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Abstract

The fixed-point iteration is a simple method for finding the maximal Hermitian
positive definite solutions of the matrix equations X±A∗X−1A = I (the plus/minus
equations). The convergence of this method may be very slow if the initial matrix
is not chosen carefully. A strategy for choosing better initial matrices has been
recently proposed by Ivanov, Hasanov and Uhlig. They proved that this strategy
can improve the convergence in general and observed from numerical experiments
that dramatic improvement happens for the plus equation with some matrices A. It
turns out that the matrices A are normal for those examples. In this note we prove
a result that explains the dramatic improvement in convergence for normal (and
thus nearly normal) matrices for the plus equation. A similar result is also proved
for the minus equation.
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1 Introduction

We consider the matrix equations

X + A∗X−1A = Q (1)
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and
X − A∗X−1A = Q, (2)

where Q ∈ Cn×n is Hermitian positive definite. We may assume Q = I without
loss of generality. A numerically efficient way for the reduction is as follows
(assuming Q is not ill-conditioned). Let Q = LL∗ be the Cholesky factor-
ization and set X̃ = L−1XL−∗, Ã = L−1AL−∗. Then (1) and (2) become
X̃ ± Ã∗X̃−1Ã = I. So our discussions will be mostly about the equations

X + A∗X−1A = I (3)

and
X − A∗X−1A = I. (4)

Equation (1) has been studied in a number of papers [1,4,5,8,10,13,14,16,18].
Several applications have been mentioned in [1]. More recently the equation
has been used to solve a special quadratic eigenvalue problem efficiently [9].
Equation (2) has been studied is several papers [2,6,10,13,16]; some applica-
tions have been mentioned in [6] and [11].

In this note we use the usual partial order for Hermitian matrices, that is, we
write X > Y (X ≥ Y ) if X − Y is positive definite (semidefinite). We use ‖ · ‖
for the spectral norm, and ρ(·) for the spectral radius.

A necessary and sufficient condition for the existence of positive definite so-
lutions of (1) has been given in [5]. It is also proved in [5] that if (1) has
a positive definite solution, then it has a maximum positive definite solution
XL, which means that XL ≥ X for any positive definite solution X. Moreover,
ρ(X−1

L A) ≤ 1. The maximal solution is the required solution in applications.
It is shown in [6] that (2) has a unique positive definite solution XL, and
ρ(X−1

L A) < 1. This solution is the one of practical interest.

The following fixed-point iteration for (1) is studied in [5].

Algorithm 1

X0 = Q,

Xk = Q− A∗X−1
k−1A, k = 1, 2, . . . .

It is shown in [5] that the sequence generated by this algorithm is monoton-
ically decreasing and converges to XL. The rate of convergence can be deter-
mined by computing the Fréchet derivative of the iterative function f(X) =
Q− A∗X−1A, and we have

lim sup
k→∞

k

√
‖Xk −XL‖ ≤ (ρ(X−1

L A))2 (5)

(see [10] for details).
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For the minus equation (2) the following fixed-point iteration is studied in [6].

Algorithm 2

X0 = Q,

Xk = Q + A∗X−1
k−1A, k = 1, 2, . . . .

It is shown in [6] that the sequence produced by Algorithm 2 converges to
XL. Moreover, {X2k} is an increasing sequence and {X2k+1} is a decreasing
sequence. The sequence {Xk} still converges to XL if X0 = Q in Algorithm 2
is replaced with any X0 > 0, see [6] and [17, Theorem 3.3], and we have

lim sup
k→∞

k

√
‖Xk −XL‖ ≤ (ρ(X−1

L A))2. (6)

So the convergence of Algorithms 1 and 2 is fast if ρ(X−1
L A) is sufficiently

small. On the other hand, the convergence is usually very slow when X−1
L A

has eigenvalues on or near the unit circle, since equality usually holds in (5)
and (6).

Meini [16] developed algorithms for (1) and (2) based on cyclic reduction; see
[14] for a different derivation. The convergence of the algorithms is quadratic
when ρ(X−1

L A) < 1. For the plus equation, ρ(X−1
L A) = 1 is possible. In that

case, the convergence of Meini’s method is shown in [9], and it is shown in [8]
that the convergence is at least linear with rate 1

2
if all eigenvalues of X−1

L A on
the unit circle are semi-simple. It is shown recently in [3] that the convergence
is at least linear with rate 1

2
in all cases.

In general, Meini’s method is very efficient for computing XL for equations (1)
and (2). When the matrix Q is ill-conditioned in (2), Meini’s method is not
suitable since it uses Q−1 in the first step. In this case, we may use Algorithm
2 with X0 = I instead to compute XL if ρ(X−1

L A) is not too close to 1. The
method usually works well if XL itself is not ill-conditioned. If ρ(X−1

L A) is
very close to 1, then the convergence of the fixed-point iteration is usually
very slow and the method proposed in [2] may be used.

Meini’s method requires 19
3
n3 flops each iteration, while the fixed-point itera-

tion requires 7
3
n3. So the fixed-point iteration may be more efficient if ρ(X−1

L A)
is small and the required accuracy for XL is not very high. It is of interest
to devise an inexpensive strategy for choosing the initial guess X0 such that
the fixed-point iteration has faster convergence. Such an attempt is made in
[13]. The main purpose of this note is to show that, while the strategy in [13]
improves the convergence in general, significant improvement happens only
when A is normal or nearly normal.
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2 Preliminaries

We start with a review of the main results in [13].

For the plus equation (3), it is assumed in [13] that A ∈ Cn×n satisfies ‖A‖ ≤ 1
2
.

This condition on A is a sufficient condition for the existence of positive definite
solutions of (3), and it is a necessary and sufficient condition when A is a
normal matrix [4]. When Algorithm 1 is applied to (3), the initial matrix is
X0 = I. It is shown in [13] that the convergence of the fixed-point iteration
can be improved by using other initial matrices. The algorithm proposed in
[13] is the following.

Algorithm 3

X0 = γI, (7)

Xk = I − A∗X−1
k−1A, k = 1, 2, . . . , (8)

where good choices of the parameter γ are suggested by the following result
(see Theorems 2.4 and 2.5 in [13]).

Theorem 1 Let A have singular values σ1, σ2, . . . , σn with 1
2
≥ σ1 ≥ σ2 ≥

· · · ≥ σn ≥ 0, and assume the numbers α, β ∈ [1
2
, 1] are such that α(1−α) = σ2

n

and β(1− β) = σ2
1. Then

(i) For γ ∈ [α, 1], the sequence {Xk} in Algorithm 3 is monotonically de-
creasing and converges to the maximum positive definite solution XL of
(3), and the fastest convergence is achieved for γ = α.

(ii) For γ ∈ [1
2
, β], the sequence {Xk} in Algorithm 3 is monotonically in-

creasing and converges to XL, and the fastest convergence is achieved for
γ = β.

(iii) If γ ∈ (β, α) and σ1 < 1
2
, then the sequence {Xk} in Algorithm 3 converges

to XL.

Based on Theorem 1 (i) and (ii), it is recommended in [13] that γ = α or
γ = β be used in Algorithm 3. A few remarks are now in order. First, the best
performance of Algorithm 3 may be achieved for some γ ∈ (β, α) in special
cases. This will be illustrated by one example in Section 5. In general, however,
the use of γ = α or γ = β may still be recommended. Now the question is
which one would be better. The answer is that we should use γ = β for
Algorithm 3. There are several reasons for this recommendation. First, when
A is singular we have α = 1, so Algorithm 3 with γ = α is the same as
Algorithm 1. When A is nonsingular we have α < 1 and Theorem 1 (i) says
the fastest convergence is achieved for γ = α when γ ∈ [α, 1] (in the sense that

X
(γ)
k > X

(α)
k ≥ XL for all k and all γ ∈ (α, 1]). However, the asymptotic rate of
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convergence may remain the same and the improvement in convergence may
not be significant, even when the matrix A is normal. This will be illustrated
by examples in Section 5. On the other hand, the use of γ = β has a distinct
advantage. We will show in Section 3 that linear convergence of Algorithm 3
is guaranteed for γ = β even when ρ(X−1

L A) = 1, if the matrix A is normal.
For all examples in [13] where dramatic improvement of convergence happens
with γ = β, the matrices A are normal. So our main result in Section 3
will reveal the underlying reason for the dramatic improvement. When A is
nearly normal, this dramatic improvement of convergence will be more or less
maintained, as shown by an example in Section 5. When A is a general non-
normal matrix, however, the improvement offered by γ = β is not expected to
be very significant despite the conclusion in Theorem 1 (ii).

For the minus equation (4) the following fixed-point iteration is studied in
[13].

Algorithm 4

X0 = γI,

Xk = I + A∗X−1
k−1A, k = 1, 2, . . . .

It is shown in [13] that the convergence of Algorithm 4 will be faster if one
uses special values for γ, as compared to the conventional choice γ = 1. Some
good choices of the parameter γ are determined from singular values of A.
Let A have singular values σ1 ≥ σ1 ≥ . . . ≥ σn. Then one may take γ = α or
γ = β, where α is the real number with

α(α− 1) = σ2
n, α ≥ 1, (9)

and β is the real number with

β(β − 1) = σ2
1, β ≥ 1. (10)

To allow comparison, we denote the sequence {Xk} from Algorithm 4 by

{X(γ)
k }, and compare the three sequences {X(1)

k }, {X(α)
k }, {X(β)

k }.

Proposition 2 [13, Theorems 3.4 and 3.5] Let A be nonsingular. Then

(i) For each k ≥ 0

‖X(α)
k − A∗(X

(α)
k )−1A− I‖ < ‖X(1)

k − A∗(X
(1)
k )−1A− I‖. (11)

(ii) If

σ2
n(σ2

n + 1) ≥ σ2
1, (12)
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then for each k ≥ 0

‖X(β)
k − A∗(X

(β)
k )−1A− I‖ < ‖X(1)

k − A∗(X
(1)
k )−1A− I‖. (13)

When σn is small, the condition (12) is very restrictive. We will prove a result
that is slightly weaker than (13), but without any assumption on A.

Proposition 3 For each k ≥ 0

‖X(β)
k+1 − A∗(X

(β)
k+1)

−1A− I‖ ≤ ‖X(1)
k − A∗(X

(1)
k )−1A− I‖,

and strict inequality holds when A is nonsingular.

PROOF. The proof is a small modification of that of [13, Theorem 3.5]. Let

f(X) = I + A∗X−1A.

Then X
(β)
k+1 = f(X

(β)
k ) with X

(β)
0 = βI, and X

(1)
k+1 = f(X

(1)
k ) with X

(1)
0 = I.

Since X
(β)
0 ≥ X

(β)
1 by the choice of β, we have X

(β)
1 ≤ X

(β)
2 . Since X

(β)
1 ≥ X

(1)
0 ,

we have X
(β)
2 ≤ X

(1)
1 . Thus

X
(1)
0 ≤ X

(β)
1 ≤ X

(β)
2 ≤ X

(1)
1 .

Since f reverses the order, we have for each k ≥ 1

X
(1)
2k−2 ≤ X

(β)
2k−1 ≤ X

(β)
2k ≤ X

(1)
2k−1, X

(1)
2k ≤ X

(β)
2k+1 ≤ X

(β)
2k ≤ X

(1)
2k−1.

It follows that ‖X(β)
k+1 − X

(β)
k+2‖ ≤ ‖X(1)

k − X
(1)
k+1‖ for each k ≥ 0. If A is

nonsingular, we have X
(β)
2k < X

(1)
2k−1 for each k ≥ 1, and thus ‖X(β)

k+1−X
(β)
k+2‖ <

‖X(1)
k −X

(1)
k+1‖ for each k ≥ 0. 2

We see from Propositions 2 and 3 that the convergence of {Xk} for γ =
α, β should be no worse than that for γ = 1. As for the plus equation, we
recommend the use of γ = β, since we can show that with this choice the
convergence of Algorithm 4 is improved significantly when A is a (nearly)
normal matrix.

3 Convergence analysis for the normal case

In this section we assume that A is a normal matrix and that ‖A‖ ≤ 1
2

for the
plus equation. Even though we have explicit formulas for the maximal solu-
tions of (3) and (4) for normal matrices, convergence analysis of Algorithms
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3 and 4 with γ = β for normal matrices (where β is given in Theorem 1
and (10), respectively) will help us to understand their rapid convergence for
nearly normal matrices, where the formulas are no longer valid.

Since A ∈ Cn×n is a normal matrix, it is unitarily diagonalizable (see [12], for
example). Let U = [u1 u2 . . . un] be a unitary matrix such that

U∗AU = Λ = diag(λ1, . . . , λn). (14)

So the vectors u1, . . . , un are orthonormal eigenvectors of A corresponding to
its eigenvalues λ1, . . . , λn. We assume that the eigenvalues are arranged such
that

|λ1| = . . . = |λp−1| > |λp| ≥ . . . ≥ |λn|. (15)

3.1 The plus equation

For the plus equation (3) with a normal matrix A, Engwerda conjectured in
[4] and Zhan and Xie proved in [18] the formula for the maximal solution:

XL =
1

2

[
I + (I − 4A∗A)

1
2

]
. (16)

From (16) and (14), we get

XL =
1

2
U
[
I + (I − 4|Λ|2)

1
2

]
U∗, (17)

and then
X−1

L A = Udiag(η1, . . . , ηn)U∗, (18)

where

ηi =
2λi

1 +
√

1− 4|λi|2
, i = 1, . . . , n. (19)

Thus, u1, . . . , un are orthonormal eigenvectors of X−1
L A corresponding to its

eigenvalues η1, . . . , ηn. In view of (15) and (19), we have

|η1| = . . . = |ηp−1| > |ηp| ≥ . . . ≥ |ηn|. (20)

To determine the rate of convergence for Algorithm 3, let

Ek = XL −Xk, k = 0, 1, . . . .

As in the proof of Theorem 2.3 in [10], for each k ≥ 1 we have

Ek = (X−1
L A)∗Ek−1(X

−1
L A) + (X−1

L A)∗Ek−1X
−1
k−1Ek−1(X

−1
L A). (21)
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Lemma 4 Let A in (3) be a normal matrix, and u1, . . . , un be the orthonormal
eigenvectors of A corresponding to its eigenvalues arranged as in (15). Then
for Algorithm 3 with γ = β, where β is defined in Theorem 1, we have

Ekui = 0, i = 1, . . . , p− 1, k = 0, 1, . . . .

PROOF. From (16) we get

E0 = XL − βI =
(

1

2
− β

)
I +

1

2
(I − 4A∗A)

1
2 .

Since β ∈ [1
2
, 1] and β(1− β) = σ2

1 = |λ1|2, we have for i = 1, . . . , p− 1

E0ui =
(

1

2
− β +

1

2

√
1− 4|λ1|2

)
ui =

(
1

2
− β +

1

2

√
(1− 2β)2

)
ui = 0.

Since X−1
L Aui = ηiui, it follows from (21) that Ekui = 0 for any k ≥ 0. 2

We can now prove our main result for the plus equation, which is similar in
nature to Theorem 16 in [15].

Theorem 5 Let A in (3) be a normal matrix and η1, . . . , ηn be the eigenvalues
of the matrix X−1

L A, arranged as in (20). Then the rate of convergence of
Algorithm 3 with γ = β is

r = lim sup
k→∞

k

√
‖Ek‖ = |ηp|2.

PROOF. As in [10], for any ε > 0 there exist a k0 such that for all k ≥ k0

EkX
−1
k Ek ≤ εEk. (22)

Combining (21) and (22) we have

0 ≤ Ek ≤ (1 + ε)k−k0((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0 .

Therefore,

r = lim sup
k→∞

k

√
‖Ek‖

≤ lim sup
k→∞

k
√
‖(1 + ε)k−k0((X−1

L A)∗)k−k0Ek0(X
−1
L A)k−k0‖

= (1 + ε) lim sup
k→∞

k

√
max
‖v‖2=1

‖((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0v‖2

= (1 + ε) lim sup
k→∞

k
√
‖((X−1

L A)∗)k−k0Ek0(X
−1
L A)k−k0v(k)‖2,
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where ‖v(k)‖2 = 1. Write v(k) as a linear combination of the orthonormal

vectors u1, . . . , un: v(k) =
∑n

i=1 a
(k)
i ui with

∑n
i=1 |a

(k)
i |2 = 1. Then

r ≤ (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=1

‖((X−1
L A)∗)k−k0Ek0(X

−1
L A)k−k0ui‖2.

Using (21), (8), and the fact X−1
L Aui = ηiui, i = 1, . . . , n, we can prove by

induction that the ui’s are eigenvectors of Ek and Xk for all k ≥ 0. Let
Ek0ui = biui, i = p, . . . , n. Then, applying Lemma 4, we obtain:

r≤ (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=p

|bi||ηi|2(k−k0)‖ui‖2

≤ (1 + ε) lim sup
k→∞

k

√√√√|ηp|2(k−k0)
n∑

i=p

|bi|

= (1 + ε)|ηp|2.

Since ε is arbitrary, we have r ≤ |ηp|2.

On the other hand, we have by (21)

Ek ≥ (X−1
L A)∗Ek−1(X

−1
L A) ≥ ((X−1

L A)∗)kE0(X
−1
L A)k.

Therefore,

r = lim sup
k→∞

k

√
‖Ek‖

≥ lim sup
k→∞

k
√
‖((X−1

L A)∗)kE0(X
−1
L A)k‖

≥ lim sup
k→∞

k
√
‖((X−1

L A)∗)kE0(X
−1
L A)kup‖2

= lim sup
k→∞

k

√
|ηp|2k|cp|‖up‖2

= |ηp|2,

where we have used E0up = cpup for cp = 1
2
− β + 1

2

√
1− 4|λp|2 > 0. Thus

r = |ηp|2. 2

For all three cases in Theorem 1, where A is not necessarily a normal matrix,
we can show as in [10] that the iterates produced by Algorithm 3 satisfy (5).
Theorem 5 says that when A is normal the rate of convergence of Algorithm 3
with γ = β is not determined by the square of ρ(X−1

L A), but by the square of
the next largest modulus for the eigenvalues of X−1

L A. This is the underlying
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reason for the faster convergence. The improvement of convergence will be
dramatic (from sublinear to linear) if ρ(X−1

L A) = 1.

3.2 The minus equation

For the minus equation (4) with a normal matrix A, we know from (14) that
the unique positive definite solution XL is given by

XL =
1

2
U
[
I + (I + 4|Λ|2)

1
2

]
U∗. (23)

So

X−1
L A = Udiag(µ1, . . . , µn)U∗, (24)

where

µi =
2λi

1 +
√

1 + 4|λi|2
, i = 1, . . . , n. (25)

Note that

|µ1| = . . . = |µp−1| > |µp| ≥ . . . ≥ |µn|. (26)

Let

Ẽk = XL −Xk, k = 0, 1, . . . . (27)

As in [10], for each k ≥ 1 we have

Ẽk = −(X−1
L A)∗Ẽk−1(X

−1
L A)− (X−1

L A)∗Ẽk−1X
−1
k−1Ẽk−1(X

−1
L A). (28)

Lemma 6 Let A in (4) be a normal matrix, and u1, . . . , un be the orthonormal
eigenvectors of A corresponding to its eigenvalues λ1, . . . , λn arranged as in
(15). Then for Algorithm 4 with γ = β, where β is given in (10), we have

Ẽkui = 0, i = 1, . . . , p− 1, k = 0, 1, . . . .

PROOF. For i = 1, . . . , p − 1, a direct computation shows Ẽ0ui = 0. Since
X−1

L Aui = µiui, it follows from (28) that Ẽkui = 0 for all k ≥ 0. 2

The following monotonicity properties will also be needed.

Lemma 7 Let A in (4) be a normal matrix and {Xk} be the sequence from
Algorithm 4 with γ = β. Then {X2k} is a decreasing sequence, and {X2k+1}
is an increasing sequence.
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PROOF. We only need to show X0 ≥ X2. Let A be factored as in (14). From
X0 = βI, we get after two iterations that

X2 = Udiag

(
β + σ2

1 + βσ2
1

β + σ2
1

, . . . ,
β + σ2

n + βσ2
n

β + σ2
n

)
U∗.

Since σ2
1 ≥ . . . ≥ σ2

n and σ2
1 = β(β − 1), we have

X2 ≤Udiag

(
β + σ2

1 + βσ2
1

β + σ2
1

, . . . ,
β + σ2

1 + βσ2
n

β + σ2
n

)
U∗

= βUdiag

(
1 + β − 1 + σ2

1

β + σ2
1

, . . . ,
1 + β − 1 + σ2

n

β + σ2
n

)
U∗ = βI = X0.

This completes the proof. 2

We note that X0 ≥ X2 is not always true when X0 = βI and A is not a normal
matrix.

We now prove our main result for the minus equation.

Theorem 8 Let A in (4) be a normal matrix, and µ1, . . . , µn be the eigenval-
ues of X−1

L A, arranged as in (26). Then the rate of convergence of Algorithm
4 with γ = β is

r = lim sup
k→∞

k
√
‖Ẽk‖ = |µp|2.

PROOF. By Lemma 7 we have

Ẽ2k+1 = XL −X2k+1 ≥ 0, Ẽ2k = XL −X2k ≤ 0.

As in [10], for any ε ∈ (0, 1) there exists a k0, such that for all k ≥ k0

ẼkX
−1
k Ẽk ≤ ε(−1)k+1Ẽk. (29)

Combining (28) and (29) we have for k > k0

0 ≤ (−1)k+1Ẽk = (X−1
L A)∗(−1)kẼk−1(X

−1
L A) +

(−1)k(X−1
L A)∗Ẽk−1X

−1
k−1Ẽk−1(X

−1
L A)

≤ (1 + ε)(X−1
L A)∗(−1)kẼk−1(X

−1
L A)

≤ (1 + ε)k−k0((X−1
L A)∗)k−k0(−1)k0+1Ẽk0(X

−1
L A)k−k0 .
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Therefore,

r = lim sup
k→∞

k
√
‖Ẽk‖

≤ lim sup
k→∞

k
√
‖(1 + ε)k−k0((X−1

L A)∗)k−k0Ẽk0(X
−1
L A)k−k0‖

= (1 + ε) lim sup
k→∞

k
√
‖((X−1

L A)∗)k−k0Ẽk0(X
−1
L A)k−k0v(k)‖2,

where ‖v(k)‖2 = 1. Write v(k) =
∑n

i=1 a
(k)
i ui with

∑n
i=1 |a

(k)
i |2 = 1. Then

r ≤ (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=1

‖((X−1
L A)∗)k−k0Ẽk0(X

−1
L A)k−k0ui‖2.

As for the plus equation, we can prove by induction that the ui’s are eigenvec-
tors of Ẽk and Xk for all k ≥ 0. Applying Lemma 6 and setting Ẽk0ui = diui,
i = p, . . . , n, we obtain:

r ≤ (1 + ε) lim sup
k→∞

k

√√√√ n∑
i=p

|di||µi|2(k−k0)‖ui‖2 ≤ (1 + ε)|µp|2.

Since ε is arbitrary, we have r ≤ |µp|2.

On the other hand, by (28) and (29) we have for k > k0

(−1)k+1Ẽk ≥ (1− ε)(X−1
L A)∗(−1)kẼk−1(X

−1
L A)

≥ (1− ε)k−k0((X−1
L A)∗)k−k0(−1)k0+1Ẽk0(X

−1
L A)k−k0

≥ 0.

Therefore,

r = lim sup
k→∞

k
√
‖Ẽk‖

≥ lim sup
k→∞

k
√

(1− ε)k−k0‖((X−1
L A)∗)k−k0Ẽ0(X

−1
L A)k−k0‖

≥ (1− ε) lim sup
k→∞

k
√
‖((X−1

L A)∗)k−k0Ẽ0(X
−1
L A)k−k0up‖2

≥ (1− ε) lim sup
k→∞

k

√
|µp|2(k−k0)|cp|‖up‖2

= (1− ε)|µp|2,

12



where we have used Ẽ0up = cpup for cp = 1
2
− β + 1

2

√
1 + 4|λp|2 < 0. Since ε is

arbitrary, we obtain r ≥ |µp|2. Thus r = |µp|2. 2

We have shown in Theorem 8 that when A is normal the rate of convergence
of Algorithm 4 with γ = β is not determined by the square of ρ(X−1

L A), but
is determined by the square of the next largest modulus for the eigenvalues of
X−1

L A. This is the underlying reason for the faster convergence. However, we
cannot expect the improvement of convergence to be as dramatic as for the
plus equation, because for the minus equation we always have ρ(X−1

L A) < 1.

4 Convergence improvement of the fixed-point iteration for the
matrix equation X + BX−1A = C

We now consider the more general equation

X + BX−1A = C, (30)

where A, B, C are n × n matrices. Suppose that the equation has a solution
XL and that for a proper X0 the sequence generated by

Xk = C −BX−1
k−1A, k = 1, 2, . . .

converges to XL. Let Ek = XL −Xk. Then we have

Ek = (BX−1
k−1)Ek−1(X

−1
L A) = (BX−1

k−1) · · · (BX−1
0 )E0(X

−1
L A)k. (31)

From this we know that

lim sup
k→∞

k

√
‖Ek‖ ≤ ρ(BX−1

L )ρ(X−1
L A).

So the convergence of the fixed-point iteration is linear if ρ(BX−1
L )ρ(X−1

L A) <
1. If ρ(BX−1

L )ρ(X−1
L A) is equal or very close to 1, the convergence may be

very slow. However, it is possible to speed up the convergence by choosing X0

properly. Let X−1
L A have eigenvalues η1, . . . , ηn, and corresponding linearly in-

dependent (generalized) eigenvectors u1, . . . , un (as they appear in the Jordan
canonical form). Suppose that

|η1| = . . . = |ηp−1| > |ηp| ≥ . . . ≥ |ηn|

and that X0 satisfies X0ui = XLui, i = 1, . . . , p − 1. Then E0ui = 0 for
i = 1, . . . , p− 1. It follows from (31) that

lim sup
k→∞

k

√
‖Ek‖ ≤ ρ(BX−1

L ) lim sup
k→∞

k
√
‖E0(X

−1
L A)kvk‖,

13



where ‖vk‖ = 1. Writing vk =
∑n

i=1 a
(k)
i ui, we get

lim sup
k→∞

k
√
‖E0(X

−1
L A)kvk‖ = lim sup

k→∞
k

√√√√‖E0(X
−1
L A)k

n∑
i=p

a
(k)
i ui‖ ≤ |ηp|.

So

lim sup
k→∞

k

√
‖Ek‖ ≤ ρ(BX−1

L )|ηp|, (32)

and the convergence is improved.

In general it is difficult to find X0 (other than XL itself) such that X0ui =
XLui (i = 1, . . . , p − 1). However, an important equation from the study of
recurrent quasi-birth-death processes [15] has the form (30), with A, B, I −C
elementwise nonnegative, and A + B + I − C stochastic. Moreover, for the
desired solution XL the matrix X−1

L A is such that 1 = η1 > |η2| ≥ . . . ≥ |ηn|
and u1 = e, the vector of ones. So XLe = Ae. Thus X0u1 = XLu1 is satisfied
by any X0 with X0e = Ae. (To apply the fixed-point iteration we need to
ensure that X0 is invertible.) For the plus/minus equations with a normal
matrix A, we have shown in Section 3 that X0ui = XLui (i = 1, . . . , p −
1) for X0 = βI, without computing XL and ui. In this case, (32) becomes

lim supk→∞
k

√
‖Ek‖ ≤ |η1ηp|. Note that we have proved in Section 3, by a

refined analysis, that lim supk→∞
k

√
‖Ek‖ = |ηp|2. If A is a general non-normal

matrix, however, the choice X0 = γI is unlikely to improve the convergence of
the fixed-point iteration significantly, since X0ui = XLui would mean that ui

(i = 1, . . . , p − 1) are linearly independent eigenvectors of XL corresponding
to the same eigenvalue γ.

5 Numerical experiments

In this section we compare the algorithms Alg+(γ) and Alg+M , where Alg+(γ)
is Algorithm 3 (with X0 = γI) and Alg+M is Meini’s algorithm [16] for the
plus equation (3). We also compare the algorithms Alg−(γ) and Alg−M , where
Alg−(γ) is Algorithm 4 (with X0 = γI) and Alg−M is Meini’s algorithm [16]
for the minus equation (4). The purpose here is to show the usefulness as well
as the limitation of Alg±(β).

Our numerical experiments are performed in MATLAB 7.3 on a Sun worksta-
tion. In all examples, each algorithm is stopped as soon as an approximation
X̃ to XL satisfies

‖X̃ ± A∗X̃−1A− I‖∞ ≤ 10−10

for the plus/minus equations. We note that Alg±(γ) requires about 7
3
n3 flops

each iteration and all singular values of A can be found in 8
3
n3 flops [7] (we
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Table 1
Number of iterations for Example 1

ξ Alg+(β) Alg+(1) Alg+(α) Alg+M

0.4 3 5 5 3

0.1 5 16 16 5

0.01 5 50 50 6

0.001 6 143 143 8

0.0001 6 396 396 9

0 6 * * 17

just need the largest and the smallest singular value to determine β and α,
respectively). Alg±M requires 19

3
n3 flops each iteration.

The first four examples are for the plus equation.

Example 1. We consider a normal matrix A ∈ Rn×n, given in [16] as follows:

(1) Choose ξ ∈ [0, 1
2
).

(2) For i = 1, . . . , n:
(a) for j = i, . . . , n, set ai,j = i2 + j;
(b) compute s1 =

∑i−1
j=1 ai,j, s2 =

∑n
j=i ai,j;

(c) for j = i, . . . , n, set

ai,j = ai,j
0.5− ξ − s1

s2

, aj,i = ai,j.

For this example, we have ‖A‖ = 1
2
− ξ. If ξ = 0 then ‖A‖ = 1

2
, ρ(X−1

L A) = 1,
and the convergence of Alg+(1) is expected to be sublinear. We take n = 100
and report in Table 1 the number of iterations required for each algorithm and
for different values of ξ. In the table, “*” means that the stopping criterion
is not satisfied in 50000 iterations. For this example, Alg+(β) has the best
performance. The iterates provided by Alg+(α) are slightly better than the
corresponding iterates from Alg+(1) (in agreement with Theorem 1 (i)), but
the number of iterations required remains the same.

Example 2. We consider a nearly normal matrix A = QRQT, where Q is a
random orthogonal matrix and

R =


0.499 0.00003 0.00001

0 0.2 0.00002

0 0 0.1

 .

We have ‖A‖ = 0.4990, α = 0.9899, β = 0.5316. Alg+(1) and Alg+(α) need
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144 iterations each, while Alg+(β) requires only 18 iterations. Alg+M needs
8 iterations. Alg+(β) still has the best performance, since the computational
work for 8 iterations of Alg+M is roughly that for 22 iterations of Alg+(β).

Example 3. [13, Example 1] For the non-normal matrix

A =


0.471 0.002 0.040

0.002 0.472 −0.002

−0.040 −0.001 0.471

 ,

we have ‖A‖ = 0.4749, α = 0.6710, β = 0.6566. Alg+(1) requires 32 itera-
tions; Alg+(α) requires 28 iterations; Alg+(β) requires 27 iterations. We have
also tried Alg+(γ) with many different γ ∈ (β, α), the number of iteations
required is either 27 or 28. Alg+M needs 6 iterations. So Alg+M has the best
performance.

Example 4. For the non-normal matrix

A =


0.1304 0.1639 −0.0437

0.0182 0.4045 0.0313

0.1661 0.1425 0.0285

 ,

we have ‖A‖ = 0.4757, α = 0.9970, β = 0.6539. For this example 23 iterations
are needed for Alg+(1), Alg+(α) and Alg+(β). We also note that Alg+(γ) with
γ = 0.72755 only needs 9 iterations (but this good value of γ is obtained by
trial and error). Alg+M needs 5 iterations and thus has the best performance
for this example.

We now give a few examples for the minus equation.

Example 5. For the normal matrix

A =



−1.8519 0.0131 0.0370 1.4361

0.0131 0.1001 −0.0797 0.1191

0.0370 −0.0797 0.2006 −0.0343

1.4361 0.1191 −0.0343 −1.2283


,

we have α = 1.0093, β = 3.5530, ρ(X−1
L A) = 0.8477. Alg−(1) and Alg−(α) re-

quire 77 iterations each; Alg−(β) needs 9 iterations; Alg−M takes 7 iterations.
The iterates provided by Alg−(α) are slightly better than the corresponding
iterates from Alg−(1) (in agreement with Proposition 2), but the number of
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iterations required remains the same. Alg−(β) has the best performance for
this example.

Example 6. We consider a nearly normal matrix A = QRQT , where Q is a
random orthogonal matrix and

R =



0.1 0.0002 0.00003 0.00002

0 0.2 0.00001 0.00003

0 0 3.99 0.00001

0 0 0 0.499


.

We have α = 1.0099, β = 4.5212, ρ(X−1
L A) = 0.8825. Alg−(1) and Alg−(α)

need 102 iterations each, while Alg−(β) requires only 14 iterations. Alg−M
needs 7 iterations. So Alg−(β) still has the best performance.

Example 7. For the non-normal matrix

A =



2.9130 11.1804 4.0826 1.5700

−0.0300 −3.1354 −14.1875 7.2807

−1.6573 0.6205 5.9407 −1.6480

7.6587 −4.8459 1.3134 −0.7988


,

we have α = 2.0360, β = 18.9393, ρ(X−1
L A) = 0.9317. For this example

Alg−(1) requires 191 iterations; Alg−(α) requires 189 iterations; Alg−(β) re-
quires 184 iterations. But Alg−M needs only 8 iterations and thus has the
best performance.

6 Conclusions

To compute the maximal solution XL of the matrix equation (3) with ‖A‖ ≤
1
2
, we can speed up the convergence of the fixed-point iteration by using a

good initial matrix. The recommended initial matrix is X0 = βI, where β
is determined by the largest singular value of A. Significant (and sometimes
dramatic) improvement is achieved by this special initial matrix if A is normal
or nearly normal. If A is a general non-normal matrix, the improvement is
usually not significant. But if ρ(X−1

L A) is small the convergence of the fixed-
point iteration is fast for X0 = γI and any γ ∈ [1

2
, 1] since (5) is always true. It

is still advisable to use γ = β in this case, since it is very likely that the number
of iterations can be reduced by at least one, offsetting the computational work
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required for determining β. If A is a general non-normal matrix and X−1
L A

has eigenvalues on or near the unit circle, then Meini’s algorithm [16] is the
best choice we have available.

To compute the unique positive definite solution XL of the matrix equation
(4), we can also use X0 = βI to speed up the convergence of the fixed-point
iteration, where β is again determined by the largest singular value of A.
Significant improvement is achieved by this special initial matrix if A is normal
or nearly normal. If A is a general non-normal matrix, the improvement is
usually not significant. But if ρ(X−1

L A) is small the convergence of the fixed-
point iteration is fast for any X0 > 0. If A is a general non-normal matrix and
X−1

L A has eigenvalues near the unit circle, then Meini’s algorithm [16] is the
best choice.
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