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Abstract
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1 Introduction

In transport theory, we encounter nonsymmetric algebraic Riccati equations
of the form

XCX—-XD—-AX+B=0 (1)
(see [13]), where A, B,C, D € R™™ are given by

A=A—eq", B=cel, C=qq", D=T —qel,
with A = diag(dy, 02, ...,0,), I' = diag(y1,72,-- -, W), e = (1, 1,..., )T ¢q =

(qh q2, - - - 7Qn>T- Here .

qi = 2’(1}1"

with
O<w, <--<wy<w; <1, ¢>00=12...,n), Y ¢=1,

and . )
5 — - g
i sz(l + Oé) ) Vi
where 0 < ¢ <1, 0 < a < 1. For descriptions on how these equations arise in
transport theory, see [13] and references cited therein.

cwi(1 —a)’

For any matrices A, B € R™*", we write A > B(A > B) if a;; > b;;(a;; >
b;;) for all 7, j. We can then define positive matrices, nonnegative matrices,
etc. The existence of positive solutions of (1) has been shown in [12] and
[13]. However, only the minimal positive solution is physically meaningful.
More general nonsymmetric algebraic Riccati equations have been studied in
[6,7,9,11]. In particular, the existence of positive solutions is proved for the
wider class in [6,7] using elementary matrix theory.

Due to the special structures of the equation (1), its minimal positive solution
can be found by iterative methods with O(n?) complexity each iteration, see
[1,2,4,12,14]. The case (a,c) = (0,1) is the most difficult to handle, and has
been solved efficiently by using a shift technique in [4]. If (a,c) # (0,1),
the fixed-point iterations in [1,2,14] are linearly convergent. These methods
are very simple and requires only 4n? flops each iteration. The methods in
[4,15] are more complicated. Those methods are quadratically convergent, but
require more computations each iteration. Generally speaking, those methods
should be used when («, ¢) is relatively close to (0,1). Otherwise, the fixed-
point iterations in [1,2,14] are usually adequate, and even more efficient. In
this paper we further study the methods in [1,2,14]. We show that the NBGS
method in [1] is the best one among these methods. In particular, we show
that the NBGS method is twice as fast as the NBJ method in [1].



2 Preliminaries

It is shown in [14] that the minimal positive solution X* of (1) has the form
X* =To (u*(v")7).

Here o is the Hadamard product, T' = [t;;] with t;; = 1/(5; +;), and (u*,v*)
is the minimal positive solution of the vector equations

(4)

where P = [p;;] and Q) = [g;;] are n X n positive matrices given by

a P
ity T 0t

pij:5

Four simple iterative methods have been proposed for finding the minimal
solution (u*,v*). Bach of them starts with (u(®, v(®) = (0,0). The simplest of
them is the simple iteration (SI)

u(k+1) — u(k) le) (Pv(k)> + 6,

(5)
U(k+1) — ,U(k) o) (Qu(k)) + e.

It is shown in [14] that the sequence {(u®), v(*))} is strictly and monotonically
increasing, and converges to (u*,v*). Later a modified simple iteration (MSI)

is proposed in [2]:
u(k+1) — u(k) o) (Pfu(k)) + 6,
U(k+1) — fu(k) le) (Qu(k+1)> + e’

(6)

It is shown in [2] that the sequence {(u®, v*))} is strictly and monotonically
increasing, and converges to (u*, v*). Recently, two more methods are proposed
in [1]. They are the nonlinear block Jacobi (NBJ) method

u(k+1) — u(k+1) o) (Pv(k)) + 67

(7)
v(k+1) — ’U<k+1) o) (Qu(k)> + 6,
and the nonlinear block Gauss—Seidel (NBGS) method

u(k+1) — u(k+1) o) (PfU(k)) + 6,

VD) = D) o (QuiHD) 4 e



It is shown in [1] that the sequence {(u®),v®)} from either NBJ or NBGS is
strictly and monotonically increasing, and converges to (u*,v*).

When there is a need to dlstlngulsh (u® v *)) from SI, MSI, NBJ, or NBGS,

(k) (k) (k) ) (k) *) (k) :
they will be denoted by (uS U8 ), (uM,vM ), (uy’,v57), (ug’,ve’), respec
tively.

The following result has been proved in [5].

Theorem 1 For each k > 0,

k)

0§ugk)§u5k)§u(G 0< ()<U(J)<U()

)

It is easy to show that strict inequalities hold in Theorem 1 for k& > 2. The
next result is given in [2].
Theorem 2 For each k > 0,

ufgk) < u(k), vfgk) < U](\];).

Moreover, strict inequalities hold for k > 3.

It is easy to show by example that there is no similar comparison result for
(ug\]}), vg\lj ) and (u g ,vgk)). However, it is easy to prove the following comparison

result for (ug\?,v](\?) and (U(Gk)a Ug))'

Theorem 3 For each k > 0,

W® < y® B < B

Moreover, strict inequalities hold for k > 2.

PROOF. We have uM) = U(c?) 0 and v](\g) = Ug)) = 0. It is easily seen that
ug\? = u(G) = e and ’UM =e. By (4), v* = u*o(Pv*)+e and v*o(e—Qu*) =
So u* > eand 0 < e—Qu < e— Qe < e. It follows that v( ) > e. Now assume
u%} < u(G and v ) < UG (k> 1). Then

WO = D o (Po) e > ul o (P + e > ul o (Po)) + € = ulET,

Ugcﬂ) _ vgfﬂ)o( (k+1)>+e > v (Qu(kH )+e > UM o(Qu k+1)) _ UE\EH)-
We have thus proved the result by induction. O

Although strict inequalities hold in Theorems 1, 2 and 3 after a few iterations,
the asymptotic rates of convergence could still be the same for these methods.
Thus a careful convergence rate analysis is needed.



3 Convergence rate analysis

Let

Then each of the iterations (5), (6), (7) and (8) can be written as
w*t) = Fw®)),

where F is a mapping from R?" into itself and w* is a fixed point of F. We
let

d®) = — ®)

and will find the matrix L®*) in the error relation
AR — ) k) (9)

for each of the four iterations. The Fréchet derivative of the mapping F at w*
will then be given by

F'(w") = lim L"),

The derivative will be denoted by Fg(w*), Fy,(w*), Fi(w*), and F(w*) for
SI, MSI, NBJ and NBGS, respectively.

For SI, we have

ut — uY = (u* o (Pv*) 4 ¢) — (u™ o (Pv®™) +¢)
(Pv™) o (u* —u®) 4+ u* o (P(v* —o™)), (10)

and similary
v — o =¥ o (Q(u* — u™)) + (QuP) o (v* — ™).

Thus (9) holds with

T _ diag(Pv®) diag(u*)P
diag(v*)Q diag(Qu®)
and we have
! (") = diag(Pv*) diag(u*)P .
diag(v*)Q diag(Qu*)




For MSI, the mapping F is given by

u®) u® o (Pv®)) +e
PO (Q(u™ o (Pv®)) +¢)) +e

So the expression for u* — u**1 is still given by (10). But we now have

* U(k+1)

v v* o (QuY) — v o (Q(u o (Puv™) + ¢))
v* o (Qu¥) — o™ o (Qu¥)
+0® o (Q(u* o (Pv*) 4 €)) —v™ o (Q(u® o (Pv®) +¢))
= (Qu*) o (v* —v™)
+0® 0 (Q ((Pv®) o (u” — u®) +u o (P(v* —vM)))) .

Thus (9) holds with

10 diag(Pv®) diag(u*)P
diag(v®™)Qdiag(Pv™®)) diag(Qu*) + diag(v®))Qdiag(u*)P

and we have

diag(Pv*) diag(u*) P

f/ * —
) {diag(v*)@diag(Pv*) diag(Qu*) + diag(v*)Qdiag(u*) P

For NBJ, the mapping F is given by

where / is componentwise division. It is easy to find that (9) holds with

1) _ 0 diag(u* o uF+1) P
diag(v* o v Q 0

Thus

o 0 diag(u* o u*)P

g(w*) = ]
diag(v* o v*)Q 0




For NBGS, the mapping F is given by

u®

f’

B { e/(e — Pv™®)) ]
e/ (e -Q (e/(e - Pv(k))» '

We find that (9) holds with

o(®)

T _ 0 diag(u* o uF+) P
0 diag(v* o v 1)) Qdiag(u* o uk+V) P

and that
0 diag(u* o u*)P

0 diag(v* o v*)Qdiag(u* o u*)P

Falu') =

We now prove the following result about the rate of convergence.

Theorem 4 For each of the iterations (5), (6), (7) and (8), we have
limsup {/[|d® || = p(F'(w")),
k—oo

where || - || is any matriz norm and p(-) denotes the spectral radius.

PROOF. For each iterative method we have for all £k > 0
0 < LW < LD < F(w*).

Thus
d® = LD LA LOGO < (F (w*))kd©.

limsup y/[|d®|| < limsup /| (F'(w*))*|| = p(F'(w")).
k—o00 k—o0

Also, for any £k > 1> 0

So

d® > (L(l))k—l<L(0))ld(0)‘

Note that (L(®)!d©® = (L®)* > 0. We can then prove that

lim sup {/[|[dW]| > p(F'(w")),
k—o0

as in the proof of [10, Theorem 3.2]. O

The above convergence rate analysis reveals the following interesting result.



Theorem 5 In terms of asymptotic rate of convergence, the NBGS method
1s twice as fast as the NBJ method.

PROOF. Note that

(F(w"))? = diag(u* o u*) Pdiag(v* o v*)@Q | 0 |
0 diag(v* o v*)Qdiag(u* o u*) P
So
(p(F)(w")))* = pldiag(v* 0 v*)Qdiag(u” o u”) P) = p(Fg(w")), (1)

as required. O

Remark. The above theorem explains the numerical results for NBJ and
NBGS presented in Tables 1 and 2 in [1], where the number of iterations
required for NBGS is roughly half of that for NBJ.

The Riccati equation (1) contains two parameters ¢ and «, 0 < ¢ < 1 and
0 < a < 1. We now examine the effect of these parameters on the rate of
convergence, with ¢;, w;(¢ = 1,...,n) unchanged.

Theorem 6 For each of the methods SI, MSI, NBJ, and NBGS, if ¢ and «
are changed such that ¢(1 + «) and ¢(1 — «) are decreasing with at least one
of them strictly, then p(F'(w*)) is strictly decreasing.

PROOQOF. Under the assumption, the matrices P and () are strictly decreas-
ing. Using induction, we see easily from the SI method that u* and v* are
also decreasing. We then see from (4) that at least one component of u* or v*
is strictly decreasing. Note that F'(w*) is an irreducible nonnegative matrix
for SI, MSI, and NBJ, and that the (2,2) block of F'(w*) is an irreducible
nonnegative matrix for NBGS. It follows from the Perron-Frobenius theory
[3,16] that p(F'(w*)) is strictly decreasing. O

Remark. In Table 1 of [1] the number of iterations required for SI, NBJ,
NBGS are reported for (o, c) = (107%,1—107%), (0.001,0.999), (0.005,0.995),
(0.1,0.9), (0.5,0.5) (in this order). The results there show that the number
of iterations decreases significantly for each method as («, ¢) changes. This is
explained (at least partially) by Theorem 6 since both ¢(14+a) and ¢(1—«) de-
crease significantly as («, ¢) changes. Similarly, Theorem 6 explains the numer-
ical results given in Tables 3.1 and 3.2 of [2] for ST and MSI, where (o, ¢) takes
the values (107%,1 — 107°), (0.001, 0.999), (0.01, 0.99), (0.5,0.5), (0.85,0.1).



Our main purpose in what follows is to show that NBGS is strictly faster than
MSI (in terms of asymptotic rate of convergence) when (a,c) # (0,1) and
that the convergence of NBGS is still sublinear when («,¢) = (0, 1).

Let
I — diag(Pv*) —diag(u*)P

—diag(v*)Q I — diag(Qu*)
where [ is an identity matrix of proper dimension. By definition, K is a nonsin-
gular M-matrix if p(Fg(w*)) < 1 and is a singular M-matrix if p(F5(w*)) = 1.

K=1—Fiw) =

Lemma 7 K is a nonsingular M-matriz if (o, c) # (0,1), and is a singular
M -matriz if (o, ¢) = (0,1).

PROOF. The minimal positive solution X* of (1) can be obtained by the
fixed-point iteration

AXp 4+ Xl = X,OXp + B +eq" Xp, + Xpge', k=0,1,...,

with Xy = 0. Let the sequences {u®} and {v®} be obtained by (5). Then
we have [14]

Xp=To u® @), w*D = X g+e, v =XTg+e.

It follows that X, converges to X* linearly if and only if w® converges to
w* linearly, which is the same as p(F§(w*)) < 1 by Theorem 4. On the other
hand, by [10, Theorems 3.2 and 3.3] X} converges to X* linearly if and only if
the matrix Mg in [10] is a nonsingular M-matrix. By [6, Propositions 3.4 and
4.9] and [8, Theorem 2.5, the matrix Mg in [10] is a nonsingular M-matrix
if and only if («,c) # (0,1). We have thus proved that p(Fg(w*)) < 1 when
(a,¢) #(0,1) and p(F§(w*)) = 1 when (a,c) = (0,1). O

We now consider four different regular splittings [16] of the matrix K: K =
M; — N;, 1 =1,2,3,4, where

M — 10 N — diag(Pv*) diag(u*)P
01 diag(v*)@ diag(Qu*)
M, — I 0 N, = diag(Pv*) diag(u*)P
—diag(v*)Q I 0 diag(Qu*)
I — diag(Pv*) 0

M; = Ny =

0 I — diag(Qu™) diag(v*)Q 0

0 diag(u*)P]



4 =

I — diag(Pv*) 0 | 0 diag(u”)P
—diag(v*)Q I — diag(Qu*) ’ e

0 0

Lemma 8 F4(w*) = My ' Ny, Fy,(w*) = My ' Ny, Fi(w*) = My ' N3, Fh(w*) =
M;Ny.

PROOF. We prove the last equality. The others can be proved more easily.
Using the formula

-1

AL 0
—B-lCA™! B

A0
C B

and noting that by (4)
(I — diag(Pv*))~" = diag(u*), (I — diag(Qu*))™" = diag(v*),

we obtain

M= { diag(u*) 0 ] '

diag(v* o v*)Qdiag(u*) diag(v*)

A direct computation then gives M; Ny = Fi(w*). O

Theorem 9 If (a,c) = (0,1), then

p(Fs(w®)) = p(Fr(w?)) = p(Fj(w")) = p(Fg(w?)) = 1. (12)

If (a,c) # (0,1), then

PROOF. Recall that the Fréchet derivatives are all nonnegative matrices. In
view of Lemmas 7 and 8, we have as in the proof of [10, Theorem 3.3] that
(12) holds if (e, ¢) = (0,1) and that

p(Faw") < p(Fi(w”)) < p(Fs(w?)) <1,
p(Faw") < p(Fy(w")) < p(Fg(w?)) <1

10



if (a,¢) # (0,1). When (o, ¢) # (0,1), by the theory of nonnegative matrices
we know that [16, Theorem 3.29]

—1 p(K'N;)
Since 0 < KNy < K7 !Ny, K''Ny, > 0, and K~'N; # K~!'N,, we have
p(K~'N,) < p(K~'Ny) by the Perron-Frobenius theory. So p(M;'N,) <
p(My*Ny) by (13), which is the same as p(F5(w*)) < p(Fi(w*)). Simi-
larly, we can prove p(Fy(w")) < p(Fh(w")) and p(Fh(w?) < p(Fs(w?)) <
p(Fs(w*)). Note that p(Fi(w*)) < p(F;(w*)) also follows from (11) directly.
O

4 Conclusion

In this paper we have further studied four fixed-point iterations for finding
the minimal positive solution of the equation (1), which involves a pair of
parameters (o, c) with 0 < o < 1 and 0 < ¢ < 1. These methods are all easy
to use, and have the same low complexity each iteration. We have shown that
the NBGS method in [1] is faster than the other three in terms of asymptotic
rate of convergence when (o, ¢) # (0,1). Existing results and a new result in
this paper together show that the NBGS method also provides better approx-
imation after every iteration. We have also shown that the convergence of the
NBGS method is still sublinear when (a,¢) = (0,1). So one should use the
methods in [4,15] when («,c) is close to (0,1), and use the NBGS method
otherwise.
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