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Abstract 

The application of the finite difference method to discretize the complex Helmholtz equation on a bounded region 
in the plane produces a linear system whose coefficient matrix is block tridiagonal and is some (complex) 
perturbation of an M-matrix. The matrix is also complex symmetric, and its real part is frequently indefinite. 
Conjugate gradient type methods are available for this kind of linear systems, but the problem of choosing a good 
preconditioner remains. We first establish two existence results for incomplete block factorizations of matrices (of 
special type). In the case of the complex Helmholtz equation, specific incomplete block factorization exists for the 
resulting complex matrix and its real part if the mesh size is reasonably small. Numerical experiments show that 
using these two incomplete block factorizations as preconditioners can give considerably better convergence results 
than simply using a preconditioner that is good for the Laplacian also as a preconditioner for the complex system. 
The latter idea has been used by many authors for the real case. 

I. Introduction 

In this paper  we are mainly interested in the numerical  solution of the complex Helmholtz 
equation 

--Au--pu+iqu=f in J2, 
u = g  on 0J2. (1.1) 

Here  J2 is a bounded  region in R 2. p and q are real continuous coefficient functions on O, 
while f and g are given complex continuous functions on J2 and Og2, respectively. The 
five-point finite difference discretization of (1.1), with a constant mesh spacing h in both 
directions, yields a linear system 

A x = b .  (1.2) 
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The matrix A (assumed to be nonsingular) is of the form 

A =A 0-h2D1 + ih2D2 = T +  ih2D2,  (1.3) 

where 9 1  ( D  2) is a diagonal matrix whose diagonal elements are just the values of p (q) at the 
mesh points, and A 0 is the symmetric positive-definite M-matrix arising from the discretization 
of the Laplace operator. We assume that A 0 takes the block tridiagonal form 

with 

A o =  
G2 

Fro' 
Em Gm 

4 - 1  
- 1  4 

G k =  

e =FW= 

1] 
- 1  4 . ~ x ~  

(Onk×pk --In k Onk×qk ) , 

(Onk_lXS k --Ink l Onk_lXtk) T , 

k = 1, 2 . . . .  ,m ,  

Pk,qk  >~ O, Pk + qk = nk-1  -- nk ,  

if n k ~< n/,_ a, 

Sk,t k >~ O, S k + t k = n g  -- nk_ 1, 

if n k > nl,-1, 

(1.4) 

k = 2 ,  3 , . . . , m .  

The matrix T in (1.3) is indefinite when the elements of D 1 are large positive numbers. 
We wish to solve (1.2) by conjugate gradient (CG) type methods. Since the classical CG 

method is applicable only to Hermitian positive-definite linear systems, one method to solve 
(1.2) is then to apply a preconditioned CG method to the normal equations AHAx = A n b  (see, 
e.g., [3]). However, the resulting iterative scheme tends to converge slowly. We can also rewrite 
(1.2) as a real linear system of twice the size, but the real system is much harder to solve by CG 
type methods than the original complex system. In this paper we use the biconjugate gradient 
(BCG) method to solve (1.2). For complex symmetric matrices, the general BCG method [9] can 
be simplified to Algorithm 2.3 in [7]. The preconditioned version of that algorithm is included 
in Section 4. We note that some recently developed methods, such as the Bi-CGSTAB method 
[13] and the QMR method [7], may also be used to solve (1.2). All these methods may break 
down in theory. One can monitor for such a breakdown and employ an alternative strategy in 
the event of it arising. Fortunately, breakdowns are very rare in practice and have not appeared 
in our numerical experiments with the BCG method. 

Having a CG type method at hand, we are confronted with the problem of choosing an 
effective preconditioner for the system (1.2). When the elements of D 1 and D e are relatively 
small, one may use a preconditioner that is good for A 0 also as a preconditioner for the 



C.-H. Guo /Applied Numerical Mathematics 19 (1996) 495-508 497 

complex system. For the real c a s e  ( D  2 = 0) this idea has been used by many authors (see, e.g., 
[12]). The analyses and numerical experiments in [14,15] suggest that this strategy can work very 
well for the real case when the matrix A has very few negative eigenvalues. However, this 
strategy tends to be unsatisfactory when the elements of D 1 a n d / o r  D 2 a r e  relatively large. We 
are thus led to use preconditioners obtained directly from the complex matrix A, or its real 
part T (to avoid some complex operations). 

In Section 2, we establish two existence results for incomplete block factorizations of 
matrices (of special type). In Section 3, we apply the results of Section 2 to show that a specific 
incomplete block factorization exists for the complex matrix A and its real part T if the mesh 
size h is reasonably small. In Section 4, we present some numerical results to show that using 
these two incomplete block factorizations as preconditioners can give considerably better 
convergence results than simply using a preconditioner that is good for A 0 also as a precondi- 
tioner for the complex system. In Section 5, we outline some other possible applications. 

2. Incomplete block factorizations 

We start with some notations and definitions. For matrix A = (aij) , we let I AI = (I ai~. I). If 
A = (aij) and B = (bij) are real matrices, then A >I B (A > B) if aij >/bi j  ( a i j  > b i.) for all i, j. 
For a square matrix A = (aij), we set o f fd iag(A)=A - d i a g ( A )  and we let A ~) denote the 
matrix (bij) with 

aij, l i - j [  <~P, 
bii= ~0, l i - j l  >p.  

Given A ~ C n'n, its comparison matrix .Z¢(A) = (bij) is defined by 

bii = laiil, b i j = - I a i j l  , i4: j ,  l<~i, j<~n, 

and A is said to be an H-matrix if ~¢t'(A) is an M-matrix. 
The existence of incomplete block factorizations is well established for M- and H-matrices; 

see for example [1,4,5,8]. In this section we will show that, under certain conditions, incomplete 
block factorizations exist for such block tridiagonal matrices as encountered in the numerical 
solution of the Helmholtz equation (1.1). The proof will be based on the existence of modified 
incomplete block factorizations for block tridiagonal M-matrices. 

Let A be an M-matrix partitioned into a tridiagonal form, 

A1 U 2 

L 2 A 2  

A = Um = D + L  +U,  (2.1) 

L ,,, A m 

where A i ~ ~-i.-, and L and U are strictly lower and upper block triangular matrices, 
respectively. Since A is an M-matrix, there exists some vector v such that v > 0 and Av > 0 
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(see e.g. [6]). We write v = (v~, uT2''' ', v~) T with v i ~ ~nl and consider the following recursion 
(cf. [2]): 

X 1 = A  1, 

S r = A  r -  L r ( S  -1 ~(t') U . . . .  r-- 1 ] r -- Dr, r = 2, 3 , .  m (2.2) 

where  D r is a diagonal  matrix, such that  

D r V r = L r ( X r _ l x _ _  -1  (P) (Xr-1)  )UrVr Q 

The  matrices X r defined above are M-matrices (cf. [2, T h e o r e m  3.4]). C 1 = ( X  + L ) X - I ( X  + U) 
is called the modif ied incomplete  block factorization of A, where  X =  diag(Xr). 

Now let B be some per turbat ion  of the M-matrix A: 

L2 B2 
B = (2.3) 

Um 
Lm Bm 

with B 1 =A1, B i = A ~ -  Ai, i = 2, 3 , . . . ,  m ,  where  the Ai's are real diagonal matrices. Consider  
the recursion 

I11 =B1,  

1 (P) 
Y r = B r - L r ( Y r _ l )  Ur, r : 2 , 3  . . . .  , m .  (2.4) 

If the Yr'S are nonsingular,  C 2 = ( Y  + L ) Y - l ( y  + U) is called the incomplete  block factorization 
of B, where  Y =  diag(Yr). We will give condit ions under  which the Yr'S are M-matrices. The  
following two lemmata  will be needed.  

L e m m a  2.1 [10, T h e o r e m  2.2]. Let  A ~ ~n.n be an M-matrix.  I f  the elements o f  B ~ R n'n satisfy 
the relations 

bii >~ aii , a i j  <~ bij  <~ 0, i 4:j, 1 ~< i , j  <<. n ,  

then B is also an M-matrix.  

L e m m a  2.2 (cf. [6]). Let  A ~  "'n be an M-matrix,  B ~ C  n*. I f  Idiag(B)[ ~>diag(A) and 
Ioffdiag(B) I ~< - o f f d i a g ( A ) ,  then B is nonsingular, moreover, [B-a ]  ~<A -1. 

T h e o r e m  2.3. I f  A ir  i <~ Li(AT_11 - (A~11)(P))Uivi, i = 2, 3 , . . . ,  m,  then the matrices Yr defined 
above are M-matrices. 

Proof. Let  us make  a comparison between the recursions (2.2) and (2.4). Y1 =X1 is an 
M-matrix. By L e m m a  2.1, Y2 is an M-matrix if A 2 ~< D2, and in this case Y21 ~ X 2  1 by L e m m a  
2.2, Thus,  again by L e m m a  2.1, I13 is an M-matrix if A 3 ~<D3, and in this case Y31 ~<X31 
Cont inuing in this way, we can show that the Yr'S are all M-matrices provided A i ~< D i for 
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i = 2, 3 , . . . , m .  On the o ther  hand,  A i <<. L i is equivalent  t o  Aiv i <-..Divi, o r  z~iv i < ~ L i ( S ~ _ l l -  
(X~21)(P))UiuD which is a consequence  of Aiv i ~ Zi(Z~_11 - -  (z~_ll)(P))Uivi since A]-_ll ~< X/~_la by 
Lemm ata  2.1 and 2.2. [] 

Note  that  solving the inequalities in T h e o r e m  2.3 for the possible range of the Ai 'S  is not 
more  difficult than determining the Di's in the recursion (2.2). 

We consider next the existence of the incomplete  block factorization for complex matrices. 
Given G ~ C ~'" in block tr idiagonal form 

G = 

G 1 F2 

E2 G2 

Em 

where  G i E C ni'ni we let 

G0 F o 

e? 
Go= 

Gm 

Fm 0 

e °  G° 

be a corresponding real matrix such that  for i = 1, 2 , . . . ,  m, 

0~< diag(G °) ~< ]diag(Gi) I, 

offdiag(G °) ~< - ] offdiag(Gi)[ ,  

E ° <~ - I E,] ,  Fi ° <~ - I F/I.  

Considering the recursions 

Z 1 = G1, 
-1 (P) 

Z r = G r - E r ( Z r _ l )  Fr, r = 2 ,  a , . . . , m ,  

and 

zo=Go, 

o o -I/(P) o 
Z ° = G ° r - E r ( ( Z r _ l )  ] Fr ,  

we have the following result: 

r = 2 ,  3 . . . .  , m ,  

(2.5) 

Theorem 2.4. Let  G ~ C n'n and G O ~ ~ ' ~  be as above. I f  the matrices Z ° are M-matrices, then 
the matrices Z r are necessarily H-matrices. 
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Proof. It is trivial that the inequalities 

[diag(Z,) ] >1 diag(Z°) ,  Ioffdiag(Zt) [ ~< -o f fd i ag (Z° ) ,  (2.6) 

hold for t = 1. Assuming that (2.6) is true for t = i - 1 (2 ~< i ~< m), we have I ZT_~ I ~< (Z°- l )  -1 
by Lemma 2.2, and then 

[ diag(Z i) l > I diag(G i ) [  --  I diag(Ei(Z~_~ )(P)F i) l 

1 (P) >1 [diag(Gi)l-diag(lgil  [(ZT_~) I lfil) 

>/diag(G °) - d i a g (  E°( (  Z?_ 1) - I)(P)F/0 ) 

= diag(Z/°), 

1 (P) Ioffdiag(Zi)l ~< Ioffdiag(Gi)l + ]offdiag(Ei(ZT_l ) Fi)[ 

~< ]offdiag(a/)I +offdiag( Igil I(Zi-_I)(P)I IFil ) 

~< -o f fd i ag (G °) + offdiag( E°  ((Z°_ 1 )-l)(P)fi° ) 

= - offdiag(Z°).  

Therefore we have proven by induction that (2.6) is true for t = 1, 2, . . . .  m. By Lemma 2.1 the 
comparison matrices of the Zr'S are now M-matrices. Hence the Zr's are H-matrices by 
definition. [] 

3. Application to the Heimholtz equation 

Now we consider the matrix A described in Section 1 and apply the existence results 
established in Section 2. When the recursions in Section 2 are performed, the integer p in the 
recursions is taken to be 1. We denote by e the vector with all components equal to one. The 
dimension of e will be clear in the context. 

Proposition 3.1. The incomplete block factorization described in Section 2 is well defined for the 
complex matrix A and its real part T provided that 

(C + e)h 2 <<. min( l ,  x~ t), x~2t),...,x~ t)) (3.1) 

for some e > O, and for all l ~ {nl, n2 , . . . ,  nm} .  Here C is the maximum of the real function p on 
~,  (x~ 0, x (t) . . . . .  x~t)) T = (A~ -1 - (A~- 1)(1))e with 

4 + e h  2 - 1  
- 1  4 + e h  2 

A ~ =  
- 1  

- 1  4 + e h  2 l x l  

(3.2) 
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Proof. We first show that  the matrices Yr produced  by the recursion (2.4) with B = T are all 
M-matrices.  In order  to apply T h e o r e m  2.3, we define the matrices Zig in (2.3) as follows: 

(e + Pk.1)h 2 

if n k <~nk_l, 

0 

zi k = 

(e+Pk,nk)h  2 

(e + Pk,s,+a)h 2 

(e +ek,nk_tk)h 2 

~if n k > nk_ l ,  

k = 2, 3 , . . . , m ,  

Sk 

where  s k and t k are the integers in (1.4), Pi,j a r e  the values of the real funct ion p at the mesh 
points. The  Ak's being defined,  the matrix T determines  all the matrices Lk,  Uk, and A k in 
(2.3). It is clear that  the matrix A in (2.1) is an M-matrix with Ae  > 0 (since Ch: < 1 for h 
sufficiently small). The  inequalities in T h e o r e m  2.3 now fall into two types. 

Type 1 (n k <~ n k _ l ) :  

a e<(Onk× k Ink 
In this case, let 

(4 + ehZ)Ipk 

W =  

where  A t 
consequence  of 

or  

1 ~(1)~/O in k )T Onkxqk)( A - ~  - - ( A k - } l /  It nkXpk Onkxq k e. (3.3) 

A E 

(4+ehZ)Iqk  

is the matrix (3.2) with l = n k. By L e m m a  2.2 we have W -1 ~<Ak_ll  . Thus  (3.3) is a 

Aie  <~ ( A - ~ l -  ( A e l ) ° ) ) e ,  

which is implied by (3.1) for l = n k. 

~(1)~t 0 In~ O~×q~)Te, ake < (O.k×pk I,, k O.k×~k)(w-'-  (W -1, I, "k×~'k 



502 C.-H. Guo /Applied Numerical Mathematics 19 (1996) 495-508 

T y p e  2 (n k > nk_l): 

T -1 
Ake~(Onk_l×S k Ink_, Onk_,×,,) (Ak_  1 "A 1-(1"~- O - ( k - l )  )~ nk_l×S ~ I n ~ ,  Onk_,×tk) e" (3.4) 

By Lemma 2.2, Ae -1 ~<Ak11, A t being the matrix (3.2) with l = n k _  1. Recalling the definition of 
a k ,  we find that (3.4) is a consequence of (3.1) for l = n k _  v 

The fact that the matrices Z r produced by the recursion (2.5) with G = A  (the complex 
matrix!) are all H-matrices follows readily from Theorem 2.4 (G o-- T). [] 

If C ~< 0 there is no restriction on the mesh size h. Thus we assume C > 0. We also assume 
that minl~i~<m n i > 5. 

In what follows we will give an accurate lower bound for min 1~ i<~l X~ l)' which is dependent  
on the number  4 + e h  2 only. We will then conclude that (3.1) is satisfied when h is reasonably 
small. This conclusion is essential for the paper  to be of practical interest. To allow more 
applications (see Section 5) we do not confine the following analysis to the matrix A t in (3.2). 

Let 

a - 1  ) 
--1 a 

Sk = --1 with a >~ 3. 

- 1  a kxk 

Set (dl, d 2 . . . . .  d~) T = ( S [  1 - ( S [ l ) ° ) ) e ,  and D i = det(Si) for i >~ 1, D O = 1. By standard results 
in linear algebra, the elements of S [  1 can be expressed by 

Oj_lDk- i  
S -1  = S -1  , i >~j, 

( k )j,i ( k )i . j  = D k  

and thus 

O i -  1 
d i - 

D k  

with the convention that Dj + "-" + D  O = 0 whenever  j < 0. Obviously, d i 

1, 2 , . . . , [ k / 2 ] .  Moreover,  we have the following result: 

Dk i 
= - - ( D i , _ i _  e + . . .  + D o )  + - - - f fS--(Di_ 3 + . . .  +Do)  , 

U k  
i =  1, 2 , . . . , k ,  

= d k _ i +  1 for i = 

Proposition 3.2. I f  k > 5, t h e n  d 1 < d 2 < • • • < d[(k + l)/2 ]. 

The proposition is intuitively true and may be easily verified by computer  algorithms for 
fixed a and k. But the theoretical proof given below is a little complicated. Two lemmata will 
be needed.  The first one is obvious. 

Lemma 3.3. D i = a D  i_ 1 - -  Di- 2, i >~ 2. 

Lemma 3.4. D i > D i _ l ,  D i D j + i _  1 > D i _ I D j +  i, i , j  >~ 1. 
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Proof. The  first inequal i ty  can be  easily shown by induct ion.  For  i = 1, the  second  inequal i ty  
immedia te ly  follows by appl ica t ion  of  L e m m a  3.3. For  i > 1, 

DiDj+i_ l  > D i _ l O j + i  ¢:a ( a D i _ l - D i _ 2 ) D j + i _  1 > D i _ l ( a D j + i _ l - O j + i _ 2  ) 

¢:a O i _ l D j + i _ 2 >  Di_2Oj+i_  1 

¢~ D 1 D  j > DoDj+ 1. [] 

Proof of Proposition 3.2. W e  have to show 

Di_l(Dk_i_  2 + . . .  +Do) + Dk_i(Di_ 3 + . . .  + D o )  

<Di(Dk_i_  3 + . . .  +Do) + Dk_i_l(Di_ 2 + . . .  +Do) , 

for i = 1, 2 , . . . , [ ( k  + 1 ) / 2 1 -  1. 
For  i = 1, (3.5) holds  in view of  L e m m a  3.4 and Do(D 2 + D 1 + D o) = DI(D 1 + Do). 
For  i = 2, 3 . . . . .  [(k + 1 ) /2 ]  - 1, we have by L e m m a  3.4 

D i ( D k _ i _  3 + . . .  + D i _ l ) > / D i _ l ( D k _ i _ 2  + . . .  + D i )  

and 

D k _ i _ l ( O i _  2 + . . .  + D o )  >~ D k _ i ( D i _  3 + . . .  + D o )  + O k _ i _ l D  0 

>~ D k _ i ( O i _  3 + . . .  +Do) + D i 

T h e r e f o r e  (3.5) is a c o n s e q u e n c e  of  the  inequal i ty  

D i _ l ( D i _  1 + . . .  + D o )  < D i ( O i - 2  + . . .  + D o )  + D i. 

(since k - i - 1 > i) .  

(3.5) 

W e  then  prove  (3.6) by induct ion.  (3.6) is clearly t rue  for  i = 2. W e  assume (3.6) for  i = p :  
2 ~<p ~< [(k + 1 ) /2 ]  - 2. Us ing  L e m m a  3.3 we  can rewri te  (3.6) for i = p  + 1 as 

Dp(a(Dp_l + . . .  + D 0 ) -  (Dp_2 + . . .  + D o ) ) + D p D  o 

< ( a D p - D p _ , ) ( D p _ ,  + "'" +Do) + Dp+l, 

o r  

V p _ l ( D p _  1 - I - . . .  +Do)<Dp(Dp_E+ " " - - I - D o ) + D p + I - D p ,  

which is t rue  since D p  +1 - Dp = aDp - Dp-1  - Dp >t Dp --I- Dp - Dp_ 1 > Dp. 

W e  are  now able  to give a qui te  accura te  lower  b o u n d  for  d 1. 

Proposition 3.5. I f  k > 5, then 

1 1 

d l >  ( a  - -  1) (a  2 -  3) + (a 2 _ 1)2(a 2 _ 3) 

[] 

(3.6) 
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Since 
ther  

Proof. Using L e m m a  3.3 repeatedly  we have 

1 
d 1 = - -~k (Dk_3  + D k - 4  + . . .  +Do)  

( a  + 1 )Dk_  4 + D k _  6 + ' ' .  + D  O 

( a  4 -  3a 2 + 1 )Ok_  4 -- ( a  2 -  2 ) a O k _  5 " 

aDg_ 5 = D k _  4 + D k _  6 > D k _  4 and  D k _  4 = a D k _  5 - - D k _  6 ~< (a  2 -- l ) D k _ 6 ,  we have  fur-  

d I > 
(a + 1)D~_ 4 + D k _ 4 / ( a  2 -  1) 

(a  4 - 3a 2 + 1 ) O k _  4 - -  ( a  2 - -  2)Dk_ 4 

1 1 
= + 

(a - 1 ) ( a  2 -  3) (a 2 -  1)2(a 2 -  3)" 

We can now re turn  to condit ion (3.1). 

[] 

Corollary 3.6. (3.1) is fulfil led f o r  h sufficiently small ,  e.g.,  h <~ 1/v~9C. 

Proof. (3.1) is implied by 

1 1 
(C  + e ) h :  <~ (a  - 1)(a 2 -  3) + (3.7) (a 2 -  l)2(a 2 -  3) 

with a = 4 + eh 2. Since 

lim ( C  + e ) h  2 = Ch 2 
~-...~0 + 

1 1 ) 1 1 
lim+ + = 

~--,0 (a - 1)(a a -  3) (a e -  l ~ ( a  2 -  3) - ~  + 29-25' 

and 

(3.7) is t rue for some e > 0, if Ch 2 <~ 1/39.  [] 

Note  that  the exact solution of the Helmhol tz  equat ion would be more  oscillatory for larger 
C. In this connection,  the condit ion h ~< 1 / ~  is reasonable.  

4. Numerical results 

For  test purposes  we consider  the Helmhol tz  equat ion 

- a u - c u + i d u = f  in O = (0, 1) × (0, 1), (4.1) 
u = 0 on OY2, 

where  c and d are real constants,  f = 1 + i if d 4:0 and f = 1 if d = 0. We choose h = 1/96.  
The  complex symmetric  matrix A in (1.2) is now of order  n = 9025. 
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Table 1 
The number of BCG iterations for d = 10 

c No preconditioning Method 1 Method 2 Method 3 

0 194 21 33 33 
30 286 26 39 39 
60 286 40 46 46 
90 321 60 58 58 

110 342 66 59 58 
150 366 91 69 63 
190 494 119 79 89 
220 390 125 78 85 

The precondit ioned BCG method with M (also symmetric) as a precondit ioner is given 
below: 

Algorithm (PBCG for A = A  T) 
(1) Start: 

Choose x 0 ~ C n and compute r 0 = b - A x 0 ;  
Solve Mpo = r o for P0 and set d o =P0; 
Compute  rTdo . 

(2) For  k = 1, 2 , . . .  do: 
T A Compute  A p k _  1 and Pk-1  Pk- I ;  

I f  T T P k _ l A P k _ l  = 0 or r k _ l d k _  1 = O, stop; 
Otherwise, set 6 k = r T T . k - l d k - 1 / P k - l Z P k - 1 ,  

Compute  x k = x k _  1 + 6kPk_  1 and r k = rk_ 1 -- 6kAPk_ l ;  
Solve Md~ = r~ for d~,; 

T Compute rkd  k and set Pk = r T d J r T - l d k - 1 ;  

Compute Pk ---- dk + P~ P k -  1. 

Note that all dot products in the algorithm have the form xry rather than xHy. 
We apply the algorithm with different preconditioning strategies: 
• M e t h o d  1: modified incomplete block factorization of A 0 as preconditioner; 

Table 2 
The number of BCG iterations for d = 100 

c No preconditioning Method 1 Method 2 Method 3 

0 171 33 27 26 
30 161 35 28 27 
60 181 43 33 32 
90 223 47 35 33 

110 204 52 37 34 
150 230 68 39 38 
190 233 93 48 41 
220 236 95 49 45 
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Table 3 
The number of BCG iterations for d = 0 (k stands for the number of negative eigenvalues of A) 

c k No preconditioning Method 1 Method 2 

0 0 205 20 29 
30 1 26 49 
60 3 39 46 
90 4 432 51 60 

110 6 81 82 
150 8 485 95 78 
190 11 146 90 
220 13 636 296 85 

• Method 2: incomplete block factorization of T as preconditioner;  
• Method 3: incomplete block factorization of A as preconditioner.  

We use v = e for Method 1 (cf. Section 2). The inequality Aov > 0 does not hold in this case. 
However, the existence of the factorization is still guaranteed (see, e.g., [10, Theorem 3.1]). We 
note that the modified incomplete block factorization of A 0 is a very good precondit ioner for 
A 0. From Corollary 3.6 we know that the incomplete block factorization exists for T and A if 
c ~< 230, for example. 

In our numerical  experiments we choose x 0 = 0. And the algorithm is terminated as soon as 
11 FK II 2/II F0 II 2 ~ 10-6 .  We give the number  of BCG iterations in Tables 1-3. In Table 3 we 
take d = 0. We are thus solving a real linear system, the coefficient matrix A being symmetric, 
but indefinite for c >_- 30. We have consistently used the BCG method,  although more efficient 
CG type methods are available in this case (see, e.g., [12]). We note that the BCG method is 
identical to the classical CG method when c = d = 0. In Table 3 we have also listed the number  
of negative eigenvalues of A. The BCG algorithm without preconditioning is performed only 
for some of the listed values of c. 

From the test results we observe that Method 1 works well when c and d are relatively small. 
Methods 2 and 3 give considerably bet ter  convergence when c a n d / o r  d are large. For large d, 
Method 3 needs fewer iterations than Method 2 for the error reduction. However, Method 3 
requires considerably more  computational work per  iteration since the precondit ioner M is a 
complex matrix. Thus Method 3 will be useful only when the imaginary part W of a complex 
matrix A ( W =  d h 2 I  in the present  case) is substantial. 

Moreover,  as a general  observation, the presence of a larger imaginary part  in the coefficient 
matrix from the Helmholtz equation (4.1) is favorable for the convergence of the BCG 
algorithm (with or without preconditioning). 

5. Other possible applications 

In this section we briefly discuss some other  applications of the results in Section 2. In view 
of Theorem 2.4, we may restrict our discussion to real problems. 

As noted in Section 2, it is a relatively easy mat ter  to solve the inequalities in Theorem 2.3 
for the possible range of the Ai's when the matrix A is given. This is true even when the matrix 
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B concerned in Theorem 2.3 is obtained from the discretization of three-dimensional elliptic 
problems using plane partitioning to specify the blocks, in which case the diagonal blocks of B 
are usually block tridiagonal themselves. However, when we apply Theorem 2.3 to problems 
such as the one in Section 3, both sides of the inequalities in the theorem are dependent  on the 
mesh size h. Before the inequalities can be checked numerically, h has to be specified. We may 
have to try several times to find an h (not exceedingly small) which makes the inequalities true. 
Of course, we are rewarded when we need fewer iterations to solve the resulting linear system 
with a preconditioner from the incomplete block factorization (whose existence is guaranteed). 

It would be nice to obtain by mathematical reasoning definite information on the choice of 
the mesh size h. We have done it in Section 3 for the Helmholtz equation. The analysis there 
can be exploited to obtain similar results for some more general problems. 

We consider here the (real) problem 

- V a ( x ,  y ) V u - p ( x ,  y )u= T i n O ,  
u = g on 0O. (5.1) 

Here O is a bounded region in R 2, a(x, y) and p(x, y) are continuous coefficient functions on 
O, while f and g are given continuous functions on f~ and 012, respectively. We further assume 
that a(x, y)>/1  (we may assume this without loss of generality when a(x, y ) >  0). The 
five-point finite difference discretization of (5.1) yields a linear system Ax = b with 

A = G - h2Do, (5.2) 

where D O is a diagonal matrix whose diagonal elements are just the values of p(x, y) at the 
mesh points, and G has the same structure as A 0 in Section 1. The elements of G are now 
dependent  on the function a(x, y). We assume that the diagonal blocks of G are at least of 
size 6 × 6. Let D be the diagonal matrix whose diagonal elements (arranged accordingly) are 
the values of a(x, y) at the mesh points. As can be easily seen, the incomplete block 
factorization in Section 2 is well defined for the matrix A in (5.2) if and only if it is so for 
D-1A. 

Since a(x, y) is uniformly continuous on g2, for every e 0 (0 < e 0 < 1) there exists an h o such 
that for all (x 1, Yl) and (x 2, Y2) in O 

l a(x2, Y 2 ) - a ( x l ,  Yl) I ~<eo whenever l x 2 - x l l + l Y 2 - - Y l  I~<h0 • (5.3) 

Observe that for h ~< 2h 0 the elements of the M-matrix D-1G are such that 

(o-la)i,i<~a(1-I-eo), and ( D - 1 G ) i j < ~ - l + e o  ( i~ j ) .  

The analysis in Section 3 can thus be slightly modified to yield the following result: 

Proposition 5.1. The incomplete block factorization in Section 2 ( p  = 1 in the recursion (2.4)) is 
well defined for the matrix A in (5.2) if 

~ 1 - eo ) 
h ~ min 2h o, ( d -  1-)(-d~- 3)C 
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for some pair (e o, h o) satisfying (5.3), where 

4(1 + e0) p(x, y) 
d =  , C =  max - - > 0 .  

1 - e  0 ( x , y ) ~  a(x, y) 
When a linear system Ax = b is obtained from, e.g., the discretization of a three-dimensional  

Helmholtz equation by seven-point finite differences, the matrix A is not block tridiagonal if 
we insist that the diagonal blocks be point tridiagonal so that the analysis in Section 3 may be 
used. In this regard, the existence results in Section 2 have to be extended. Such an extension is 
indeed available, but will not be given here. 
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