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Abstract

For the nonsymmetric algebraic Riccati equation for which the four coefficient
matrices form an M -matrix, the solution of practical interest is often the minimal
nonnegative solution. In this note we prove that the minimal nonnegative solution
is positive when the M -matrix is irreducible.
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1 Introduction

In this note we consider the nonsymmetric algebraic Riccati equation (ARE)

XCX −XD − AX +B = 0, (1)

where A,B,C,D are real matrices of sizes m×m,m×n, n×m,n×n, respec-
tively, and

K =

 D −C

−B A

 (2)

is a nonsingular M -matrix or an irreducible singular M -matrix. The relevant
definitions are as follows.
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Definition 1 [1] A square matrix A is called an M-matrix if A = sI−B with
B ≥ 0 (elementwise order) and s ≥ ρ(B), where ρ(·) is the spectral radius. It
is called a singular M-matrix if s = ρ(B); it is called a nonsingular M-matrix
if s > ρ(B).

Definition 2 [8] For n ≥ 2, an n× n matrix A is reducible if there exists an
n× n permutation matrix P such that

PAP T =

B C

0 D

 ,

where B and D are square matrices. Otherwise, A is irreducible.

Nonsymmetric AREs of this type appear in transport theory (see [3–5]) and
Wiener–Hopf factorization of Markov chains (see [6,7]). The solution of prac-
tical interest in these applications is the minimal nonnegative solution.

The following general result about the minimal nonnegative solution of (1)
has been established in [2].

Theorem 3 If K is a nonsingular M-matrix, then (1) has a minimal nonneg-
ative solution S and D−CS is a nonsingular M-matrix. If K is an irreducible
singular M-matrix, then (1) has a minimal nonnegative solution S and D−CS
is an M-matrix.

For the nonsymmetric ARE studied in [4,5], the matrix K has no zero elements
and the minimal nonnegative solution S is actually positive. For the nonsym-
metric ARE arising in the Wiener–Hopf factorization of Markov chains, how-
ever, a reasonable assumption would be the irreducibility of the matrix K. In
this note we prove that S > 0 whenever K is an irreducible M -matrix.

When K is an irreducible M -matrix, so is the matrix

 A −B

−C D

 .

Thus, we also have Ŝ > 0, where Ŝ is the minimal nonnegative solution of

XBX −XA−DX + C = 0,

the dual equation of (1).
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The assumption that S, Ŝ > 0 is needed in several main results in [2]. With
the result in this note, we see that the assumption is always satisfied when K
is an irreducible M -matrix.

2 The result

Since the matrix K in (2) is a nonsingular M -matrix or an irreducible singular
M -matrix, the matrices A and D are both nonsingular M -matrices (see [2]).
In particular, the diagonal elements of A and D are positive. Let A = A1 −
A2, D = D1 −D2, where A1 = diag(A) and D1 = diag(D). We then have the
fixed-point iteration for (1)

Xk+1 = L−1(XkCXk +XkD2 + A2Xk +B), (3)

where the linear operator L is given by L(X) = A1X +XD1.

Lemma 4 [2] For (3) with X0 = 0, we have X0 ≤ X1 ≤ · · ·, limk→∞Xk = S,
the minimal nonnegative solution of (1).

Theorem 5 If K is an irreducible M-matrix, then S > 0.

PROOF. For the iteration (3) with X0 = 0, we claim that for each k ≥ 0,
Xk+1 has at least one more positive element than Xk does, unless Xk is already
a positive matrix. Once this claim is proved, we have S ≥ Xm·n > 0 by
Lemma 4.

Since B 6= 0 by the irreducibility of K, the claim is true if Xk = 0. So, we
let G be a nontrivial subset of {1, 2, . . . ,m} × {1, 2, . . . , n} and assume that
(Xk)ij > 0 for all (i, j) ∈ G and (Xk)ij = 0 for all (i, j) /∈ G (In the proof we
denote by Yij the (i, j) element of a matrix Y .) We will show by contradiction
that Xk+1 has at least one more positive element than Xk does.

Suppose that (Xk+1)ij = 0 for all (i, j) /∈ G. Then, by iteration (3),

Bij = 0, (A2Xk)ij = 0, (XkD2)ij = 0, (XkCXk)ij = 0 (4)

for all (i, j) /∈ G. Note that

(A2Xk)ij =
m∑
q=1

(A2)iq(Xk)qj, (XkD2)ij =
n∑
p=1

(Xk)ip(D2)pj,

3



(XkCXk)ij =
m∑
q=1

n∑
p=1

(Xk)ipCpq(Xk)qj.

It follows from (4) that the following four assertions hold:

If (i, j) /∈ G, then Bij = 0. (5)

If (i, j) /∈ G and (q, j) ∈ G, then (A2)iq = 0. (6)

If (i, j) /∈ G and (i, p) ∈ G, then (D2)pj = 0. (7)

If (i, j) /∈ G, (i, p) ∈ G and (q, j) ∈ G, then Cpq = 0. (8)

Now we define the sets

Gl = {r | 1 ≤ r ≤ m, (r, l) ∈ G}, l = 1, 2, . . . , n.

If Gl is empty for some l, we suppose that Gl is empty for l = l1, l2, . . . , ls
only. Then, for each p /∈ {l1, l2, . . . , ls} we can find i such that (i, p) ∈ G. Since
(i, j) /∈ G for each j ∈ {l1, l2, . . . , ls}, it follows form (7) that (D2)pj = 0. Thus,
all elements in the columns l1, l2, . . . , ls of the matrixD2 C

B A2

 (9)

are zero except those in the rows l1, l2, . . . , ls. It follows from Definition 2 that
the matrix (9) is reducible. Thus, the matrix K is also reducible.

We can then assume that none of the sets Gl is empty. Let 1 ≤ l1 < l2 < · · · <
ls ≤ n be such that

Gl1 = Gl2 = · · · = Gls = {r1, r2, . . . , rt}

(where 1 ≤ r1 < r2 < · · · < rt ≤ m) and for l ∈ {1, 2, . . . , n} \ {l1, l2, . . . , ls},

|Gl| ≥ |Gl1| and Gl 6= Gl1 .

Since G is a proper subset of {1, 2, . . . ,m}×{1, 2, . . . , n}, we necessarily have
t < m. Now, by (5) we have that Bij = 0 if i /∈ {r1, r2, . . . , rt} and j ∈
{l1, l2, . . . , ls}. For the matrix A2, it follows from (6) with j = l1 that (A2)iq = 0
if i /∈ {r1, r2, . . . , rt} and q ∈ {r1, r2, . . . , rt}. For the matrix D2, we claim that
(D2)pj = 0 if p /∈ {l1, l2, . . . , ls} and j ∈ {l1, l2, . . . , ls}. In fact, for each
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p /∈ {l1, l2, . . . , ls}, we can find i /∈ {r1, r2, . . . , rt} such that (i, p) ∈ G since
otherwise we would have |Gp| < |Gl1| or Gp = Gl1 . Since (i, j) /∈ G for this
i, (D2)pj = 0 by (7). Finally, we claim that Cpq = 0 if p /∈ {l1, l2, . . . , ls} and
q ∈ {r1, r2, . . . , rt}. In fact, for each p /∈ {l1, l2, . . . , ls} we can find, as before,
i /∈ {r1, r2, . . . , rt} such that (i, p) ∈ G. For this i and each q ∈ {r1, r2, . . . , rt},
(i, j) /∈ G and (q, j) ∈ G for j = l1. Thus, Cpq = 0 by (8).

Therefore, for the matrix (9) all elements in the columns l1, l2, . . . , ls, n+r1, n+
r2, . . . , n+rt are zero except those in the rows l1, l2, . . . , ls, n+r1, n+r2, . . . , n+
rt. It follows as before that the matrix K is reducible. The contradiction shows
that Xk+1 has at least one more positive element than Xk does. 2

References

[1] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, SIAM, Philadelphia, PA, 1994.

[2] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener–Hopf
factorization for M -matrices, SIAM J. Matrix Anal. Appl. 23 (2001) 225–242.

[3] C.-H. Guo, A. J. Laub, On the iterative solution of a class of nonsymmetric
algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 22 (2000) 376–391.

[4] J. Juang, Existence of algebraic matrix Riccati equations arising in transport
theory, Linear Algebra Appl. 230 (1995) 89–100.

[5] J. Juang, W.-W. Lin, Nonsymmetric algebraic Riccati equations and
Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl. 20 (1998) 228–243.

[6] L. C. G. Rogers, Fluid models in queueing theory and Wiener–Hopf
factorization of Markov chains, Ann. Appl. Probab. 4 (1994) 390–413.

[7] L. C. G. Rogers, Z. Shi, Computing the invariant law of a fluid model, J. Appl.
Probab. 31 (1994) 885–896.

[8] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer, Berlin, 2000.

5


