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Abstract

We start with a discussion of coupled algebraic Riccati equations arising in the study of linear-quadratic
optimal control problem for Markov jump linear systems. Under suitable assumptions, this system of
equations has a unique positive semidefinite solution, which is the solution of practical interest. The coupled
equations can be rewritten as a single linearly perturbed matrix Riccati equation with special structures.
We study the linearly perturbed Riccati equation in a more general setting and obtain a class of iterative
methods from different splittings of a positive operator involved in the Riccati equation. We prove some
special properties of the sequences generated by these methods, and determine and compare the convergence
rates of these methods. Our results are then applied to the coupled Riccati equations of jump linear systems.
We obtain linear convergence of the Lyapunov iteration and the modified Lyapunov iteration, and confirm
that the modified Lyapunov iteration indeed has faster convergence than the original Lyapunov iteration.
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1. Introduction

In the study of linear-quadratic optimal control problem for Markov jump linear systems [3, 5, 6, 8] we
need to solve the coupled algebraic Riccati equations

ATkXk +XkAk −XkBkR
−1
k BTk Xk + CTk Ck +

N∑
j=1

λkjXj = 0, (1)

k = 1, . . . , N , where Ak ∈ Rn×n, Bk ∈ Rn×m, Ck ∈ R`×n and Rk = RTk ∈ Rm×m is positive definite. The
scalars λkj are such that λkj ≥ 0, k 6= j, and λkk = −

∑
j 6=k λkj . Actually, the matrix

Λ =


λ11 λ12 · · · λ1N
λ21 λ22 · · · λ2N

...
...

...
...

λN1 λN2 · · · λNN

 (2)

is the transition rate matrix associated with a Markov process.
For any A ∈ Cn×n, the transpose and the conjugate transpose of A are denoted by AT and A∗, respec-

tively. The spectrum of A is denoted by σ(A). We denote by C< (resp. C≤) the set of complex numbers
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with negative (resp. nonpositive) real parts. For any Hermitian matrices X and Y , we write X > Y (or
Y < X) if X − Y is positive definite and we write X ≥ Y (or Y ≤ X) if X − Y is positive semidefinite.

A solution (X1, . . . , XN ) of the coupled equations (1) is said to be positive semidefinite if Xk ≥ 0 for
k = 1, . . . , N . For the existence of such solutions we need the concept of mean-square stability. Here we
describe mean-square stability by one of its equivalent properties. Thus (see [3] for example) a matrix tuple
G = (G1, . . . , GN ) is said to be mean-square stable if there exists M = (M1, . . . ,MN ), with Mk > 0 for
k = 1, . . . , N , such that

GTkMk +MkGk +

N∑
j=1

λkjMj < 0, k = 1, . . . , N.

Let A = (A1, . . . , AN ),B = (B1, . . . , BN ), C = (C1, . . . , CN ). We say (A,B) is mean-square stabilizable if
there is K = (K1, . . . ,KN ) such that (A1 −B1K1, . . . , AN −BNKN ) is mean-square stable; (C,A) is mean-
square detectable if there isK = (K1, . . . ,KN ) such that (A1−K1C1, . . . , AN−KNCN ) is mean-square stable.
We now assume that (A,B) is mean-square stabilizable and (C,A) is mean-square detectable. By [3, Theorem
2.1], the coupled Riccati equations (1) has a unique positive semidefinite solution (X1, . . . , XN ). Moreover,
the solution is mean-square stabilizing in the sense that (A1 − B1R

−1
1 BT1 X1, . . . , AN − BNR−1N BTNXN ) is

mean-square stable.
The equations (1) are often rewritten as(

Ak +
1

2
λkkI

)T
Xk +Xk

(
Ak +

1

2
λkkI

)
−XkBkR

−1
k BTk Xk + CTk Ck +

N∑
j=1,j 6=k

λkjXj = 0. (3)

The benefit of doing this is that
∑N
j=1,j 6=k λkjXj ≥ 0 whenever Xk ≥ 0 for k = 1, . . . , N .

To simplify the notation, we let

Dk = Ak +
1

2
λkkI, Sk = BkR

−1
k BTk , Qk = CTk Ck. (4)

So (3) becomes

DT
kXk +XkDk −XkSkXk +Qk +

N∑
j=1,j 6=k

λkjXj = 0, k = 1, . . . , N. (5)

Several iterative methods are available to compute the unique positive semidefinite solution of (5).
Newton’s method for (5) is

(Dk − SkX(i)
k )TX

(i+1)
k +X

(i+1)
k (Dk − SkX(i)

k ) +

N∑
j=1,j 6=k

λkjX
(i+1)
j +X

(i)
k SkX

(i)
k +Qk = 0, (6)

k = 1, . . . , N, i = 0, 1, . . . .

The convergence of Newton’s method is locally quadratic, but it may be time-consuming to compute the

n× n matrices X
(i+1)
k (k = 1, . . . , N) from (6) when n is large.

The Lyapunov iteration for (5)

(Dk − SkX(i)
k )TX

(i+1)
k +X

(i+1)
k (Dk − SkX(i)

k ) +

N∑
j=1,j 6=k

λkjX
(i)
j +X

(i)
k SkX

(i)
k +Qk = 0, (7)

k = 1, . . . , N, i = 0, 1, . . . ,

has been studied in [5] and [6]. The matrices X
(i+1)
k in (7) can be computed efficiently by the Bartels–Stewart

algorithm [1].
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The modified Lyapunov iteration for (5)

(Dk − SkX(i)
k )TX

(i+1)
k +X

(i+1)
k (Dk − SkX(i)

k ) +

k−1∑
j=1

λkjX
(i+1)
j

+

N∑
j=k+1

λkjX
(i)
j +X

(i)
k SkX

(i)
k +Qk = 0, k = 1, . . . , N, i = 0, 1, . . . , (8)

has been studied in [3] and [8], in an attempt to speed up the convergence of the Lyapunov iteration.

Note that the matrices X
(i+1)
1 , X

(i+1)
2 , . . . , X

(i+1)
N in (8) can still be computed efficiently, in this order, by

the Bartels–Stewart algorithm. Numerical experiments in [8] show that the modified Lyapunov iteration
has faster convergence than the Lyapunov iteration. In this paper we will determine and compare the
convergence rates of the iterations (7) and (8). We will be able to confirm that the modified Lyapunov
iteration indeed has faster convergence than the Lyapunov iteration.

The next result about the modified Lyapunov iteration is a slight modification of [8, Theorem 2.1], which
does not require the mean-square stabilizability of (A,B) and the mean-square detectability of (C,A).

Theorem 1. Let Rk(X1, . . . , XN ) = DT
kXk+XkDk−XkSkXk+Qk+

∑N
j=1,j 6=k λkjXj, k = 1, . . . , N , where

Dk, Sk, Qk are as in (4). Assume that there exist real symmetric matrices X̂k, X
(0)
k , k = 1, . . . , N , such that

Rk(X̂1, . . . , X̂N ) ≥ 0, X
(0)
k ≥ X̂k,Rk(X

(0)
1 , . . . , X

(0)
N ) ≤ 0 and σ(Dk − SkX(0)

k ) ⊂ C< for all k = 1, . . . , N .

Then the sequence {(X(i)
1 , . . . , X

(i)
N )} defined by (8) has the following properties:

(i) X
(i)
k ≥ X

(i+1)
k , X

(i)
k ≥ X̂k and Rk(X

(i)
1 , . . . , X

(i)
N ) ≤ 0, k = 1, . . . , N, i = 0, 1, . . ..

(ii) σ(Dk − SkX(i)
k ) ⊂ C<, k = 1, . . . , N, i = 0, 1, . . ..

(iii) The sequence {(X(i)
1 , . . . , X

(i)
N )} converges to a solution (X̃1, . . . , X̃N ) of (5), and X̃k ≥ X̂k for k =

1, . . . , N .
(iv) σ(Dk−SkX̃k) ⊂ C≤ for k = 1, . . . , N . If Rk(X̂1, . . . , X̂N ) > 0 for k = 1, . . . , N , then σ(Dk−SkX̃k) ⊂

C< for k = 1, . . . , N .

Remark 1. In Theorem 2.1 (i) of [8], the weaker result Rk(X
(i)
1 , . . . , X

(i)
N ) ≤

∑k−1
j=1 λkj(X

(i)
j −X

(i+1)
j ) was

given. However, the stronger result that Rk(X
(i)
1 , . . . , X

(i)
N ) ≤ 0 was essentially proved in [8]. In fact, by

equations (18) and (19) of [8] we have

Rk(X
(r)
1 , . . . , X

(r)
N ) = −

N∑
j=k+1

λkj(X
(r−1)
j −X(r)

j )− (X
(r−1)
k −X(r)

k )Sk(X
(r−1)
k −X(r)

k ) ≤ 0

for any r ≥ 1.

For theoretical analysis of the coupled equations (5), it is more convinient to rewrite them into one
equation. As in [3] and [8], we let

D = diag(D1, . . . , DN ), S = diag(S1, . . . , SN ), Q = diag(Q1, . . . , QN ), (9)

X = diag(X1, . . . , XN ), Π(X) = diag

∑
j 6=1

λ1jXj , . . . ,
∑
j 6=N

λNjXj

 . (10)

So (5) becomes

DTX +XD −XSX +Q+ Π(X) = 0. (11)

In the next section we will study (11) in a more general setting. Our results will cover iterations (6),
(7), and (8) simultaneously. In particular, Theorem 1 above will be obtained as a special case of our general
results.
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2. Iterative solution of a linearly perturbed Riccati equation

Let H be the linear space of all p× p Hermitian matrices over the field R. We consider the equation

R(X) = D∗X +XD −XSX +Q+ Π(X) = 0, (12)

where D,S,Q ∈ Cp×p, Q∗ = Q, S∗ = S, S ≥ 0, and Π is a positive linear operator from H into itself, i.e.,
Π(X) ≥ 0 whenever X ≥ 0. The Riccati function R is thus a mapping from H into itself. Matrix Riccati
equations of this type have been studied in [2, 4, 7, 12, 13]. A solution X+ of (12) is called maximal if
X+ ≥ X for any solution X. The maximal solution is often the desired solution in applications.

The Fréchet derivative of R at a matrix X ∈ H is a linear operator R′X : H → H given by

R′X(H) = (D − SX)∗H +H(D − SX) + Π(H). (13)

Newton’s method for the solution of (12) is

Xi+1 = Xi − (R′Xi
)−1R(Xi), i = 0, 1, . . . . (14)

By (13), the iteration (14) is equivalent to

(D − SXi)
∗Xi+1 +Xi+1(D − SXi) + Π(Xi+1) = −XiSXi −Q, i = 0, 1, . . . . (15)

The spectrum of any linear operator L will be denoted by σ(L). The following result, obtained in [2],
shows that the maximal solution of (12) can be found by Newton’s method under suitable conditions.

Theorem 2. Assume that there exist Hermitian matrices X̂ and X0 such that R(X̂) ≥ 0 and σ(R′X0
) ⊂ C<.

Then the Newton sequence {Xi}∞i=0 is well defined and the following are true:

(i) Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 1.

(ii) σ(R′Xk
) ⊂ C<, k ≥ 0.

(iii) limk→∞Xk = X+ is the maximal solution of (12).

(iv) σ(R′X+
) ⊂ C≤.

Note that the solution of the linear equation (15) is required in each step of the Newton iteration. The
presence of the linear operator Π on the left hand side will usually make solving this equation very expensive
when n is large. This observation has lead to the consideration of the iteration

(D − SXi)
∗Xi+1 +Xi+1(D − SXi) = −Π(Xi)−XiSXi −Q, i = 0, 1, . . . , (16)

in [7].
The modified Lyapunov iteration (8) suggests that we decompose the positive operator Π as Π = Φ + Ψ,

where Φ and Ψ are also positive operators, and consider the iteration

(D − SXi)
∗Xi+1 +Xi+1(D − SXi) + Φ(Xi+1) = −Ψ(Xi)−XiSXi −Q, i = 0, 1, . . . . (17)

If Φ = Π then we get the Newton iteration (15). If Φ = 0 then we get the iteration (16). However, other
choices of Φ may produce more efficient iterations.

We note that iteration (17) can be rewritten as

(D − SXi)
∗(Xi+1 −Xi) + (Xi+1 −Xi)(D − SXi) + Φ(Xi+1 −Xi) = −R(Xi), i = 0, 1, . . . . (18)

To study the convergence behaviour of iteration (17), we need some results from [2].
We first note that H is a Hilbert space with the Frobenius inner product 〈X,Y 〉 = trace(XY ). For a

linear operator L on H, let ρ(L) = max{|λ| : λ ∈ σ(L)} denote the spectral radius, and β(L) = max{Re(λ) :
λ ∈ σ(L)} the spectral abscissa. L is called stable if σ(L) ⊂ C<, inverse positive if L−1 exists and is positive,
resolvent positive if the operator αI − L is inverse positive for all sufficiently large α > 0.
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Theorem 3. (see [2]) Let L : H → H be resolvent positive and Π : H → H be positive. Then L+ Π is also
resolvent positive. Moreover, the following are equivalent.

(i) L+ Π is stable.

(ii) −(L+ Π) is inverse positive.

(iii) There exists X > 0 such that (L+ Π)(X) < 0.

(iv) L is stable and ρ(L−1Π) < 1.

Theorem 4. (see [2]) If L : H → H is resolvent positive, then β(L) ∈ σ(L) and there exists a nonzero
matrix V ≥ 0 such that L(V ) = β(L)V .

As noted in [2], if L is resolvent positive, then the adjoint operator L∗ is also resolvent positive and
β(L∗) = β(L).

Lemma 5. (see [2]) For any A ∈ Cp×p, the linear operator LA : H → H defined by

LA(H) = A∗H +HA

is resolvent positive. The adjoint operator of LA is given by (LA)∗(H) = AH +HA∗.

We are now ready to prove the following convergence result for iteration (17), which is an extension of
Theorem 2.2 of [7].

Theorem 6. Assume that there exist Hermitian matrices X̂ and X0 such that R(X̂) ≥ 0, X0 ≥ X̂, R(X0) ≤
0, and σ(LD−SX0 + Φ) ⊂ C<. Then the iteration (17) defines a sequence {Xk} such that

(i) Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 0.

(ii) σ(LD−SXk
+ Φ) ⊂ C<, k ≥ 0.

(iii) limk→∞Xk = X̃ is a solution of (12) and X̃ ≥ X̂.

(iv) σ(LD−SX̃ + Φ) ⊂ C≤. If R(X̂) > 0, then σ(LD−SX̃ + Φ) ⊂ C<.

Proof. We prove by induction that for each i ≥ 0, Xi+1 is uniquely determined and

Xi ≥ Xi+1, Xi ≥ X̂, R(Xi) ≤ 0, σ(LD−SXi + Φ) ⊂ C<. (19)

For i = 0, we already have X0 ≥ X̂, R(X0) ≤ 0, and σ(LD−SX0 + Φ) ⊂ C<. By (18) with i = 0, Lemma 5
and Theorem 3, X1 is uniquely determined and X0 ≥ X1. We now assume that Xk+1 is uniquely determined
and (19) is true for i = k (k ≥ 0). By (17) with i = k, we have

(D − SXk)∗(Xk+1 − X̂) + (Xk+1 − X̂)(D − SXk) + Φ(Xk+1 − X̂)

= −Ψ(Xk)−XkSXk −Q−D∗X̂ − X̂D − Φ(X̂) +XkSX̂ + X̂SXk

= −Ψ(Xk)−XkSXk −R(X̂) + Ψ(X̂)− X̂SX̂ +XkSX̂ + X̂SXk

= −Ψ(Xk − X̂)− (Xk − X̂)S(Xk − X̂)−R(X̂). (20)

So

(D − SXk)∗(Xk+1 − X̂) + (Xk+1 − X̂)(D − SXk) + Φ(Xk+1 − X̂) ≤ −R(X̂) ≤ 0. (21)

Therefore, Xk+1 ≥ X̂ by Theorem 3. To show that LD−SXk+1
+ Φ is stable, we write D − SXk+1 =

D − SXk + S(Xk −Xk+1) and use (20) to get

(D − SXk+1)∗(Xk+1 − X̂) + (Xk+1 − X̂)(D − SXk+1) + Φ(Xk+1 − X̂)

≤ −Ψ(Xk − X̂)− (Xk − X̂)S(Xk − X̂) + (Xk −Xk+1)S(Xk+1 − X̂) + (Xk+1 − X̂)S(Xk −Xk+1)

= −Ψ(Xk − X̂)− (Xk+1 − X̂)S(Xk+1 − X̂)− (Xk −Xk+1)S(Xk −Xk+1).
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So

(LD−SXk+1
+ Φ)(Xk+1 − X̂) ≤ −(Xk −Xk+1)S(Xk −Xk+1). (22)

We also have

(LD−SXk+1
+ Φ)(Xk+1 − X̂) ≤ −Ψ(Xk − X̂)− (Xk −Xk+1)S(Xk −Xk+1), (23)

which will be needed later.
If LD−SXk+1

+ Φ is not stable, we know from Theorem 4 that (LD−SXk+1
+ Φ)∗(V ) = βV for some

nonzero V ≥ 0 and some number β ≥ 0. Therefore,

〈V, (LD−SXk+1
+ Φ)(Xk+1 − X̂)〉 = 〈βV,Xk+1 − X̂〉 ≥ 0.

On the other hand, we have by (22) that

〈V, (LD−SXk+1
+ Φ)(Xk+1 − X̂)〉 ≤ −〈V, (Xk −Xk+1)S(Xk −Xk+1)〉 ≤ 0.

Therefore,
〈V, (Xk −Xk+1)S(Xk −Xk+1)〉 = 0.

So, trace
(
V 1/2(Xk −Xk+1)S1/2S1/2(Xk −Xk+1)V 1/2

)
= 0. It follows that S1/2(Xk −Xk+1)V 1/2 = 0 and

thus S(Xk −Xk+1)V = 0. Now, by Lemma 5,

(LD−SXk
+ Φ)∗(V ) = (D − SXk)V + V (D − SXk)∗ + Φ∗(V )

= (LD−SXk+1
+ Φ)∗(V ) + S(Xk+1 −Xk)V + V (Xk+1 −Xk)S

= (LD−SXk+1
+ Φ)∗(V ) = βV,

which is contradictory to the stability of LD−SXk
+ Φ.

We have thus proved that LD−SXk+1
+ Φ is stable. So, Xk+2 is uniquely determined and by (17) with

i = k + 1 and then with i = k we get

(D − SXk+1)∗(Xk+1 −Xk+2) + (Xk+1 −Xk+2)(D − SXk+1) + Φ(Xk+1 −Xk+2)

=
(
D − SXk + S(Xk −Xk+1)

)∗
Xk+1 +Xk+1

(
D − SXk + S(Xk −Xk+1)

)
+Φ(Xk+1) + Ψ(Xk+1) +Xk+1SXk+1 +Q

= −Ψ(Xk −Xk+1)−XkSXk +Xk+1SXk+1 + (Xk −Xk+1)SXk+1 +Xk+1S(Xk −Xk+1)

= −Ψ(Xk −Xk+1)− (Xk −Xk+1)S(Xk −Xk+1) ≤ 0.

Therefore, Xk+1 ≥ Xk+2. Since

(D − SXk+1)∗(Xk+1 −Xk+2) + (Xk+1 −Xk+2)(D − SXk+1) + Φ(Xk+1 −Xk+2) = R(Xk+1)

by (18) with i = k + 1, we have also obtained R(Xk+1) ≤ 0. The induction process is now complete. Thus,
the sequence {Xk} is well defined, monotonically decreasing, and bounded below by X̂. Let limk→∞Xk = X̃.
We have X̃ ≥ X̂. By taking limits in (17), we see that X̃ is a solution of (12). Since σ(LD−SXk

+ Φ) ⊂ C<
for each k, σ(LD−SX̃ + Φ) ⊂ C≤. If R(X̂) > 0, then we have (LD−SX̃ + Φ)(X̃ − X̂) < 0 by letting
k → ∞ in (21). If LD−SX̃ + Φ is not stable, we have (LD−SX̃ + Φ)∗(V ) = βV for some nonzero V ≥ 0

and some number β ≥ 0. Therefore, 〈V, (LD−SX̃ + Φ)(X̃ − X̂)〉 = 〈βV, X̃ − X̂〉 ≥ 0. On the other hand,

we have 〈V, (LD−SX̃ + Φ)(X̃ − X̂)〉 < 0 since (LD−SX̃ + Φ)(X̃ − X̂) < 0. The contradiction shows that
σ(LD−SX̃ + Φ) ⊂ C<. �

The next result is an extension of Theorem 2.8 of [7]. The assumption in Theorem 6 that σ(LD−SX0+Φ) ⊂
C< is replaced by the stronger assumption that σ(R′X0

) ⊂ C<. That X0 ≥ X̂ is no longer given as an
assumption, but can be proved from other assumptions given. The conclusions (ii), (iii), (iv) in the next
theorem are accordingly stronger than those in Theorem 6.
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Theorem 7. Assume that there exist Hermitian matrices X̂ and X0 such that R(X̂) ≥ 0, R(X0) ≤ 0, and
σ(R′X0

) ⊂ C<. Then the iteration (17) defines a sequence {Xk} such that

(i) Xk ≥ Xk+1, Xk ≥ X̂, R(Xk) ≤ 0, k ≥ 0.

(ii) σ(R′Xk
) ⊂ C<, k ≥ 0.

(iii) limk→∞Xk = X+, the maximal solution of (12).

(iv) σ(R′X+
) ⊂ C≤.

Proof. By Theorem 2 on Newton’s method, XN
1 = X0 − (R′X0

)−1R(X0) ≥ X̂. Since R(X0) ≤ 0 and

−R′X0
is inverse positive by Theorem 3, we also have X0 ≥ XN

1 . Thus X0 ≥ X̂. Since R′X0
is stable, we

know from Theorem 3 that the operator LD−SX0
+ Φ is also stable. Therefore, all conclusions of Theorem

6 are true. Since limk→∞Xk = X̃ ≥ X̂ and X̂ can be any solution of (12), we have X̃ = X+. We have thus
proved (i) and (iii) of the theorem. Since (iv) follows from (ii), we need only to prove (ii). Assuming that
R′Xk

is stable for some k ≥ 0, we need to prove that R′Xk+1
is also stable. If R′Xk+1

is not stable, we know

from Theorem 4 that (R′Xk+1
)∗(V ) = βV for some nonzero V ≥ 0 and some number β ≥ 0. Thus

〈V,R′Xk+1
(Xk+1 − X̂)〉 = 〈βV,Xk+1 − X̂〉 ≥ 0.

On the other hand, we have by (23) that

R′Xk+1
(Xk+1 − X̂) = (LD−SXk+1

+ Φ)(Xk+1 − X̂) + Ψ(Xk+1 − X̂)

≤ −Ψ(Xk −Xk+1)− (Xk −Xk+1)S(Xk −Xk+1)

≤ −(Xk −Xk+1)S(Xk −Xk+1),

and then 〈V,R′Xk+1
(Xk+1 − X̂)〉 ≤ −〈V, (Xk −Xk+1)S(Xk −Xk+1)〉 ≤ 0. Therefore,

〈V, (Xk −Xk+1)S(Xk −Xk+1)〉 = 0.

So S(Xk −Xk+1)V = 0 as before. Now, by Lemma 5,

(R′Xk
)∗(V ) = (D − SXk)V + V (D − SXk)∗ + Π∗(V )

= (R′Xk+1
)∗(V ) + S(Xk+1 −Xk)V + V (Xk+1 −Xk)S

= (R′Xk+1
)∗(V ) = βV,

which is contradictory to the stability of R′Xk
. �

Remark 2. We have the following comments on Theorem 7.

(a) If it is difficult to choose an X0 with R′X0
stable and R(X0) ≤ 0, by Theorem 2 we may get such an X0

by applying one Newton iteration on a Hermitian matrix X−1 such that R′X−1
is stable.

(b) By [2, Theorem 7.2], the conclusion (iv) in Theorem 7 can be strengthened to σ(R′X+
) ⊂ C< if there is

a Hermitian matrix X̂ such that R(X̂) > 0.

For iteration (17), linear convergence can be guaranteed if R′X+
is stable. This will be a consequence of

the following general result.

Theorem 8. (see [9, p. 21]) Let T be a (nonlinear) operator from a Banach space E into itself and
x∗ ∈ E be a solution of x = Tx. If T is Fréchet differentiable at x∗ with ρ(T ′x∗) < 1, then the iterates
xk+1 = Txk (k = 0, 1, . . .) converge to x∗, provided that x0 is sufficiently close to x∗. Moreover, for any
ε > 0,

‖xk − x∗‖ ≤ c(x0; ε)
(
ρ(T ′x∗) + ε

)k
,

where ‖ · ‖ is the norm in E and c(x0; ε) is a constant independent of k.
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Theorem 9. Let the sequence {Xk} be as in Theorem 7. If R′X+
is stable, then

lim sup
k→∞

k
√
‖Xk −X+‖ ≤ ρ

(
−(LD−SX+ + Φ)−1Ψ

)
< 1,

where ‖ · ‖ is any matrix norm.

Proof. The iteration (17) can be written as Xi+1 = F (Xi) with

F (X) = (LD−SX + Φ)−1(−Ψ(X)−XSX −Q).

Routine computations yield

F (X+ +H)− F (X+) = −(LD−SX+ + Φ)−1Ψ(H) + o(H),

where o(H) denotes some matrix W (H) with lim‖H‖→0
‖W (H)‖
‖H‖ = 0. Therefore, the Fréchet derivative of F

at the matrix X+ is F ′X+
= −(LD−SX+

+ Φ)−1Ψ. Since R′X+
is stable, we have ρ

(
(LD−SX+

+ Φ)−1Ψ
)
< 1

by Theorem 3. Therefore,

lim sup
k→∞

k
√
‖Xk −X+‖ ≤ ρ

(
−(LD−SX+

+ Φ)−1Ψ
)
< 1

by Theorems 7 and 8. �

While we have lim supk→∞
k
√
‖Xk −X+‖ ≤ ρ

(
−(LD−SX+

+ Φ)−1Ψ
)

in Theorem 9, equality typically
holds in situations like this. It is a common practice that the spectral radius is used to judge the rate of
convergence for a generic starting matrix X0. We will now examine the effect of the decomposition of the
operator Π on the rate of convergence.

Theorem 10. Consider two decompositions of the operator Π: Π = Φ1 + Ψ1 and Π = Φ2 + Ψ2, where
Φ1,Ψ1,Φ2,Ψ2 are positive operators. If R′X+

is stable and Ψ1 ≤ Ψ2, then

ρ
(
−(LD−SX+ + Φ1)−1Ψ1

)
≤ ρ
(
−(LD−SX+ + Φ2)−1Ψ2

)
.

Proof. Let Γ = −LD−SX+ − Π. Then Γ is inverse positive by Theorem 3 and Γ = Ω1 − Ψ1 = Ω2 − Ψ2,

where Ωk = −(LD−SX+ + Φk) are inverse positive for k = 1, 2. We need to show ρ(Ω−11 Ψ1) ≤ ρ(Ω−12 Ψ2) .
Note that for k = 1, 2,

Ω−1k Ψk = (Γ + Ψk)−1Ψk = (I + Γ−1Ψk)−1Γ−1Ψk.

So the eigenvalues λ(k) of Γ−1Ψk and the eigenvalues µ(k) of Ω−1k Ψk are related by µ(k) = λ(k)

1+λ(k) . Since the

function f(x) = x
1+x is increasing for x ≥ 0, the largest real eigenvalue of Ω−1k Ψk corresponds to the largest

real eigenvalue of Γ−1Ψk. By the Perron–Frobenius theory (see [10, Theorem 2.1], [11, Theorem 7] or [2,
Theorem 3.5]), we know that ρ(Γ−1Ψk) is the largest real eigenvalue of Γ−1Ψk and ρ(Ω−1k Ψk) is the largest
real eigenvalue of Ω−1k Ψk. Therefore,

ρ(Ω−1k Ψk) =
ρ(Γ−1Ψk)

1 + ρ(Γ−1Ψk)
. (24)

When 0 ≤ Ψ1 ≤ Ψ2, we have 0 ≤ Γ−1Ψ1 ≤ Γ−1Ψ2. Thus ρ(Γ−1Ψ1) ≤ ρ(Γ−1Ψ2) (see [10, Theorem 4.2]
or [2, Theorem 3.5]), and then ρ(Ω−11 Ψ1) ≤ ρ(Ω−12 Ψ2) by (24). �
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3. Application to coupled Riccati equations for jump linear systems

The coupled Riccati equations have been writtten in the form of (11), which is a special case of (12)
since we can allow X in (11) to be any Nn×Nn Hermitian matrix with X1, . . . , XN being its n×n diagonal
blocks. The operator Π in (11) is then a positive operator from H into itself, where H is the linear space
of all Nn×Nn Hermitian matrices over the field R. When X has the special form X = diag(X1, . . . , XN ),
we have R(X) = diag (R1(X1, . . . , XN ), . . . ,RN (X1, . . . , XN )). With the assumptions in Theorem 1 about

iteration (8), we can let X̂ = diag(X̂1, . . . , X̂N ) and X(0) = diag(X
(0)
1 , . . . , X

(0)
N ), and verify all assumptions

in Theorem 6.
Indeed, for iteration (8) the operator Φ is defined by

Φ(X) = diag

∑
j<1

λ1jXj , . . . ,
∑
j<N

λNjXj

 ,

and for X = diag(X1, . . . , XN ) we can show that σ(LD−SX +Φ) ⊂ C< if and only if σ(Dk−SkXk) ⊂ C< for
k = 1, . . . , N . Suppose σ(LD−SX+Φ) ⊂ C<. Then σ(LD−SX) ⊂ C< by Theorem 3 and so σ(D−SX) ⊂ C<.
Thus σ(Dk − SkXk) ⊂ C< for k = 1, . . . , N . In the other direction, we suppose that σ(Dk − SkXk) ⊂ C<
for k = 1, . . . , N , and need to show that λ = β(LD−SX + Φ) < 0. By Theorem 4 there is a nonzero matrix
V ≥ 0 such that (LD−SX + Φ)V = λV . Let the diagonal blocks of V be V1, . . . , VN and let r be the smallest
integer such that Vr 6= 0. Then LDr−SrXrVr = λVr. Thus λ < 0 since σ(Dr − SrXr) ⊂ C<.

Now we have all the conclusions in Theorem 6. It is readily seen that each matrix X(k) has the form

X(k) = diag(X
(k)
1 , . . . , X

(k)
N ). All conclusions in Theorem 1 follow immediately.

We also note that all conclusions in [8, Corollary 2.2] about iteration (7), where Φ = 0, follow from
Theorem 6 directly.

We now assume that (A,B) is mean-square stabilizable and (C,A) is mean-square detectable, as in
the first part of Section 1. So the coupled Riccati equations (1) has a unique positive semidefinite so-
lution (X̃1, . . . , X̃N ) and (A1 − S1X̃1, . . . , AN − SN X̃N ) is mean-square stable. Thus, there exists M =
(M1, . . . ,MN ), with Mk > 0 for k = 1, . . . , N , such that

(Ak−SkX̃k)TMk+Mk(Ak−SkX̃k)+

N∑
j=1

λkjMj = (Dk−SkX̃k)TMk+Mk(Dk−SkX̃k)+

N∑
j=1,j 6=k

λkjMj < 0

for k = 1, . . . , N . Let X̃ = diag(X̃1, . . . , X̃N ) and M = diag(M1, . . . ,MN ) > 0. We then have (LD−SX̃ +
Π)(M) < 0. By Theorem 3 we have σ(R′

X̃
) = σ(LD−SX̃ + Π) ⊂ C<.

To apply Theorem 7, we can take X̂ = 0 and any X(0) = diag(X
(0)
1 , . . . , X

(0)
N ) ≥ 0 with R(X0) ≤ 0 and

σ(R′X0
) ⊂ C<. We conclude thatX(k) = diag(X

(k)
1 , . . . , X

(k)
N ) converges toX+ = diag((X+)1, . . . , (X+)N ) ≥

0. So ((X+)1, . . . , (X+)N ) = (X̃1, . . . , X̃N ), the unique positive semidefinite solution of (1). If iterations (7)
and (8) are used, then the convergence of either iteration is linear by Theorem 9, and the convergence of
(8) is faster by Theorem 10.

We can also apply Theorem 6 for iterations (7) and (8), with X̂ = 0 and anyX(0) = diag(X
(0)
1 , . . . , X

(0)
N ) ≥

0 such that R(X0) ≤ 0 and σ(Dk − SkX(0)
k ) ⊂ C< for k = 1, . . . , N . In this case we have σ(R′Xk

) ⊂ C< for
some k ≥ 0 and we still have the above conclusions about iterations (7) and (8).

When the matrix Λ in (2) more resembles an upper triangular matrix, we may use, instead of iteration
(8), the following modified Lyapunov iteration

(Dk − SkX(i)
k )TX

(i+1)
k +X

(i+1)
k (Dk − SkX(i)

k ) +

N∑
j=k+1

λkjX
(i+1)
j

+

k−1∑
j=1

λkjX
(i)
j +X

(i)
k SkX

(i)
k +Qk = 0, k = N,N − 1, . . . , 1, i = 0, 1, . . . . (25)
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The results in Section 2 (Theorems 6, 7, 9, 10) can be applied to iteration (25) directly. In particular, the
convergence of iteration (25) is also faster than that of iteration (7).
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