A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation

Chun-Hua Guo¹

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Abstract

For the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M-matrix, the solution of practical interest is often the minimal nonnegative solution. In this note we prove that the minimal nonnegative solution is positive when the M-matrix is irreducible.

 $Key \ words:$ Nonsymmetric algebraic Riccati equations; *M*-matrices; Minimal nonnegative solution

1 Introduction

In this note we consider the nonsymmetric algebraic Riccati equation (ARE)

$$XCX - XD - AX + B = 0, (1)$$

where A, B, C, D are real matrices of sizes $m \times m, m \times n, n \times m, n \times n$, respectively, and

$$K = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix}$$
(2)

is a nonsingular M-matrix or an irreducible singular M-matrix. The relevant definitions are as follows.

Preprint submitted to Elsevier Science

Email address: chguo@math.uregina.ca (Chun-Hua Guo).

¹ This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

Definition 1 [1] A square matrix A is called an M-matrix if A = sI - B with $B \ge 0$ (elementwise order) and $s \ge \rho(B)$, where $\rho(\cdot)$ is the spectral radius. It is called a singular M-matrix if $s = \rho(B)$; it is called a nonsingular M-matrix if $s > \rho(B)$.

Definition 2 [8] For $n \ge 2$, an $n \times n$ matrix A is reducible if there exists an $n \times n$ permutation matrix P such that

$$PAP^T = \begin{pmatrix} B \ C \\ 0 \ D \end{pmatrix},$$

where B and D are square matrices. Otherwise, A is irreducible.

Nonsymmetric AREs of this type appear in transport theory (see [3-5]) and Wiener–Hopf factorization of Markov chains (see [6,7]). The solution of practical interest in these applications is the minimal nonnegative solution.

The following general result about the minimal nonnegative solution of (1) has been established in [2].

Theorem 3 If K is a nonsingular M-matrix, then (1) has a minimal nonnegative solution S and D-CS is a nonsingular M-matrix. If K is an irreducible singular M-matrix, then (1) has a minimal nonnegative solution S and D-CSis an M-matrix.

For the nonsymmetric ARE studied in [4,5], the matrix K has no zero elements and the minimal nonnegative solution S is actually positive. For the nonsymmetric ARE arising in the Wiener–Hopf factorization of Markov chains, however, a reasonable assumption would be the irreducibility of the matrix K. In this note we prove that S > 0 whenever K is an irreducible M-matrix.

When K is an irreducible M-matrix, so is the matrix

$$\begin{pmatrix} A & -B \\ -C & D \end{pmatrix}.$$

Thus, we also have $\hat{S} > 0$, where \hat{S} is the minimal nonnegative solution of

$$XBX - XA - DX + C = 0,$$

the dual equation of (1).

The assumption that $S, \hat{S} > 0$ is needed in several main results in [2]. With the result in this note, we see that the assumption is always satisfied when Kis an irreducible M-matrix.

2 The result

Since the matrix K in (2) is a nonsingular M-matrix or an irreducible singular M-matrix, the matrices A and D are both nonsingular M-matrices (see [2]). In particular, the diagonal elements of A and D are positive. Let $A = A_1 - A_2$, $D = D_1 - D_2$, where $A_1 = \text{diag}(A)$ and $D_1 = \text{diag}(D)$. We then have the fixed-point iteration for (1)

$$X_{k+1} = \mathcal{L}^{-1}(X_k C X_k + X_k D_2 + A_2 X_k + B),$$
(3)

where the linear operator \mathcal{L} is given by $\mathcal{L}(X) = A_1 X + X D_1$.

Lemma 4 [2] For (3) with $X_0 = 0$, we have $X_0 \leq X_1 \leq \cdots$, $\lim_{k\to\infty} X_k = S$, the minimal nonnegative solution of (1).

Theorem 5 If K is an irreducible M-matrix, then S > 0.

PROOF. For the iteration (3) with $X_0 = 0$, we claim that for each $k \ge 0$, X_{k+1} has at least one more positive element than X_k does, unless X_k is already a positive matrix. Once this claim is proved, we have $S \ge X_{m \cdot n} > 0$ by Lemma 4.

Since $B \neq 0$ by the irreducibility of K, the claim is true if $X_k = 0$. So, we let G be a nontrivial subset of $\{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$ and assume that $(X_k)_{ij} > 0$ for all $(i, j) \in G$ and $(X_k)_{ij} = 0$ for all $(i, j) \notin G$ (In the proof we denote by Y_{ij} the (i, j) element of a matrix Y.) We will show by contradiction that X_{k+1} has at least one more positive element than X_k does.

Suppose that $(X_{k+1})_{ij} = 0$ for all $(i, j) \notin G$. Then, by iteration (3),

$$B_{ij} = 0, \quad (A_2 X_k)_{ij} = 0, \quad (X_k D_2)_{ij} = 0, \quad (X_k C X_k)_{ij} = 0$$
(4)

for all $(i, j) \notin G$. Note that

$$(A_2X_k)_{ij} = \sum_{q=1}^m (A_2)_{iq} (X_k)_{qj}, \quad (X_kD_2)_{ij} = \sum_{p=1}^n (X_k)_{ip} (D_2)_{pj},$$

$$(X_k C X_k)_{ij} = \sum_{q=1}^m \sum_{p=1}^n (X_k)_{ip} C_{pq}(X_k)_{qj}.$$

It follows from (4) that the following four assertions hold:

If
$$(i,j) \notin G$$
, then $B_{ij} = 0.$ (5)

If
$$(i, j) \notin G$$
 and $(q, j) \in G$, then $(A_2)_{iq} = 0.$ (6)

If
$$(i, j) \notin G$$
 and $(i, p) \in G$, then $(D_2)_{pj} = 0.$ (7)

If
$$(i, j) \notin G, (i, p) \in G$$
 and $(q, j) \in G$, then $C_{pq} = 0.$ (8)

Now we define the sets

$$G_l = \{r \mid 1 \le r \le m, (r, l) \in G\}, \quad l = 1, 2, \dots, n.$$

If G_l is empty for some l, we suppose that G_l is empty for $l = l_1, l_2, \ldots, l_s$ only. Then, for each $p \notin \{l_1, l_2, \ldots, l_s\}$ we can find i such that $(i, p) \in G$. Since $(i, j) \notin G$ for each $j \in \{l_1, l_2, \ldots, l_s\}$, it follows form (7) that $(D_2)_{pj} = 0$. Thus, all elements in the columns l_1, l_2, \ldots, l_s of the matrix

$$\begin{pmatrix}
D_2 & C \\
B & A_2
\end{pmatrix}$$
(9)

are zero except those in the rows l_1, l_2, \ldots, l_s . It follows from Definition 2 that the matrix (9) is reducible. Thus, the matrix K is also reducible.

We can then assume that none of the sets G_l is empty. Let $1 \le l_1 < l_2 < \cdots < l_s \le n$ be such that

$$G_{l_1} = G_{l_2} = \dots = G_{l_s} = \{r_1, r_2, \dots, r_t\}$$

(where $1 \le r_1 < r_2 < \cdots < r_t \le m$) and for $l \in \{1, 2, \dots, n\} \setminus \{l_1, l_2, \dots, l_s\}$,

$$|G_l| \ge |G_{l_1}|$$
 and $G_l \ne G_{l_1}$.

Since G is a proper subset of $\{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}$, we necessarily have t < m. Now, by (5) we have that $B_{ij} = 0$ if $i \notin \{r_1, r_2, \ldots, r_t\}$ and $j \in \{l_1, l_2, \ldots, l_s\}$. For the matrix A_2 , it follows from (6) with $j = l_1$ that $(A_2)_{iq} = 0$ if $i \notin \{r_1, r_2, \ldots, r_t\}$ and $q \in \{r_1, r_2, \ldots, r_t\}$. For the matrix D_2 , we claim that $(D_2)_{pj} = 0$ if $p \notin \{l_1, l_2, \ldots, l_s\}$ and $j \in \{l_1, l_2, \ldots, l_s\}$. In fact, for each

 $p \notin \{l_1, l_2, \ldots, l_s\}$, we can find $i \notin \{r_1, r_2, \ldots, r_t\}$ such that $(i, p) \in G$ since otherwise we would have $|G_p| < |G_{l_1}|$ or $G_p = G_{l_1}$. Since $(i, j) \notin G$ for this $i, (D_2)_{pj} = 0$ by (7). Finally, we claim that $C_{pq} = 0$ if $p \notin \{l_1, l_2, \ldots, l_s\}$ and $q \in \{r_1, r_2, \ldots, r_t\}$. In fact, for each $p \notin \{l_1, l_2, \ldots, l_s\}$ we can find, as before, $i \notin \{r_1, r_2, \ldots, r_t\}$ such that $(i, p) \in G$. For this i and each $q \in \{r_1, r_2, \ldots, r_t\}$, $(i, j) \notin G$ and $(q, j) \in G$ for $j = l_1$. Thus, $C_{pq} = 0$ by (8).

Therefore, for the matrix (9) all elements in the columns $l_1, l_2, \ldots, l_s, n+r_1, n+r_2, \ldots, n+r_t$ are zero except those in the rows $l_1, l_2, \ldots, l_s, n+r_1, n+r_2, \ldots, n+r_t$. It follows as before that the matrix K is reducible. The contradiction shows that X_{k+1} has at least one more positive element than X_k does. \Box

References

- A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
- [2] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for *M*-matrices, SIAM J. Matrix Anal. Appl. 23 (2001) 225–242.
- [3] C.-H. Guo, A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 22 (2000) 376–391.
- [4] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl. 230 (1995) 89–100.
- [5] J. Juang, W.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl. 20 (1998) 228–243.
- [6] L. C. G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Ann. Appl. Probab. 4 (1994) 390–413.
- [7] L. C. G. Rogers, Z. Shi, Computing the invariant law of a fluid model, J. Appl. Probab. 31 (1994) 885–896.
- [8] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer, Berlin, 2000.