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Abstract

We study the quadratic matrix equation X2 − EX − F = 0, where E is
diagonal and F is an M -matrix. Quadratic matrix equations of this type
arise in noisy Wiener–Hopf problems for Markov chains. The solution of
practical interest is a particular M -matrix solution. The existence and
uniqueness of M -matrix solutions and numerical methods for finding the
desired M -matrix solution are discussed by transforming the equation into
an equation that belongs to a special class of nonsymmetric algebraic Ric-
cati equations (AREs). We also discuss the general nonsymmetric ARE
and describe how we can use the Schur method to find the stabilizing or
almost stabilizing solution if it exists. The desired M -matrix solution of
the quadratic matrix equation (a special nonsymmetric ARE by itself)
turns out to be the unique stabilizing or almost stabilizing solution.

Keywords: quadratic matrix equation, nonsymmetric algebraic Riccati
equation, M -matrices, minimal nonnegative solution, stabilizing solution,
Schur method, iterative methods

1. Introduction

The main purpose of the paper is to study the quadratic matrix equation

X2 − EX − F = 0, (1)

where E,F,X ∈ Rn×n, E is diagonal and F is an M -matrix. Some definitions
and basic results about M -matrices are given below.

For any matrices A,B ∈ Rm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij)
for all i, j. We can then define positive matrices, nonnegative matrices, etc. A
real square matrix A is called a Z-matrix if all its off-diagonal elements are
∗This work was supported in part by a grant from the Natural Sciences and Engineering

Research Council of Canada.
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nonpositive. It is clear that any Z-matrix A can be written as sI − B with
B ≥ 0. A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(·) is the
spectral radius. It is called a singular M -matrix if s = ρ(B); it is called a
nonsingular M -matrix if s > ρ(B). The spectrum of a square matrix A will be
denoted by σ(A). The open left half-plane, the open right half-plane, the closed
left half-plane, and the closed right half-plane will be denoted by C<, C>, C≤,
and C≥, respectively.

The following result is well known (see [6], for example).

Theorem 1.1: For a Z-matrix A, the following are equivalent:

(1) A is a nonsingular M-matrix.

(2) A−1 ≥ 0.

(3) Av > 0 for some vector v > 0.

(4) σ(A) ⊂ C>.

The next result follows from the equivalence of (1) and (3) in Theorem 1.1.

Theorem 1.2: Let A ∈ Rn×n be a nonsingular M-matrix. If the elements of
B ∈ Rn×n satisfy the relations

bii ≥ aii, aij ≤ bij ≤ 0, i 6= j, 1 ≤ i, j ≤ n,

then B is also a nonsingular M-matrix.

Our study of the quadratic matrix equation (1) is motivated by noisy Wiener–
Hopf problems for Markov chains.

Let Q be the Q-matrix associated with an irreducible continuous-time finite
Markov chain (Xt)t≥0. (A Q-matrix has nonnegative off-diagonal elements and
nonpositive row sums; Q is the generator of the Markov chain.) In the study of
noisy Wiener–Hopf problems for the Markov chain, we need to find, for a given
diagonal matrix V and a given positive number ε, specific Q-matrices Γ+ and
Γ− satisfying the quadratic matrix equations

1

2
ε2Z2 − V Z +Q = 0 (2)

and
1

2
ε2Z2 + V Z +Q = 0, (3)

respectively. In the above, V has positive and negative diagonal elements (This
is essentially where the name Wiener–Hopf comes from.) and ε is the level of
noise from a Brownian motion independent of the Markov chain. The solutions
Γ+ and Γ− will be the generators of two new Markov chains. See [18, 25, 26]
for more details. Rogers [25] gave a sketchy proof (using martingale theory)
to show that (2) has a unique Q-matrix solution. His proof is not completely
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correct since, as we will see later, uniqueness fails in some cases. Nevertheless,
the solutions Γ+ and Γ− of practical interest are still uniquely identifiable. The
most efficient method so far for finding Γ+ and Γ− has been a diagonalization
method. The validity of the method is explained by probabilistic arguments in
[26] for equation (2) when the eigenvalues of the matrix(

2ε−2V I
−2ε−2Q 0

)
are distinct, for example.

For any Q-matrix Q, −Q is a Z-matrix and (−Q)e ≥ 0 for e = (1, 1, . . . , 1)T .
So, (δI − Q)e > 0 for any δ > 0. By Theorem 1.1, δI − Q is a nonsingular
M -matrix and thus −Q is an M -matrix. Therefore, equations (2) and (3) are
just special cases of the matrix equation (1).

We always assume that the matrices E and F are of size at least 2 × 2 and
that F 6= 0. If E = 0 then the problem of finding a solution of (1) reduces to
that of finding a square root for an M -matrix (see [1]).

We will study (1) by transforming it into an equation that belongs to a special
class of nonsymmetric algebraic Riccati equations (AREs) studied earlier in [11].
Some basic results about this class of AREs are reviewed and updated in section
2. In section 3, we show that (1) has an M -matrix solution XM when F is a
nonsingular M -matrix or an irreducible singular M -matrix and that −XM is
a Q-matrix if −F is a Q-matrix. Several numerical methods are discussed for
finding the desired M -matrix solution of (1). The methods can be used to find
the solutions Γ+ and Γ− of the equations (2) and (3), respectively. In particular,
instead of using the diagonalization method for special cases, we can use the
Schur method (as in [22]) to find Γ+ and Γ− in the general case. Finally, section
4 contains some discussions of the general nonsymmetric AREs.

2. Results on a class of nonsymmetric AREs

For the nonsymmetric ARE

XCX −XD − AX +B = 0, (4)

where A,B,C,D are real matrices of sizes m×m,m×n, n×m,n×n, respectively,
we define two matrices H and K by

H =

(
D −C
B −A

)
, (5)

K =

(
D −C
−B A

)
. (6)

Equation (4) in its general form has been studied in [10, 24].
In [11], we studied the ARE (4) for which K is a nonsingular M -matrix or
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an irreducible singular M -matrix. Nonsymmetric AREs of this type appear in
transport theory (see [17]) and Wiener–Hopf factorization of Markov chains (see
[25]). The solution of practical interest is the minimal nonnegative solution.

In this section, we review and update some results in [11]. All these results
will be needed in the next section.

Theorem 2.1: If K is a nonsingular M-matrix, then (4) has a minimal non-
negative solution S and D−CS is a nonsingular M-matrix. If K is an irreducible
singular M-matrix, then (4) has a minimal nonnegative solution S and D−CS
is an M-matrix. In both cases, Sv1 ≤ v2, where v1 and v2 are positive vectors
such that K(vT1 vT2 )T ≥ 0.

Since K is a nonsingular M -matrix or an irreducible singular M -matrix, the
matrices A and D are both nonsingular M -matrices. Let ⊗ denote the Kronecker
product. Since any eigenvalue of I ⊗ A+DT ⊗ I is the sum of an eigenvalue of
A and an eigenvalue of D (see [21], for example), it follows from the equivalence
of (1) and (4) in Theorem 1.1 that I ⊗ A+DT ⊗ I is a nonsingular M -matrix.

Let A = A1 − A2, D = D1 − D2, where A2, D2 ≥ 0, and A1 and D1 are Z-
matrices. The matrix I ⊗ A1 + DT

1 ⊗ I is a nonsingular M -matrix by Theorem
1.2. We then have the fixed-point iteration for (4)

Xk+1 = L−1(XkCXk +XkD2 + A2Xk +B), (7)

where the linear operator L is given by L(X) = A1X +XD1.
In the remainder of this section, S is always the minimal nonnegative solution

of (4).

Theorem 2.2: For (7) with X0 = 0, we have X0 ≤ X1 ≤ · · ·, limk→∞Xk = S.
Moreover,

lim sup
k→∞

k
√
‖Xk − S‖

≤ ρ((I ⊗ A1 +DT
1 ⊗ I)−1(I ⊗ (A2 + SC) + (D2 + CS)T ⊗ I)).

Equality holds if S is positive.

Theorems 2.4 and 2.5 below are based on corresponding results in [11] and the
next more recent result (see [12]).

Theorem 2.3: When K is an irreducible M-matrix, we have S > 0 and Ŝ > 0,
where Ŝ is the minimal nonnegative solution of XBX −XA−DX +C = 0, the
dual equation of (4).

Theorem 2.4: If K is a nonsingular M-matrix, then the matrix H in (5) has
n eigenvalues in C> and m eigenvalues in C<. If K is an irreducible singular
M-matrix, u1, u2, v1, v2 > 0 are such that K(vT1 vT2 )T = 0 and (uT1 uT2 )K = 0,
then
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(1) If uT1 v1 = uT2 v2, then H has n−1 eigenvalues in C>, m−1 eigenvalues in C<,
and two zero eigenvalues with only one linearly independent eigenvector.
Moreover, D − CS is an irreducible singular M-matrix, and Sv1 = v2 if C
has no zero columns.

(2) If uT1 v1 > uT2 v2, then H has n − 1 eigenvalues in C>, m eigenvalues in
C<, and one zero eigenvalue. Moreover, D − CS is an irreducible singular
M-matrix, and Sv1 = v2 if C has no zero columns.

(3) If uT1 v1 < uT2 v2, then H has n eigenvalues in C>, m− 1 eigenvalues in C<,
and one zero eigenvalue. Moreover, D − CS is an irreducible nonsingular
M-matrix.

Theorem 2.5: If K is a nonsingular M-matrix, then the matrix

I ⊗ (A− SC) + (D − CS)T ⊗ I (8)

is a nonsingular M-matrix. If K is an irreducible singular M-matrix, then (8) is
a nonsingular (singular) M-matrix when uT1 v1 6= uT2 v2 (uT1 v1 = uT2 v2). Moreover,
(8) is irreducible when K is an irreducible (singular or nonsingular) M-matrix.

The last statement in the above theorem was not given explicitly in [11], and
will be explained now. In fact, by Theorem 3.3 of [11] and Theorem 2.3 we know
that D − CS is an irreducible M -matrix. By taking transpose in (4), we know
that ST is the minimal nonnegative solution of the equation Y CTY − Y AT −
DTY +BT = 0. Since(

AT −CT

−BT DT

)
=

(
A −B
−C D

)T
is also an irreducible M -matrix when K is so, it follows that AT − CTST =
(A−SC)T is an irreducible M -matrix. Thus A−SC is an irreducible M -matrix.
Now, the irreducibility of (8) can easily be shown by a graph argument (see
Theorem 2.2.7 of [6]).

3. Results on the quadratic matrix equation

In this section we will present a number of results on the equation (1), mainly
by applying the results in the previous section.

3.1. The existence and uniqueness of M-matrix solutions

To apply the results of the previous section, we will change the problem of finding
an M -matrix solution of (1) to that of finding a nonnegative solution of another
quadratic equation (the idea was also used in [26]).

By letting Y = αI −X, we can rewrite (1) as

Y 2 − Y (αI)− (αI − E)Y + (α2I − αE − F ) = 0. (9)
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Lemma 3.1: If F is irreducible, then the matrix

R =

(
αI −I

−α2I + αE + F αI − E

)
(10)

is also irreducible.

Proof: When F is irreducible, −α2I+αE+F is also irreducible. The irreducibil-
ity of R is shown by an easy graph argument (see Theorem 2.2.7 of [6]). 2

We now let the parameter α be such that

α > 0, α2I − αE − F ≥ 0.

Let ei and fi be the ith diagonal element of E and F , respectively. It is easy to
see that the set of all such α is the interval [α0,∞) with

α0 = max
1≤i≤n

(
ei +

√
e2
i + 4fi

)
/2 > 0. (11)

Lemma 3.2: Let α ≥ α0. If F is a nonsingular M-matrix, then R is a nonsingu-
lar M-matrix. If F is an irreducible singular M-matrix, then R is an irreducible
singular M-matrix.

Proof: Note that R is a Z-matrix. If F is a nonsingular M -matrix, then Fv > 0
for some v > 0. Take δ > 0 small enough so that Fv − δ(α2I − αE − F )v > 0.
Direct computation shows that R((v + δv)T (αv)T )T > 0. Thus, R is a non-
singular M -matrix. If F is an irreducible singular M -matrix, then Fv = 0 for
some v > 0 by the Perron-Frobenius theorem. Direct computation shows that
R(vT (αv)T )T = 0. Thus, R is an irreducible singular M -matrix. 2

We can now apply Theorems 2.1 and 2.4 to (9) and its corresponding matrices
R and

L =

(
αI −I

α2I − αE − F −αI + E

)
, α ≥ α0. (12)

First of all, (9) has a minimal nonnegative solution Sα when F is a nonsingular
M -matrix or an irreducible singular M -matrix.

Theorem 3.1: If F is a nonsingular M-matrix and v is a positive vector such
that Fv ≥ 0, then L has n eigenvalues in C> and n eigenvalues in C<, αI−Sα is
a nonsingular M-matrix, and Sαv ≤ αv. If F is an irreducible singular M-matrix
and u, v are positive vectors such that Fv = 0 and uTF = 0, then

(1) If uTEv = 0, then L has n− 1 eigenvalues in C>, n− 1 eigenvalues in C<,
and two zero eigenvalues with only one linearly independent eigenvector,
αI − Sα is an irreducible singular M-matrix, and Sαv = αv.



Chun-Hua Guo: A Quadratic Matrix Equation 7

(2) If uTEv < 0, then L has n − 1 eigenvalues in C>, n eigenvalues in C<,
and one zero eigenvalue, αI − Sα is an irreducible singular M-matrix, and
Sαv = αv.

(3) If uTEv > 0, then L has n eigenvalues in C>, n−1 eigenvalues in C<, and
one zero eigenvalue, αI − Sα is an irreducible nonsingular M-matrix, and
Sαv ≤ αv.

Proof: We apply Theorems 2.1 and 2.4 to (9) (so K = R and H = L). Obviously,
we can take v1 = v and v2 = αv in Theorem 2.1. When F is an irreducible
singular M -matrix, we can take v1 = v, v2 = αv, uT1 = uT (αI − E), uT2 = uT in
Theorem 2.4 and thus uT1 v1 − uT2 v2 = −uTEv. The conclusions follow directly
from Theorems 2.1 and 2.4. 2

Since (
I 0
αI I

)−1

L

(
I 0
αI I

)
=

(
0 −I
−F E

)
≡ W, (13)

the matrices L and W have the same eigenvalues.

Theorem 3.2: If F is a nonsingular M-matrix, then (1) has exactly one M-
matrix as its solution and the M-matrix is nonsingular. If F is an irreducible
singular M-matrix, then (1) has M-matrix solutions and all elements of each
M-matrix solution are nonzero. For case (1) or case (2) of Theorem 3.1, (1) has
exactly one M-matrix as its solution and the M-matrix is singular. For case (3)
of Theorem 3.1, (1) has exactly one nonsingular M-matrix as its solution but
may also have singular M-matrices as its solutions.

Proof: If F is a nonsingular M -matrix, we know from Theorem 3.1 that αI−Sα
is a nonsingular M -matrix. By the relationship between (1) and (9), αI − Sα is
a solution of (1). Note that, for any solution X of (1),

W

(
I 0
−X I

)
=

(
I 0
−X I

)(
X −I
0 E −X

)
. (14)

Therefore, for any M -matrix solution X of (1), the column space of (I −XT )T

is the unique invariant subspace of W associated with the n eigenvalues in C>.
The uniqueness of M -matrix solutions is thus proved.

If F is an irreducible singular M -matrix, αI − Sα is an M -matrix and is a
solution of (1). For any M -matrix solution X of (1), we can take α large enough
so that αI−X is a nonnegative solution Y of (9). Since the minimal nonnegative
solution is positive, Y is positive as well. Thus X = αI−Y is an M -matrix with
no zero elements. For case (1) and case (2), each M -matrix solution must be
singular by (14), since W has only n− 1 eigenvalues in C> by Theorem 3.1 and
(13). For case (2), the uniqueness is also clear since W has only n eigenvalues in
C≥. For case (1), assume that (1) has two different M -matrix solutions X1 and
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X2. We can take α large enough so that S
(1)
α = αI −X1 and S

(2)
α = αI −X2 are

two different nonnegative solutions of (9). We may then assume that S
(1)
α 6= Sα.

Since S
(1)
α ≥ Sα, we have ρ(S

(1)
α ) > ρ(Sα) by the Perron-Frobenius theorem.

However, α ≥ ρ(S
(1)
α ) since X1 = αI − S(1)

α is an M -matrix. Thus, α > ρ(Sα)
and αI −Sα is a nonsingular M -matrix solution of (1). This implies that W has
at least n eigenvalues in C>. The contradiction proves the uniqueness for case
(1). For case (3), αI −Sα is a nonsingular M -matrix solution of (1) by Theorem
3.1. Equation (1) has no other nonsingular M -matrix solutions since W has only
n eigenvalues in C>. However, as the next example shows, it may have singular
M -matrices as its solutions. 2

Example 3.1: For (1) with

E =

(
2 0
0 −1

)
, F =

(
1 −1
−1 1

)
,

case (3) of Theorem 3.1 happens. We find that it has two M -matrix solutions.
One is nonsingular and the other is singular. The solutions (rounded to four
decimals) are(

2.2703 −1.4293
−0.2703 0.4293

)
,

(
2.1715 −2.1715
−0.2890 0.2890

)
.

Nevertheless, when F is an irreducible singular M -matrix and case (3) of
Theorem 3.1 happens, the desired solution of (1) is the unique nonsingular M -
matrix solution. This is the solution needed for later application to noisy Wiener–
Hopf problems. Now, the desired M -matrix solution of (1) is uniquely identifiable
for all situations in Theorem 3.1 and will be denoted by XM . Note that XM =
αI − Sα for all α ≥ α0. The next result follows immediately from Theorem 2.5.

Proposition 3.1: The matrix I⊗(XM−E)+XT
M⊗I is a singular M-matrix for

case (1) of Theorem 3.1, and is a nonsingular M-matrix for all other situations
in Theorem 3.1. Moreover, the matrix is irreducible whenever F is irreducible.

The following result, originally proved in [1], is a special case of Theorem 3.2
with E = 0.

Corollary 3.1: Every nonsingular (or irreducible singular) M-matrix has a
unique M-matrix square root.

3.2. Numerical methods for finding the M-matrix solution

Recall that XM = αI − Sα for α ≥ α0. To find Sα, we can apply (7) to (9) with
A2 = D2 = 0. By Theorem 2.2, the sequence {Yk} produced by the fixed-point
iteration

Y0 = 0, Yk+1 = (2αI − E)−1(Y 2
k + (α2I − αE − F )), k ≥ 0 (15)
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is monotonically increasing and converges to Sα. Moreover,

lim sup
k→∞

k
√
‖Yk − Sα‖ ≤ ρα

and equality holds if Sα is positive (which is true if F is irreducible), where

ρα = ρ((I ⊗ (αI − E) + (αI)T ⊗ I)−1(I ⊗ Sα + STα ⊗ I)).

Since we have the freedom to choose α ≥ α0, we would like to make ρα as small
as possible.

Proposition 3.2: For case (1) of Theorem 3.1, ρα = 1 for all α ≥ α0. For all
other situations in Theorem 3.1 and α2 > α1 ≥ α0, we have ρα1 ≤ ρα2 < 1, and
ρα1 < ρα2 < 1 if F is irreducible.

Proof: For case (1) of Theorem 3.1, T = I⊗(XM−E)+XT
M⊗I is an irreducible

singular M -matrix. So Tv = 0 for some v > 0. Thus,

(I ⊗ (αI − E) + (αI)T ⊗ I)−1(I ⊗ Sα + STα ⊗ I)v = v.

Since Sα > 0, it follows that ρα = 1 for all α ≥ α0. For all other situations in
Theorem 3.1,

T = (I ⊗ (αI − E) + (αI)T ⊗ I)− (I ⊗ Sα + STα ⊗ I)

is a regular splitting of the nonsingular M -matrix T . If F is irreducible, then T
is also irreducible and thus T−1 > 0 (see Theorem 6.3.11 of [6]). The conclusions
in the proposition now follow from a comparison result for regular splittings (see
Theorem 3.32 or Theorem 3.36 in [27]). 2

Thus, we should take α = α0 for iteration (15). From the above result, we
know that the convergence of iteration (15) is sublinear when F is an irreducible
singular M -matrix and case (1) of Theorem 3.1 happens. Other solution methods
are thus needed for (1). One efficient method for finding XM is to find Sα by
Newton’s method:

(αI − E − Yi)Yi+1 + Yi+1(αI − Yi) = α2I − αE − F − Y 2
i , (16)

i = 0, 1, . . . .

Theorem 3.3: For the Newton iteration (16) with Y0 = 0, the sequence {Yi}
is well defined, Y0 ≤ Y1 ≤ · · ·, and limYi = Sα. For case (1) of Theorem 3.1,
{Yi} converges to Sα either quadratically or linearly with rate 1/2. For all other
situations in Theorem 3.1, {Yi} converges to Sα quadratically.
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Proof: The proof can be completed by making some small changes in the proofs
of the relevant results in section 2 of [14]. When F is a nonsingular M -matrix, we
can prove by induction that, for each k ≥ 0, Yk ≤ Sα, I ⊗ (αI −E−Yk) + (αI −
Yk)

T ⊗ I is a nonsingular M -matrix, and Yk ≤ Yk+1. When F is an irreducible
singular M -matrix, we can prove by induction that, for each k ≥ 0, Yk < Sα,
I ⊗ (αI −E − Yk) + (αI − Yk)T ⊗ I is a nonsingular M -matrix, and Yk ≤ Yk+1.
That the matrix I ⊗ (αI −E − Yk) + (αI − Yk)T ⊗ I is a nonsingular M -matrix
follows from the Perron-Frobenius theorem once Yk ≤ Sα is proved for the first
case and Yk < Sα is proved for the second case. 2

Based on our observation on the convergence rate of the fixed-point iteration,
it is advisable to take α = α0 for Newton’s method. The Sylvester equation (16)
can be solved using subroutines DGEHRD, DORGHR, DHSEQR, and DTRSYL
from LAPACK [2]. If the convergence of Newton’s method is linear with rate
1/2 then, as explained in [13, 14], a much better approximation for Sα can be
obtained by using a double Newton step, i.e., by computing Ŷk+1 = Yk+2(Yk+1−
Yk) = 2Yk+1 − Yk for a suitable k.

Another efficient method is the Schur method.

Theorem 3.4: Let F be a nonsingular or irreducible singular M-matrix and W
be the matrix in (13). Let U be an orthogonal matrix such that

UTWU = G

is a real Schur form of W , where all 1× 1 or 2× 2 diagonal blocks of G corre-
sponding to eigenvalues in C> appear in the first n columns of G and all 1 × 1
or 2 × 2 diagonal blocks of G corresponding to eigenvalues in C< appear in the
last n columns of G. If U is partitioned as(

U11 U12

U21 U22

)
, (17)

where U11 ∈ Rn×n, then U11 is nonsingular and −U21U
−1
11 = XM , the desired

M-matrix solution of (1).

Proof: Note that the column spaces of (UT
11 U

T
21)T and (I −XT

M)T are the same
invariant subspace of W corresponding to the n eigenvalues with the largest real
parts. 2

If F is a nonsingular M -matrix, subroutines DGEHRD, DORGHR, DHSEQR,
and DTREXC from LAPACK [2] can be used directly to compute in double
precision an ordered real Schur form described in Theorem 3.4. The 1×1 or 2×2
diagonal blocks in the real Schur form obtained by DHSEQR do not generally
have the required ordering. The subroutine DTREXC is used to reorder the
diagonal blocks by using orthogonal transformations to interchange consecutive
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diagonal blocks (see [3]). To keep the number of interchanges of consecutive
blocks at a minimum, we use the original ordering within the group of diagonal
blocks associated with eigenvalues in C> and within the group of diagonal blocks
associated with eigenvalues in C<.

When F is an irreducible singular M -matrix and case (1) of Theorem 3.1
happens, zero is a double eigenvalue of W with index two. So, extra care should
be taken to have high accuracy for the Schur method when F is an irreducible
singular M -matrix. We assume that Fv = 0 for a known vector v > 0. (We have
v = e for noisy Wiener–Hopf problems.) We will choose the first orthogonal
reduction of W by ourselves.

Let P be the Householder transformation such that Pv = −‖v‖2e1, where
e1 = (1, 0, . . . , 0)T , and let

U (1) =

(
P 0
0 I

)
.

Then (U (1))−1 = (U (1))T = U (1) and we have

U (1)

(
v
0

)
=

(
−‖v‖2e1

0

)
.

Thus,

(U (1))TWU (1)

(
−‖v‖2e1

0

)
= (U (1))TW

(
v
0

)
= 0.

So the first column of the matrix

N = (U (1))TWU (1)

is zero. We can then write

N =

(
0 z

0 Ñ

)
,

where Ñ is of size (2n− 1)× (2n− 1).
Then we let ŨT ÑŨ = G̃ be an ordered real Schur form of Ñ obtained using the

subroutines DGEHRD, DORGHR, DHSEQR, and DTREXC. We arrange the
1×1 or 2×2 diagonal blocks of G̃ in such a way that diagonal blocks associated
with eigenvalues in C> appear in the top left corner. Since one troublesome zero
eigenvalue of N has been left out, we can have high accuracy for the Schur form
of Ñ . We now let

U (2) =

(
1 0

0 Ũ

)
.

By Theorem 3.1 and (13), G̃ has either n − 1 or n eigenvalues in C>. If G̃ has
n−1 eigenvalues in C>, then we can take U = U (1)U (2) for Theorem 3.4. If G̃ has
n eigenvalues in C>, then we use DTREXC to move the zero eigenvalue of N (or
W ) from the (1, 1) position to the (n+ 1, n+ 1) position. If uTEv ≈ 0 then, at
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one stage in this process, we need to swap the zero eigenvalue with a very small
positive eigenvalue. The swapping can be performed with high accuracy since we
swap two 1× 1 blocks (see [3]). Let U (3) be the orthogonal matrix used to move
the zero eigenvalue to the right position. Then we can take U = U (1)U (2)U (3) for
Theorem 3.4.

In Theorem 3.4, the solution XM is found by solving XMU11 = −U21. The
accuracy of XM is thus dependent on κ2(U11), the 2-norm condition number of
the matrix U11. The proof of the following result is essentially the same as that
of corresponding results in [16] and [20], where the results are stated for specific
matrix equations.

Proposition 3.3: Let U be an orthogonal matrix partitioned as in (17). If U11

is nonsingular and X = U21U
−1
11 , then

κ2(U11) ≤ 1 + ‖X‖2
2.

For the solution XM , we have XM = α0I − Sα0 , where α0 is given in (11).
We also have Sα0v ≤ α0v by Theorem 3.1. When the vector v is known, we can
assume v = e without loss of generality. More precisely, letting V = diag(v), we
can rewrite (1) as

X̃2 − ẼX̃ − F̃ = 0,

where
X̃ = V −1XV, Ẽ = V −1EV = E, F̃ = V −1FV.

Notice also that α0 will not change in the above process since F̃ and F have the
same diagonal elements. When v = e, we have Sα0e ≤ α0e and thus ‖Sα0‖∞ ≤ α0.
A very conservative estimate for κ2(U11) is thus

κ2(U11) ≤ 1 + ‖ −XM‖2
2 ≤ 1 + (α0 + ‖Sα0‖2)2 ≤ 1 + (α0 +

√
nα0)2.

In the study of the symmetric algebraic Riccati equation, we are interested in
finding a symmetric solution X using a Schur method (see [22], for example). The
symmetric solution X can be written in the form X = U21U

−1
11 . However, if U11

is extremely ill-conditioned the computed X can be far from symmetric. A sym-
metric representation for X is thus provided in [23]. In our situation, the solution
XM produced by Theorem 3.4 is supposed to be an M -matrix, but the computed
XM is not necessarily an M -matrix, particularly when the exact solution is a sin-
gular M -matrix. However, we have added an accuracy enhancement procedure
in the Schur method when the method is more vulnerable to rounding errors; we
have also shown that the matrix U11 is reasonably well-conditioned. Thus, we
expect the computed XM to have high accuracy. An easy post-processing will
then (most likely) get an M -matrix approximate solution. We change any (tiny)
positive off-diagonal elements of the computed XM to zero. Moreover, when we
keep a fixed number of digits for the approximate solution, we use chopping for
all negative off-diagonal elements and use rounding-up for all (positive) diagonal
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elements. For the fixed-point iteration and Newton’s method, the exact solution
XM is approximated by nonsingular M -matrices since Sα is approximated by a
monotonically increasing sequence. But the above post-processing may still be
used in case the M -matrix property is altered by rounding errors.

In the study of the symmetric algebraic Riccati equation, considerable effort
has been made to design structure preserving methods (see [5], for example). In
Theorem 3.4, the matrix W also has a special structure. This structure has been
used for the first orthogonal reduction of W when F is an irreducible singular
M -matrix. We do not know whether the special structure of W can be exploited
any further for the Schur method. On the other hand, when E = cI it is easy
to see that XM = c

2
I + (F + c2

4
I)1/2, where the square root can be found by

applying a Schur method to the n× n matrix F + c2

4
I (see [7, 15]). This yields

a considerable saving of computational work. The fixed-point iteration has been
simplified significantly due to the special structure of W (or the special form
of the equation (1)), while the simplification in Newton’s method is much less
significant.

Finally, we note that the computational work for the Schur method given in
Theorem 3.4 is roughly that for 4 Newton iterations or 100 fixed-point iterations.

3.3. Application to noisy Wiener–Hopf problems

If −F is an irreducible Q-matrix in (1), we can take v = e in Theorem 3.1. Thus,
(−XM)e = (Sα − αI)e ≤ 0 and −XM is an irreducible Q-matrix. The results in
section 3.1 can then be stated in terms of Q-matrices rather than M -matrices.

From Theorem 3.2 and Example 3.1, we see that one of the equations (2)
and (3) does not necessarily have a unique Q-matrix solution. As we mentioned
earlier, the matrix Q is the generator of the Markov chain (Xt)t≥0. From the
discussions in [18, 25] we know that the generators Γ+ and Γ− of two new Markov
chains are obtained by finding proper Q-matrix solutions of (2) and (3). It turns
out that Γ+ (resp. Γ−) is the unique singular Q-matrix solution when (2) (resp.
(3)) has no nonsingularQ-matrix solutions. Moreover, Γ+ (resp. Γ−) is the unique
nonsingular Q-matrix solution when (2) (resp. (3)) has singular and nonsingular
Q-matrix solutions. If a Markov chain has a singular (nonsingular) Q-matrix as
a generator, then the chain will live forever (die out).

We will apply the numerical methods in section 3.2 to find the matrices Γ+

and Γ−. We limit our attention to the more difficult case that Q is an irreducible
singular Q-matrix (so Qe = 0 and uTQ = 0 for some u > 0). This is the case of
primary interest in the study of noisy Wiener–Hopf problems. It means that the
original Markov chain (Xt)t≥0 will live forever.

In (2) and (3), we may assume ε =
√

2. (We can always divide the equations
by the constant ε2/2.) Thus, with Z replaced by X, (2) and (3) are now

X2 − V X +Q = 0, (18)
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and
X2 + V X +Q = 0. (19)

To find the solution Γ+ of (18), we let E = −V and F = −Q in (1), and find
the solution XM of (1). Then Γ+ = −XM . The solution Γ− of (19) can be found
by taking E = V instead.

Example 3.2: We consider (18) and (19) with

V =

(
aI10 0

0 bI10

)
, Q =


−1 1

−1
. . .
. . . 1

1 −1

 ∈ R20×20,

where a and b are parameters to be specified. For this example, we have uTQ = 0
for u = e. We consider four cases:

(a) a = 1, b = −1, so Γ+ and Γ− are both singular Q-matrices.

(b) a = 2, b = −1, so Γ+(Γ−) is a singular (nonsingular) Q-matrix.

(c) a = 2, b = −0.1, so Γ+(Γ−) is a singular (nonsingular) Q-matrix.

(d) a = 1, b = −3, so Γ+(Γ−) is a nonsingular (singular) Q-matrix.

Table 1: Results for case (a)

k+ r+ s+ k− r− s−
FP 567931 1.00× 10−10 0.25× 10−4 567929 1.00× 10−10 0.25× 10−4

NM 19 0.35× 10−10 0.14× 10−4 19 0.35× 10−10 0.14× 10−4

SM − 0.35× 10−13 0.13× 10−14 − 0.74× 10−13 0.10× 10−14

Table 2: Results for case (b)

k+ r+ s+ k− r−
FP 221 0.97× 10−10 0.42× 10−9 282 0.93× 10−10

NM 7 0.19× 10−12 0.83× 10−12 9 0.71× 10−13

SM − 0.36× 10−13 0.18× 10−14 − 0.81× 10−13

For each case, we use the fixed-point iteration (FP), Newton’s method (NM),
and the Schur method (SM) to find the approximations Γ̃± for Γ±. We let r± =
‖(Γ̃±)2∓V Γ̃±+Q‖∞. For FP and NM, we use α = α0, where α0 is given in (11).
For computing Γ±, the two iterative methods are stopped when r± < 10−10. The
number of iterations will be denoted by k±. If Γ± is a singular Q-matrix (so
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Table 3: Results for case (c)

k+ r+ s+ k− r−
FP 74 0.83× 10−10 0.14× 10−9 116 0.91× 10−10

NM 6 0.23× 10−13 0.94× 10−14 7 0.25× 10−13

SM − 0.25× 10−13 0.50× 10−15 − 0.10× 10−12

Table 4: Results for case (d)

k+ r+ k− r− s−
FP 260 0.97× 10−10 158 0.96× 10−10 0.27× 10−9

NM 7 0.31× 10−11 6 0.46× 10−11 0.17× 10−10

SM − 0.11× 10−12 − 0.36× 10−13 0.30× 10−14

Γ±e = 0), we also compute s± = ‖Γ̃±e‖∞ as an additional accuracy indicator
for Γ̃±. Indeed, for FP and NM we have s± = ‖Γ̃± − Γ±‖∞, assuming that
the monotonic convergence of FP and NM is not destroyed by rounding errors.
For SM, s± can be arbitrarily smaller than ‖Γ̃± − Γ±‖∞ in theory. In practice,
however, it is unlikely that s± is smaller than ‖Γ̃± − Γ±‖∞ by a large factor.

The numerical results are reported in Tables 1–4. For case (c), NM appears to
be slightly more accurate than SM, while FP is a little less expensive than SM
(but with lower accuracy). In all other cases, SM is the clear winner.

For case (a), the convergence of FP is sublinear and the convergence of NM is
linear with rate 1/2. The performance of NM can be improved by using a double
Newton step. If we use a double Newton step after 9 Newton iterations, we have
r+ = 0.35 × 10−10, s+ = 0.69 × 10−10, r− = 0.35 × 10−10, s− = 0.70 × 10−10.
However, case (a) causes no difficulty for SM since we separate one of the two
zero eigenvalues of W in the first orthogonal reduction of W . We also note that
for this case r± may be much smaller than s±. Indeed, for NM (without the
double Newton strategy) we typically have r± = O((s±)2) (see [14]). Therefore,
for this case, the accuracy of the methods should be judged from s± rather than
from r±. The small s± for SM indicates that SM is very accurate even in this
case.

4. Stabilizing solutions of general nonsymmetric AREs

In the previous section we have studied the quadratic matrix equation (1) by
transforming it into a special nonsymmetric ARE. In this section we consider
general nonsymmetric AREs. We explain why the so-called (almost) stabilizing
solutions are of particular interest. It turns out that the desired solutions in
sections 2 and 3 are also (almost) stabilizing solutions.

In the study of boundary value problems, we encounter the Riccati differential
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equation
dX

dt
= XCX −XD − AX +B, (20)

where A,B,C,D are real matrices of sizes m×m,m×n, n×m,n×n, respectively.
See [4, 8], for example. The equilibrium solutions of (20) are the solutions of the
Riccati equation (4).

Note that R(X) = XCX − XD − AX + B defines a mapping from R
m×n

into itself. The first Fréchet derivative of R at a matrix X is a linear operator
R′X : Rm×n → R

m×n given by

R′X(Z) = − ((A−XC)Z + Z(D − CX)) .

Since the eigenvalues of the operator R′X are the eigenvalues of the matrix −(I⊗
(A−XC)+(D−CX)T ⊗I), an equilibrium solution X of (20) is asymptotically
stable if all eigenvalues of I ⊗ (A−XC) + (D − CX)T ⊗ I are in C>.

Definition: A solution X of (4) is called stabilizing (almost stabilizing) if all
eigenvalues of I ⊗ (A−XC) + (D − CX)T ⊗ I are in C> (C≥).

Note that a stabilizing solution is also an almost stabilizing solution. When
we consider (4) independent of (20), we are free to rewrite (4) as −XCX +
XD + AX − B = 0. Thus, we could have used C< (C≤) in the definition of a
stabilizing (almost stabilizing) solution. We remark that the stabilizing solution
is also of particular interest for a nonsymmetric ARE arising in the study of
spectral factorization for polynomials (see [9]).

In [19], the solutions X of (4) that are given special attention are those with all
eigenvalues of A−XC and D−CX in C> (C<). This implies that all eigenvalues
of I⊗ (A−XC)+(D−CX)T ⊗I are in C> (C<), but not the other way around.

It is mentioned in [22] that the Schur method can be used to find all solutions
of (4). Here we present the following result about the Schur method for finding
the (almost) stabilizing solution of (4).

Theorem 4.1: Let the eigenvalues of the matrix H in (5) be λ1, λ2, . . . , λn+m,
arranged with nonincreasing real parts. When Re(λn) = Re(λn+1), assume that
Re(λn−1) > Re(λn) and Re(λn+1) > Re(λn+2). Let U be an orthogonal matrix
such that UTHU = G is a real Schur form of H. When Re(λn) > Re(λn+1),
the diagonal blocks of G corresponding to eigenvalues λ1, . . . , λn appear before
the diagonal blocks of G corresponding to eigenvalues λn+1, . . . , λn+m. When
Re(λn) = Re(λn+1), the diagonal block(s) of G corresponding to eigenvalues
λn and λn+1 are preceded by the diagonal blocks corresponding to eigenvalues
λ1, . . . , λn−1, and are followed by the diagonal blocks corresponding to eigenval-
ues λn+2, . . . , λn+m. Then the following are true.

(1) Assume that Re(λn) > Re(λn+1) and U is partitioned as(
U11 U12

U21 U22

)
,
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where U11 ∈ Rn×n. If U11 is nonsingular, then X = U21U
−1
11 is the unique

stabilizing solution of (4). Otherwise, (4) has no almost stabilizing solutions.

(2) Assume that λn = λn+1 are real with only one linearly independent eigen-
vector and let U be partitioned as in part (1). If U11 is nonsingular, then
X = U21U

−1
11 is the unique almost stabilizing solution of (4). Otherwise, (4)

has no almost stabilizing solutions.

(3) Assume that λn and λn+1 are a conjugate pair corresponding to a 2 × 2
diagonal block. Then (4) has no almost stabilizing solutions.

Proof: The proof is essentially the same as that of Theorem 5.2 in [11]. The
positive solution there is the (almost) stabilizing solution here. Note also that
we have relaxed the ordering requirement in the real Schur form of H. 2

Remark: In part (2), the assumption that there is only one eigenvector associated
with λn = λn+1 is essential. Without this assumption, the solution X (when it
exists) is not isolated and is not stable with respect to the perturbations in the
coefficient matrices in (4) (see Theorem 17.10.3 in [10]).

In view of Theorem 2.5, the minimal nonnegative solution S in section 2 is
the unique stabilizing or almost stabilizing solution of (4). Also, we know from
Proposition 3.1 that the solution XM in section 3 is the unique stabilizing or
almost stabilizing solution of −X2 + EX + F = 0, which is equivalent to (1).
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