Algorithm 5.4) starting with X100, we get after two
iterations

X102 =
(

51.7993723045 16.0998802666
16.0998802666 62.2516164389

)
,

which is already slightly better than X400 given above. The slow convergence of
Algorithm 2.4 is consistent with the second conclusion in Theorem 2.6, since we
have ρ(X−1

+ A) = 0.9719 for this example. For this example, we have ‖X−1
+ A‖ > 1.

Therefore, Theorem 2.5 and the first conclusion in Theorem 2.6 are useless.
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