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Abstract

We consider the initial value problem for a nonsymmetric matrix Riccati differ-
ential equation, where the four coefficient matrices form an M -matrix. We show
that for a wide range of initial values the Riccati differential equation has a global
solution X(t) on [0,∞) and X(t) converges to the stable equilibrium solution as t
goes to infinity.
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1 Introduction

We consider the nonsymmetric matrix Riccati differential equation (RDE)

X ′(t) = X(t)CX(t)−X(t)D − AX(t) + B, X(0) = X0, (1)
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where A, B, C,D are real matrices of sizes m×m, m×n, n×m, n×n, respec-
tively, such that

K =

 D −C

−B A

 (2)

is a nonsingular M -matrix, or an irreducible singular M -matrix. Some relevant
definitions are given below.

For any matrices A, B ∈ Rm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. We can then define positive matrices, nonnegative matrices, etc.
The spectrum of a square matrix A will be denoted by σ(A). The open left half-
plane, the open right half-plane, the closed left half-plane and the closed right
half-plane will be denoted by C<, C>, C≤ and C≥, respectively. A real square
matrix A is called a Z-matrix if all its off-diagonal elements are nonpositive. It
is clear that any Z-matrix A can be written as sI−B with B ≥ 0. A Z-matrix
A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius. It is
called a singular M -matrix if s = ρ(B); it is called a nonsingular M -matrix
if s > ρ(B). It follows immediately that σ(A) ⊂ C> for any nonsingular M -
matrix A and σ(A) ⊂ C≥ for any singular M -matrix A. Note also that for any
nonsingular M -matrix A there is a positive vector v such that Av > 0 (see [1],
for example).

We will use several results from the theory of nonnegative matrices (see
[1,7,15]). They are summarized below.

Theorem 1 Let A, B, C ∈ Rn×n with A ≥ 0. Then

(i) If A ≤ B, then ρ(A) ≤ ρ(B).
(ii) If A ≤ B ≤ C, A 6= B 6= C, and B is irreducible, then ρ(A) < ρ(B) <

ρ(C).
(iii) If Av < kv for a positive vector v, then ρ(A) < k.
(iv) If Av = kv for a positive vector v, then ρ(A) = k.
(v) If A is irreducible, then ρ(A) is a simple eigenvalue of A and there is a

positive vector u such that Au = ρ(A)u.

It follows easily form Theorem 1 (i) and (ii) that the matrices A and D in (1)
are both nonsingular M -matrices when K in (2) is a nonsingular M -matrix
or an irreducible singular M -matrix.

In this paper we will show that the initial value problem (1) has a solution
X(t) on [0,∞) for a suitable initial value X0 and X(t) converges to the stable
equilibrium solution of (1).
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For symmetric RDEs, problems like these have been studied in [2,13,14]. For
a particular nonsymmetric RDE, these problems have been studied in [8]. As
shown in Proposition 3.4 of [4], that nonsymmetric matrix RDE is a special
case of (1). Moreover, the condition imposed on X0 in this paper is much
weaker than that in [8].

2 Results on nonsymmetric algebraic Riccati equations

The equilibrium solutions of (1) are the solutions of the algebraic Riccati
equation (ARE)

XCX −XD − AX + B = 0. (3)

Nonsymmetric AREs of this type appear in transport theory (see [9]) and
Wiener–Hopf factorization of Markov chains (see [12]). The solution of prac-
tical interest is the minimal nonnegative solution.

In this section, we summarize some main results about (3). See [4–6] for more
details.

Theorem 2 If K in (2) is a nonsingular M-matrix, then (3) has a minimal
nonnegative solution S1 and D − CS1 is a nonsingular M-matrix. Moreover,
S1v1 < v2, where v1 and v2 are positive vectors such that K(vT

1 vT
2 )T > 0. If

K is an irreducible M-matrix, then (3) has a minimal nonnegative solution
S1 and S1 > 0. Moreover, D−CS1 and A− S1C are irreducible M-matrices.

We will also need the dual equation of (3)

XBX −XA−DX + C = 0. (4)

Since

K̃ =

 A −B

−C D



is a nonsingular M -matrix (a singular M -matrix, an irreducible matrix) if
and only if K is so, the results in Theorem 2 can be applied to (4) directly.
Therefore, when K is a nonsingular M -matrix, (4) has a minimal nonnegative
solution S̃1, A − BS̃1 is a nonsingular M -matrix and S̃1v2 < v1. When K is
an irreducible M -matrix, (4) has a minimal nonnegative solution S̃1, S̃1 > 0
and A−BS̃1 is an irreducible M -matrix.
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If K is an irreducible singular M -matrix (then so is KT ), we let u1, u2, v1, v2 >
0 be such that K(vT

1 vT
2 )T = 0 and (uT

1 uT
2 )K = 0. We know from Theorem

1 (v) that the vectors (vT
1 vT

2 ) and (uT
1 uT

2 ) are each unique up to a scalar
multiple. We will also need the matrix

H =

 D −C

B −A

 =

 I 0

0 −I

 K. (5)

Theorem 3 If K in (2) is a nonsingular M-matrix or an irreducible singular
M-matrix, then we have the so-called Wiener–Hopf factorization for K:

H

 I S̃1

S1 I

 =

 I S̃1

S1 I


 G1 0

0 −G2

 , (6)

where G1 = D − CS1 and G2 = A − BS̃1. If (2) is an irreducible singular
M-matrix with uT

1 v1 6= uT
2 v2, then one of G1 and G2 is nonsingular; if uT

1 v1 =

uT
2 v2, then both G1 and G2 are singular. Moreover, the matrix

 I S̃1

S1 I

 is

nonsingular if (2) is a nonsingular M-matrix or an irreducible singular M-
matrix with uT

1 v1 6= uT
2 v2.

Let all eigenvalues of H be arranged in an descending order by their real parts,
and be denoted by λ1, . . . , λn, λn+1, · · · , λn+m. When (2) is an irreducible non-
singular M -matrix or an irreducible singular M -matrix with uT

1 v1 6= uT
2 v2, we

see from Theorem 3 that λ1, . . . , λn are eigenvalues of G1 and λn+1, · · · , λn+m

are the negative of eigenvalues of G2. In particular, λn > λn+1 are real simple
eigenvalues of H.

The next result can be found in [11].

Lemma 4 If S is any solution of (3), then

 I 0

S I


−1  D −C

B −A


 I 0

S I

 =

 D − CS −C

0 −(A− SC)

 .

Thus, the eigenvalues of D−CS are eigenvalues of (5) and the eigenvalues of
A− SC are the negative of the remaining eigenvalues of (5).

Note that R(X) = XCX − XD − AX + B defines a mapping from Rm×n

into itself. The first Fréchet derivative of R at a matrix X is a linear operator
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R′X : Rm×n → Rm×n given by

R′X(Z) = − ((A−XC)Z + Z(D − CX)) .

Since the eigenvalues of the operator R′X are the eigenvalues of the matrix
−(I ⊗ (A−XC) + (D−CX)T ⊗ I), where ⊗ denotes the Kronecker product,
an equilibrium solution X of (1) is (asymptotically) stable if all eigenvalues
of I ⊗ (A − XC) + (D − CX)T ⊗ I are in C>. Note that any eigenvalue of
I ⊗ (A−XC) + (D − CX)T ⊗ I is the sum of an eigenvalue of A−XC and
an eigenvalue of D − CX (see [10], for example).

It follows from Theorem 3 that S1 is a stable equilibrium solution of (1)
when (2) is a nonsingular M -matrix or an irreducible singular M -matrix with
uT

1 v1 6= uT
2 v2. We also know (from Theorem 4.1 of [6], for example) that no

other solution of (3) can be a stable equilibrium solution of (1). When (2) is
an irreducible singular M -matrix with uT

1 v1 = uT
2 v2, S1 is not a stable solution

since I ⊗ (A− S1C) + (D − CS1)
T ⊗ I has a zero eigenvalue by Theorem 3.

3 Global existence of solutions of the matrix Riccati differential
equation

Since the matrices A and D in (1) are nonsingular M -matrices, they can be
decomposed (in many different ways) as A = A1 − A2 and D = D1 − D2,
where A2, D2 ≥ 0 and A1, D1 are nonsingular M -matrices. Then (1) becomes

X ′ + XD1 + A1X = XCX + XD2 + A2X + B, X(0) = X0. (7)

The initial value problem (7) can be written in its equivalent integral form;
namely, premultiplying and postmultiplying the differential equation in (7)
by the integrating factors e−(t−s)A1 and e−(t−s)D1 , respectively, and integrating
the resulting equation with respect to s from 0 to t, we obtain as in [8]

X(t) = e−tA1X0e
−tD1 +

t∫
0

e−(t−s)A1(X(s)CX(s)

+X(s)D2 + A2X(s) + B)e−(t−s)D1ds. (8)

We will establish the global existence of solutions to (1) for suitable initial
values X0 by using the Picard iteration:

X(0)(t) = 0,
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X(m)(t) = e−tA1X0e
−tD1 +

t∫
0

e−(t−s)A1(X(m−1)(s)CX(m−1)(s)

+X(m−1)(s)D2 + A2X
(m−1)(s) + B)e−(t−s)D1ds.

We start with a simple result on matrix exponential.

Lemma 5 If A is a Z-matrix, then e−tA ≥ 0 for t ≥ 0.

PROOF. Since A is a Z-matrix, we can write A = sI − B with B ≥ 0 and
s ∈ R. Then e−tA = e−stIetB (by the fact that if two matrices M, N commute
then eM+N = eMeN). Thus, e−tA = e−st ∑∞

n=0
1
n!

(tB)n ≥ 0. 2

Theorem 6 Assume K in (2) is a nonsingular M-matrix or an irreducible
singular M-matrix. If 0 ≤ X0 ≤ S, where S is any nonnegative solution of
(3). Then:

(i) 0 ≤ X(m−1)(t) ≤ X(m)(t) ≤ S for all t ≥ 0 and all m ∈ N.
(ii) X(m)(t) converges pointwise to a continuous function X(t) on [0,∞),

which is a global solution to (1).

PROOF. (i) The first two inequalities can easily be shown by induction. To
see the last inequality, we proceed by induction as well. Assuming X(m−1)(t) ≤
S, we get by Lemma 5

X(m)(t)≤ e−tA1X0e
−tD1

+

t∫
0

e−(t−s)A1(SCS + SD2 + A2S + B)e−(t−s)D1ds

= e−tA1X0e
−tD1 +

t∫
0

e−(t−s)A1(A1S + SD1)e
−(t−s)D1ds

= S − e−tA1(S −X0)e
−tD1 ≤ S.

This completes the proof of (i).

(ii) It follows from (i) that X(m)(t) converges pointwise to a function X(t) on
[0,∞), and X(t) ≤ S. Letting m →∞ in the Picard iteration and applying the
monotone convergence theorem for Lebesgue integrals, we conclude that the
limit function X(t) satisfies (8). It then follows from the boundedness of X(t)
that X(t) is also continuous, which in turn implies that X(t) is differential
and is a solution to (1). 2
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4 Convergence to the stable equilibrium solution

It is well known that the initial value problem (1) is related to the initial value
problem for the corresponding linear system:

 Y ′(t)

Z ′(t)

 =

 D −C

B −A


 Y (t)

Z(t)

 ,

 Y

Z

 (0) =

 I

X0

 . (9)

The following result is a special case of the so-called Radon’s lemma (see [3],
for example).

Lemma 7 The initial value problem (1) has a solution X(t) on [0,∞) if and

only if Y (t) is nonsingular on [0,∞) for the solution

 Y (t)

Z(t)

 to (9). In this

case, X(t) = Z(t)Y −1(t).

This result will be fundamental in proving that the solution X(t) to (1) con-
verges to S1 for suitable initial values X0, where S1 is the minimal nonnegative
solution of (3) and also the asymptotically stable equilibrium solution of (1).
We will also need the following result.

Lemma 8 (i) If A is a nonsingular M-matrix, then limt→∞ e−At = 0.
(ii) If A is an irreducible singular M-matrix, then e−At is bounded on [0,∞).

PROOF. (i) Let the Jordan canonical form of A be A = MJM−1 and let
f(x) = e−tx. Then for the r × r Jordan block

Jk =



λ 1

λ
. . .

. . . 1

λ


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we have (see [10], for example)

f(Jk) =



f(λ) f ′(λ)
1!

· · · f (r−1)(λ)
(r−1)!

0 f(λ)
. . .

...
...

. . . . . . f ′(λ)
1!

0 · · · 0 f(λ)


.

Since σ(A) ⊂ C>, it follows that limt→∞ f(Jk) = 0 for each Jordan block Jk.
Then

lim
t→∞

e−At = lim
t→∞

f(A) = M lim
t→∞

f(J)M−1 = 0.

(ii) Since A is an irreducible singular M -matrix, it can be written as A =
sI − B, where s = ρ(B) and B ≥ 0 is irreducible. By Theorem 1 (v), 0 is a
simple eigenvalue of A and the remaining eigenvalues of A are in C>. Thus,
e−At converges to a nonzero matrix in this case. 2

Theorem 9 Assume K in (2) is a nonsingular M-matrix. If 0 ≤ X0 ≤ S1

and X(t) is the solution of (1). Then X(t) → S1 as t →∞.

PROOF. The existence of X(t) on [0,∞) is guaranteed by Theorem 6, and
we have by Lemma 7 I

X(t)

 =

 Y (t)

Z(t)

 Y −1(t) = eHt

 I

X0

 Y −1(t), (10)

where H is the matrix in (5). By Theorem 3 we have

H = U

 G1 0

0 −G2

 U−1,

where G1 and G2 are nonsingular M -matrices and

U =

 I S̃1

S1 I

 .
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Then (10) becomes I

X(t)

 = U

 eG1t 0

0 e−G2t

 U−1

 I

X0

 Y −1(t). (11)

Let

U−1

 I

X0

 =

 V1

V2

 . (12)

Then (I − S̃1S1)V1 = I − S̃1X0. Since S1v1 < v2 and S̃1v2 < v1 by Theorem 2,
we have S̃1S1v1 ≤ S̃1v2 < v1. It follows from Theorem 1 (iii) that ρ(S̃1S1) < 1.
Since 0 ≤ X0 ≤ S1, we also have ρ(S̃1X0) ≤ ρ(S̃1S1) < 1 by Theorem 1 (i).
Therefore, the matrix V1 is nonsingular. Now, we have by (11) and (12) I

X(t)

 = U

 I

W1(t)

 W2(t), (13)

where

W1(t) = e−G2tV2V
−1
1 e−G1t, W2(t) = eG1tV1Y

−1(t).

By Lemma 8 we have limt→∞W1(t) = 0. From (13) we have

W2(t) = (I + S̃1W1(t))
−1, X(t) = (S1 + W1(t))W2(t).

Thus, limt→∞W2(t) = I and limt→∞X(t) = S1, as required. 2

In the remaining part of this section, we will show that the convergence of
X(t) to S1 can be guaranteed for a wider range of initial values X0 when K
in (2) is an irreducible nonsingular M -matrix or an irreducible singular M -
matrix with uT

1 v1 6= uT
2 v2. Recall that in both cases, λn > λn+1 are real simple

eigenvalues of H in (5).

When K is an irreducible M -matrix, the matrices D −CS1 and A− S1C are
also irreducible M -matrices by Theorem 2. Note that (D − CS1)

T is also an
irreducible M -matrix with eigenvalues λ1, . . . , λn. By Lemma 4, the eigenval-
ues of A−S1C are −λn+m, . . . ,−λn+1. Since A−S1C and (D−CS1)

T can be
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written in the form sI −N , where N ≥ 0 is irreducible, it follows form The-
orem 1 (v) that there exist unique positive vectors a and b with unit 1-norm
(i.e., aT e = bT e = 1, where e is the column vector of 1’s.) such that

(A− S1C)a = −λn+1a, bT (D − CS1) = λnb
T . (14)

Since K is irreducible, we have C 6= 0 and thus bT Ca > 0.

Theorem 10 Assume that K in (2) is an irreducible nonsingular M-matrix
or an irreducible singular M-matrix with uT

1 v1 6= uT
2 v2. Then there exists a

second positive solution S2 of (3) given by

S2 = S1 + kabT , (15)

where the vectors a, b are specified in (14) and k = (λn − λn+1)/b
T Ca.

PROOF. Notice that

R(S2) =R(S1) + k2abT CabT − kabT (D − CS1)− k(A− S1C)abT

= k2(bT Ca)abT − kλnabT + kλn+1abT

= (k(bT Ca)− λn + λn+1)kabT .

This completes the proof. 2

Lemma 11 Under the assumption of Theorem 10, we have

σ(D − CS2) = {λ1, λ2, · · · , λn−1, λn+1}.

PROOF. For the vector b in (14) we have by (15)

bT (D − CS2) = bT (D − CS1)− k(bT Ca)bT

= λnb
T − (λn − λn+1)b

T = λn+1b
T . (16)

Let (D−CS2)
T = sI−N , where N ≥ 0 is irreducible. Then (sI−N)b = λn+1b

and Nb = (s − λn+1)b. It follows from Theorem 1 that s − λn+1 = ρ(N) is
a simple eigenvalue of N . Thus, λn+1 is an eigenvalue of D − CS2 and all
other eigenvalues of D − CS2 have strictly larger real parts. By Lemma 4
the eigenvalues of D − CS2 are part of the eigenvalues of H. Therefore, we
only need to show that λn is not an eigenvalue of D − CS2. Suppose, for
contradiction, that (D − CS2)z = λnz for z 6= 0. From this and (16) we
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get λnb
T z = bT (D − CS2)z = λn+1b

T z. So bT z = 0. Then (D − CS1)z =
(D − CS2)z = λnz. Since λn is a simple eigenvalue of D − CS1, z is a scalar
multiple of a positive eigenvector of D − CS1 corresponding to λn, which is
contradictory to bT z = 0. 2

By Lemma 11 the solution S2 can be found directly by using the Schur method
in much the same way as we found S1 using the Schur method in [4]. Lemma
11 is also needed in the next result.

Lemma 12 Let S2 be as in Theorem 10 and S̃1 be the minimum positive
solution of (4). Then ρ(S̃1S2) = 1.

PROOF. Since S2 is also a solution of (3), we have D −C

B −A


 I

S2

 =

 I

S2

 (D − CS2).

So we can replace the matrix S1 in (6) by S2 and get D −C

B −A


 I S̃1

S2 I

 =

 I S̃1

S2 I


 D − CS2 0

0 −(A−BS̃1)

 . (17)

By Theorem 2, D−CS1 and A−BS̃1 are irreducible M -matrices. The former
implies that D − CS2 is an irreducible Z-matrix. Then, as before, there exist
positive vectors u and v such that (A− BS̃1)u = −λn+1u and (D − CS2)v =
λn+1v (Lemma 11 is used here).

Postmultiplying (17) by 0

u

 and

 v

0

 ,

respectively, we see that the vectors S̃1u

u

 and

 v

S2v

 (18)

are eigenvectors of H corresponding to the eigenvalue λn+1. Since λn+1 is a
simple eigenvalue of H, the first vector in (18) is a scalar multiple, k > 0, of
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the second. So S̃1u = kv and u = kS2v. Thus, S̃1S2v = v for a positive vector
v, which implies ρ(S̃1S2) = 1. 2

Theorem 13 Assume that K in (2) is an irreducible nonsingular M-matrix
or an irreducible singular M-matrix with uT

1 v1 6= uT
2 v2. If 0 ≤ X0 ≤ S2,

X0 6= S2 and X(t) is the solution of (1). Then X(t) → S1 as t →∞.

PROOF. We proceed as in the proof of Theorem 9. Only two changes are
needed. The first change is about the invertibility of the matrix V1 in that
proof. Recall that (I− S̃1S1)V1 = I− S̃1X0. Since S̃1S2 > 0, 0 ≤ S̃1X0 ≤ S̃1S2

and S̃1X0 6= S̃1S2, it follows from Theorem 1 (ii) that ρ(S̃1X0) < ρ(S̃1S2).
Thus, ρ(S̃1X0) < 1 by Lemma 12. So I − S̃1X0 is nonsingular and thus V1 is
nonsingular as well. The second change is about the matrices G1 and G2. We
now know that G1 and G2 are both M -matrices and at least one of them is
nonsingular. Therefore, by Lemma 8 we still have limt→∞W1(t) = 0 for the
matrix W1(t) in the proof of Theorem 9. 2
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