
Numerical Algorithms manuscript No.
(will be inserted by the editor)

Monotone convergence of Newton-like methods for
M-matrix algebraic Riccati equations

Chun-Hua Guo

Received: date / Accepted: date

Abstract For the algebraic Riccati equation whose four coefficient matrices
form a nonsingular M -matrix or an irreducible singular M -matrix K, the min-
imal nonnegative solution can be found by Newton’s method and the doubling
algorithm. When the two diagonal blocks of the matrix K have both large
and small diagonal entries, the doubling algorithm often requires many more
iterations than Newton’s method. In those cases, Newton’s method may be
more efficient than the doubling algorithm. This has motivated us to study
Newton-like methods that have higher-order convergence and are not much
more expensive each iteration. We find that the Chebyshev method of order
three and a two-step modified Chebyshev method of order four can be more
efficient than Newton’s method. For the Riccati equation, these two Newton-
like methods are actually special cases of the Newton–Shamanskii method.
We show that, starting with zero initial guess or some other suitable initial
guess, the sequence generated by the Newton–Shamanskii method converges
monotonically to the minimal nonnegative solution. We also explain that the
Newton-like methods can be used to great advantage when solving some Ric-
cati equations involving a parameter.

Keywords Algebraic Riccati equation · M -matrix · Minimal nonnegative
solution · Newton-like method · Chebyshev’s method · Monotone convergence

Mathematics Subject Classification (2000) 15A24 · 65F30 · 65H10

This work was supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada

Chun-Hua Guo
Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2,
Canada
E-mail: chguo@math.uregina.ca

2 Chun-Hua Guo

1 Introduction

We consider the algebraic Riccati equation (ARE)

R(X) = XCX −XD −AX +B = 0, (1)

where A,B,C,D are real matrices of sizes m×m,m×n, n×m,n×n, respec-
tively, and the matrix

K =

[
D −C
−B A

]
(2)

is a nonsingular M -matrix or an irreducible singular M -matrix. Such an ARE
has been called an M -matrix ARE in [30] and the acronym MARE is used
there. We will adopt this acronym in this paper. Some relevant definitions
are as follows. For any matrices A,B ∈ Rm×n, we write A ≥ B (A > B) if
aij ≥ bij(aij > bij) for all i, j. A real square matrix A is called a Z-matrix if
all its off-diagonal elements are nonpositive. Note that any Z-matrix A can be
written as sI−B with B ≥ 0. A Z-matrix A is called an M -matrix if s ≥ ρ(B),
where ρ(·) is the spectral radius; it is a singular M -matrix if s = ρ(B) and a
nonsingular M -matrix if s > ρ(B).

The MARE (1) has applications in transport theory and Markov models
[21,25]. The solution of practical interest is the minimal nonnegative solution.
The equation has been studied in many papers [1,4,6,8,9,11–18,20–22,29,30]
and has been a main topic in the recent monograph [5].

For application to Markov models, the case of primary interest is the one
where K is an irreducible singular M -matrix with zero row sums. When K is
an irreducible singular M -matrix, there are positive vectors u1, v1 ∈ Rn and
u2, v2 ∈ Rm such that

M(vT1 vT2)T = 0, (uT1 uT2)M = 0, (3)

and the vectors (vT1 vT2) and (uT1 uT2) are each unique up to a scalar multiple.
Some properties of the MARE (1) are summarized below. See [11,12,14]

for more details.

Theorem 1 The MARE (1) has a minimal nonnegative solution S. If K is
irreducible, then S > 0 and A− SC and D − CS are irreducible M -matrices.
If K is a nonsingular M -matrix, then A − SC and D − CS are nonsingular
M -matrices. If K is an irreducible singular M -matrix with uT1 v1 6= uT2 v2, then
one of the matrices A − SC and D − CS is a singular M -matrix and the
other is a nonsingular M -matrix. If K is an irreducible singular M -matrix
with uT1 v1 = uT2 v2, then the matrices A − SC and D − CS are both singular
M -matrices.

The case where K is an irreducible singular M -matrix with uT1 v1 = uT2 v2
will be called a critical case. In this case, the matrix

I ⊗ (A− SC) + (D − CS)T ⊗ I (4)

Newton-like methods for algebraic Riccati equations 3

is a singular M -matrix, where ⊗ is the Kronecker product. For the non-critical
case (where K is a nonsingular M -matrix or an irreducible singular M -matrix
with uT1 v1 6= uT2 v2), the matrix (4) is a nonsingular M -matrix.

The dual equation of (1):

Y BY − Y A−DY + C = 0. (5)

is also an M -matrix ARE [11], and its minimal nonnegative solution will be

denoted by Ŝ.
A number of iterative methods for finding the minimal solution of the

MARE (1) are already available. They include a class of basic fixed-point it-
erations [11,16], Newton’s method [11,14,16], inexact Newton methods [9],
and different versions of the doubling algorithm [6,18,29]. For the non-critical
case, the convergence of the basic fixed-point iterations is linear while the
convergence of Newton’s method and the doubling algorithm is quadratic. In
most cases, the doubling algorithm is more efficient than Newton’s method.
However, when the two diagonal blocks of the matrix K have both large and
small diagonal entries, the doubling algorithm often requires many more iter-
ations than Newton’s method. In those cases, Newton’s method may be more
efficient than the doubling algorithm even though the computational work
for Newton’s method is roughly three times that for the doubling algorithm.
This has motivated us to study Newton-like methods that have higher-order
convergence and are not much more expensive each iteration.

2 Newton-like methods

The Riccati function R in (1) is a mapping from Rm×n into itself. The Fréchet
derivative of R at a matrix X is a linear map R′X : Rm×n → Rm×n given by

R′X(Z) = −
(
(A−XC)Z + Z(D − CX)

)
. (6)

The second derivative at X, R′′X : Rm×n × Rm×n → Rm×n, is given by

R′′X(Z1, Z2) = Z1CZ2 + Z2CZ1. (7)

Newton’s method for a solution of (1) is

Xi+1 = Xi − (R′Xi
)−1R(Xi), i = 0, 1, . . . , (8)

where the maps R′Xi
all need to be invertible. By (6), the iteration (8) is

equivalent to

(A−XiC)Xi+1 +Xi+1(D − CXi) = B −XiCXi, i = 0, 1, (9)

We can also compute Xi+1 directly from (8). So Xi+1 = Xi +Hi, where Hi is
solved from

(A−XiC)Hi +Hi(D − CXi) = R(Xi), i = 0, 1, (10)

4 Chun-Hua Guo

To assess the computational cost of Newton’s method, we make the sim-
plifying assumption that m = n. The main computational work is with the
solution of a Lyapunov equation of the form PX +XQ = R. It is about 60n3

flops by the Bartels–Stewart algorithm [2], with 50n3 flops used to get the
real Schur forms for P and Q. (Here we use the operation counts as given in
Appendix C of [19].) If we use (9), forming the matrices P,Q,R requires 6n3

flops; if we use (10), forming the matrices P,Q,R requires 8n3 flops, noting
that R(X) = X(CX−D)−AX+B. So the total computational work for the
two versions of Newton’s method is 66n3 and 68n3, respectively. The second
version tends to provide better accuracy since it implements Newton’s method
in the form of a correction method. Besides, the residual R(Xi) is often used
in a stopping criterion and needs to be computed anyway. So we will adopt
the second version of Newton’s method. Since the computation of Schur forms
is the most expensive part of the computation, we would like to reuse these
forms for a few more iterations. We thus consider the following Newton-like
method, which is also called the Newton–Shamanskii method.

Algorithm 1 For i = 0, 1, . . .,

Yi,0 = Xi − (R′Xi
)−1R(Xi), (11)

Yi,s = Yi,s−1 − (R′Xi
)−1R(Yi,s−1), s = 1, . . . , r, (12)

Xi+1 = Yi,r. (13)

When R′S is invertible, the sequence {Xi} generated by the Newton–
Shamanskii method converges to S if X0 is sufficiently close to S, and the
convergence order is r + 2 (see [23], for example). Note that the method re-
duces to Newton’s method when r = 0. However, we can get better efficiency
by taking a proper r ≥ 1.

For Newton-like methods for the scalar equation f(x) = 0, the concept
of efficiency index has been introduced in [28]. The efficiency index for an
order p method that requires q pieces of information each iteration is defined
to be p1/q. Newton’s method has second order convergence and requires two
pieces of information (one function evaluation and one derivative evaluation),
and thus has efficiency index

√
2 = 1.4142. There have been many papers on

designing Newton-like methods with higher efficient indices; see for example
[26,27] and the references therein. However, this measure of efficiency is already
rough for the scalar case, and cannot be applied to the Riccati equation for
n� 1. We now re-interpret efficiency index using flop counts. For the specific
implementation described above, Newton’s method requires 68n3 flops. So the
efficiency index for Newton’s method is still 1.4142 if we regard 34n3 flops as
one piece of information. For Newton–Shamanskii method, each step in (12)
requires 16n3 flops, since the Schur forms of A−XiC and D−CXi are already
available from the computation in (11). Thus a reasonable efficiency index for
Newton–Shamanskii method should be e(r) = (r+ 2)34/(68+16r). We find that
e(1) = 1.5600, e(2) = 1.6021, e(3) = 1.6028, e(4) = 1.5865, and that e(r) is
monotonically decreasing for r ≥ 3. So we would not use Newton–Shamanskii
method for r ≥ 4. Note that e(2) and e(3) are very close.

Newton-like methods for algebraic Riccati equations 5

We also note that the computational work for Newton–Shamanskii method
for r ≥ 1 can be reduced slightly by combining Yi,0 = Xi − (R′Xi

)−1R(Xi)
and Yi,1 = Yi,0 − (R′Xi

)−1R(Yi,0) into

Yi,1 = Xi +Hi −
1

2
(R′Xi

)−1R′′Xi
(Hi, Hi), (14)

where Hi = −(R′Xi
)−1R(Xi). This is because by Taylor formula we have

R(Yi,0) = R(Xi +Hi) = R(Xi) +R′Xi
(Hi) +

1

2
R′′Xi

(Hi, Hi) =
1

2
R′′Xi

(Hi, Hi).

It is easy to see that computing Yi,1 from (14) requires 82n3 flops, instead of
the 84n3 flops in the original Newton–Shamanskii method. After this modi-
fication, the efficiency index for Newton–Shamanskii method is then e(r) =
(r + 2)34/(66+16r) for r ≥ 1. We find that e(1) = 1.5770, e(2) = 1.6176, e(3) =
1.6161, and that e(r) is monotonically decreasing for r ≥ 2. So there is actually
no need to use Newton–Shamanskii method for r ≥ 3, in our scenario.

If the Hessenberg–Schur method [10] is used to solve the Lyapunov equa-
tion, the flop count is reduced to 130

3 n3, with 10
3 n

3 flops for one Hessen-
berg reduction, 25n3 flops for one Schur decomposition, and 15n3 flops for
the rest of computations. So one Newton iteration now requires 154

3 n3 flops
and we would regard 77

3 n
3 flops as one piece of information. Thus the effi-

ciency index for Newton’s method is still 1.4142 and the efficiency index for
Newton–Shamanskii method would be e(r) = (r+2)(77/3)/((154/3−2)+(15+6)r) =

(r+2)
77

148+63r for r ≥ 1. We find that e(1) = 1.4932, e(2) = 1.4764, and that e(r)
is monotonically decreasing for r ≥ 1. In this scenario, Newton–Shamanskii
method with r = 1 has the highest efficiency index.

Unless otherwise stated, we assume that the Bartels–Stewart algorithm
is used to solve the Lyapunov equation. Thus, to improve the efficiency of
Newton’s method, we can use the above variant of Newton–Shamanskii method
with r = 1, which is now

Xi+1 = Xi +Hi −
1

2
(R′Xi

)−1R′′Xi
(Hi, Hi) i = 0, 1, (15)

This method is also known as Chebyshev’s method [7]. To further improve the
efficiency of Chebyshev’s method, we can use the following modified Chebyshev
method.

Yi = Xi +Hi −
1

2
(R′Xi

)−1R′′Xi
(Hi, Hi), (16)

Xi+1 = Yi − (R′Xi
)−1R(Yi), i = 0, 1, (17)

This modified Chebyshev method is mathematically equivalent to Newton–
Shamanskii method with r = 2.

With the special structure of the MARE (1), we are of course not satisfied
with the local convergence of the Newton–Shamanskii method. We would like
to prove monotone convergence for suitable initial guesses X0 that are not
necessarily close to the minimal nonnegative solution S.

6 Chun-Hua Guo

3 Monotone convergence

For the MARE (1), a monotone convergence result has been proved in [14]
for Newton’s method. For a special MARE that can be reduced to a vector
equation, a monotone convergence result has been proved in [24] when the
Newton–Shamanskii method is applied to the vector equation. In this section
we will prove a monotone convergence result for Newton–Shamanskii method,
for the MARE (1) without any further assumptions. Actually, we will prove
monotone convergence even when the integer r is dependent on i in (12) of
Algorithm 1.

We will need the following result (see [3], for example).

Theorem 2 For a Z-matrix A, the following are equivalent:

(a) A is a nonsingular M -matrix.
(b) A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.

The next result is also well-known and follows readily from Theorem 2.

Lemma 1 Let A be a nonsingular M -matrix. If B ≥ A is a Z-matrix, then
B is also a nonsingular M -matrix. Moreover B−1 ≤ A−1.

Note that the first conclusion in the lemma follows from the equivalence of
(a) and (c) in Theorem 2, and that the second conclusion follows on writing
A = s(I −NA) and B = s(I −NB) with s > 0 and 0 ≤ NB ≤ NA.

For the MARE (1), K in (2) is a nonsingular M -matrix or an irreducible
singular M -matrix. So we have B,C ≥ 0, and A and D are nonsingular M -
matrices (see [11], for example). Therefore, the matrix I ⊗A+DT ⊗ I is also
a nonsingular M -matrix.

By (6) the equation −R′X(Z) = W is equivalent to

(I ⊗ (A−XC) + (D − CX)T ⊗ I)vec(Z) = vec(W),

where the vec operator stacks the columns of a matrix into one long vector.
When the matrix I ⊗ (A−XC) + (D−CX)T ⊗ I is a nonsingular M -matrix,
the map R′X is invertible and we know from Theorem 2 that −R′X(Z) ≥ 0
implies Z ≥ 0 and that −R′X(Z) > 0 implies Z > 0.

We note that R′′X in (7) is independent of X and that R′′X(Z1, Z2) ≥ 0
whenever Z1 ≥ 0 and Z2 ≥ 0, since C ≥ 0. When K is irreducible, we have
C 6= 0 and thus R′′X(Z1, Z2) > 0 whenever Z1 > 0 and Z2 > 0.

The next lemma displays three properties that are preserved in each New-
ton iteration. Note that these properties are closely related to the properties
proved by induction for Newton’s method in the proof of Theorem 2.3 in [14].
The main difference is that the first property here is no longer about two
consecutive iterates from Newton’s method. This change is necessary since we
would like to have the freedom to switch to a different method after one or
more Newton iterations, or to switch to Newton’s method after having used a
different method.

Newton-like methods for algebraic Riccati equations 7

Lemma 2 Suppose that a matrix X is such that

(i) R(X) ≥ 0,
(ii) 0 ≤ X ≤ S, and 0 ≤ X < S when K is an irreducible singular M -matrix

with uT1 v1 = uT2 v2,
(iii) I ⊗ (A−XC) + (D − CX)T ⊗ I is a nonsingular M -matrix.

Then the matrix

Y = X − (R′X)−1R(X) (18)

is well defined, and

(a) R(Y) ≥ 0,
(b) 0 ≤ Y ≤ S, and 0 ≤ Y < S when K is an irreducible singular M -matrix

with uT1 v1 = uT2 v2,
(c) I ⊗ (A− Y C) + (D − CY)T ⊗ I is a nonsingular M -matrix.

Proof The matrix Y is well defined by (iii). By the Taylor formula and (18)
we have

R(Y) = R(X) +R′X(Y −X) +
1

2
R′′X(Y −X,Y −X) =

1

2
R′′X(Y −X,Y −X).

So (a) is proved since we have Y −X ≥ 0 by (i), (iii) and (18).
To prove (b), note that Y ≥ X ≥ 0 and

R(S) = R(X) +R′X(S −X) +
1

2
R′′X(S −X,S −X). (19)

So

−R′X(S − Y) = R′X(Y −X)−R′X(S −X)

= −R(X)−R′X(S −X)

=
1

2
R′′X(S −X,S −X),

where we have used (19) and R(S) = 0. Since S − X ≥ 0 by (ii), we have
−R′X(S − Y) ≥ 0 and thus S − Y ≥ 0. If K is an irreducible singular M -
matrix with uT1 v1 = uT2 v2, then we have S − X > 0 by (ii). In this case, we
have −R′X(S − Y) > 0 and thus S − Y > 0. This proves (b).

We now prove (c). If K is a nonsingular M -matrix or an irreducible singular
M -matrix with uT1 v1 6= uT2 v2 , then I⊗(A−SC)+(D−CS)T⊗I is a nonsingular
M -matrix by Theorem 1. Since 0 ≤ Y ≤ S, it follows from Lemma 1 that
I⊗(A−Y C)+(D−CY)T ⊗I is a nonsingular M -matrix. If K is an irreducible
singular M -matrix with uT1 v1 = uT2 v2, then 0 ≤ Y < S. It follows from

R(S) = R(Y) +R′Y (S − Y) +
1

2
R′′Y (S − Y, S − Y)

that

−R′Y (S − Y) = R(Y) +
1

2
R′′Y (S − Y, S − Y) > 0.

8 Chun-Hua Guo

Thus (
I ⊗ (A− Y C) + (D − CY)T ⊗ I

)
vec(S − Y) > 0.

So I⊗(A−Y C)+(D−CY)T ⊗I is a nonsingular M -matrix by Theorem 2. ut

The next lemma is a generalization of Lemma 2, and will be proved using
Lemma 2.

Lemma 3 Suppose that a matrix X is such that

(i) R(X) ≥ 0,
(ii) 0 ≤ X ≤ S, and 0 ≤ X < S when K is an irreducible singular M -matrix

with uT1 v1 = uT2 v2,
(iii) I ⊗ (A−XC) + (D − CX)T ⊗ I is a nonsingular M -matrix.

Then for any matrix Z with 0 ≤ Z ≤ X the matrix

Y = X − (R′Z)−1R(X)

is well defined, and

(a) R(Y) ≥ 0,
(b) 0 ≤ Y ≤ S, and 0 ≤ Y < S when K is an irreducible singular M -matrix

with uT1 v1 = uT2 v2,
(c) I ⊗ (A− Y C) + (D − CY)T ⊗ I is a nonsingular M -matrix.

Proof Since 0 ≤ Z ≤ X, we know from Lemma 1 and (iii) that I⊗ (A−ZC)+
(D−CZ)T ⊗I is also a nonsingular M -matrix. So the matrix Y is well defined,

and Y ≥ X ≥ 0. Let Ŷ = X − (R′X)−1R(X). It follows from Lemma 1 that

0 ≤ vec(Y) ≤ vec(Ŷ) and thus 0 ≤ Y ≤ Ŷ . So (b) is true since by Lemma 2

we have Ŷ ≤ S, and Ŷ < S when K is an irreducible singular M -matrix with
uT1 v1 = uT2 v2. Also, (c) is true by Lemma 1 since I⊗(A−Ŷ C)+(D−CŶ)T ⊗I
is a nonsingular M -matrix by Lemma 2. Finally, (a) is true since we have

R(Y) = R(X) +R′X(Y −X) +
1

2
R′′X(Y −X,Y −X)

= R(X) +R′Z(Y −X) + (R′X −R′Z)(Y −X) +
1

2
R′′X(Y −X,Y −X)

= R′′X(X − Z, Y −X) +
1

2
R′′X(Y −X,Y −X),

and X − Z ≥ 0, Y −X ≥ 0. ut

From Lemma 3 we can easily get the following monotone convergence result
for a modified Newton method.

Theorem 3 Let S be the minimal nonnegative solution of the MARE (1).
For any initial guess X0 satisfying

(i) R(X0) ≥ 0,
(ii) 0 ≤ X0 ≤ S, and 0 ≤ X0 < S when K is an irreducible singular M -matrix

with uT1 v1 = uT2 v2,

Newton-like methods for algebraic Riccati equations 9

(iii) I ⊗ (A−X0C) + (D − CX0)T ⊗ I is a nonsingular M -matrix,

the modified Newton method

Xi+1 = Xi − (R′Xki
)−1R(Xi), 0 ≤ ki ≤ i,

generates a sequence {Xi} with Xk ≤ Xk+1 ≤ S for all k ≥ 0, and limi→∞Xi =
S.

Proof Note that 0 ≤ X0 ≤ S by assumption. Assume that 0 ≤ X0 ≤ X1 ≤
. . . ≤ Xi ≤ S for i ≥ 0. Then 0 ≤ Xkj

≤ Xj for j = 0, 1, . . . , i. So Lemma 3
applies when we generate X1, X2, . . . , Xi+1. In particular, we have R(Xi) ≥ 0,
I ⊗ (A−XiC) + (D − CXi)

T ⊗ I is a nonsingular M -matrix, and Xi+1 ≤ S.
Since 0 ≤ Xki

≤ Xi, I ⊗ (A−Xki
C) + (D−CXki

)T ⊗ I is also a nonsingular
M -matrix by Lemma 1, and thus Xi+1 ≥ Xi. Therefore, we have shown that
0 ≤ X0 ≤ X1 ≤ . . . ≤ Xi+1 ≤ S.

By the induction principle, the sequence {Xi} is well defined, monotonically
increasing, and bounded above by S. So it has a limit X∗. Letting i → ∞ in
R(Xi) = −R′Xki

(Xi+1 −Xi) and noting that {Xki} is bounded, we see that

X∗ is a nonnegative solution of (1). Since X∗ ≤ S and S is the minimal
nonnegative solution of (1), we have X∗ = S. ut

Note that the conditions on X0 in Theorem 3 are always satisfied for X0 =
0. If K is a nonsingular M -matrix or an irreducible singular M -matrix with
uT1 v1 6= uT2 v2, then each of the (basic) fixed-point iterations in [11], with

X̂0 = 0, produces a sequence {X̂i} such that X̂0 ≤ X̂1 ≤ X̂2 ≤ . . . ≤ S

and {X̂i} converges to S linearly. Since I ⊗ (A − SC) + (D − CS)T ⊗ I is a
nonsingular M -matrix by Theorem 1, it follows from Lemma 1 that I ⊗ (A−
X̂iC) + (D−CX̂i)

T ⊗ I is a nonsingular M -matrix for any i ≥ 1. We can also

show that R(X̂i) ≥ 0 for each i ≥ 1, as in the proof of [16, Proposition 4.1].

Therefore, for any i ≥ 1, we can use {X̂i} as an initial guess X0 in Theorem 3.

Corollary 1 Let S be the minimal nonnegative solution of the MARE (1).
For any initial guess X0 as in Theorem 3, the sequence {Xk} generated by the
Newton–Shamanskii method (which includes Newton’s method, Chebychev’s
method and modified Chebyshev method) is monotonically increasing and con-
verges to S.

Proof The result is true since the sequence here is a subsequence of the se-
quence generated by a proper modified Newton method in Theorem 3. ut

We note that the above result holds even when the integer r is dependent on
i in (12) of Algorithm 1.

Each Newton-like method has the form Xk+1 = Xk + ∆k, and we have
established monotone convergence by proving ∆k ≥ 0. In actual computations
it is possible to have some tiny negative entries in the computed ∆k. A simple
strategy to deal with this situation is to set these tiny negative entries to 0.

10 Chun-Hua Guo

4 Numerical results

In this section we will identify two situations where Newton-like methods can
be more efficient than the doubling algorithm. Our numerical results also show
that Chebyshev’s method and modified Chebyshev method have better effi-
ciency than Newton’s method in actual computations, as suggested by the
efficiency indices.

There have been several different versions of the doubling algorithm for the
MARE (1). First, a structure-preserving doubling algorithm (SDA) is intro-
duced in [18] and analyzed for the case where K is a nonsingular M -matrix.
The same algorithm is then analyzed in [15] for the case where K is an irre-
ducible singular M -matrix. The algorithm uses the Cayley transform with a
parameter γ ≥ maxi,j{aii, djj}, where aii and djj are the diagonal entries of A
and D, respectively. It produces four sequences {Ek}, {Fk}, {Gk}, {Hk}, and
one has

lim sup
k→∞

2k
√
‖Hk − S‖ ≤ ρ

(
(V + γI)−1(V − γI)

)
· ρ
(
(W + γI)−1(W − γI)

)
,

(20)

where V = D − CS and W = A − BŜ. Note that the eigenvalues of A − BŜ
are the same as those of A− SC [11,12]. The upper bound in (20) is usually
tight. It is strictly less than 1 in the non-critical case and is exactly 1 in the
critical case. The convergence of SDA in the critical case has been shown to
be linear in [8]. It is shown in [15] that the upper bound in (20) is minimized
when γ = maxi,j{aii, djj}.

Later, the algorithm SDA-ss (SDA combined with the shrink-and-shift
technique) is proposed in [6]. The algorithm is significantly faster than SDA
in some situations.

Recently, Wang, Wang, and Li [29] present an alternating-directional dou-
bling algorithm (ADDA) for the MARE (1). The algorithm uses the general-
ized Cayley transform with two parameters α ≥ maxi aii and β ≥ maxj djj .
It generates four new sequences {Ek}, {Fk}, {Gk}, {Hk}, and one now has

lim sup
k→∞

2k
√
‖Hk − S‖ ≤ ρ

(
(V + αI)−1(V − βI)

)
· ρ
(
(W + βI)−1(W − αI)

)
,

(21)

where the upper bound in (21) is usually tight. It is shown in [29] that this up-
per bound is minimized when α = maxi aii and β = maxi djj and that ADDA
is faster than SDA of [18] and SDA-ss of [6]. In particular, when maxi aii and
maxj djj differ significantly, ADDA with optimal α and β can be significantly
faster than SDA with optimal γ [29]. When α = β, however, ADDA reduces
to SDA.

We can now identify one situation where Newton-like methods can be more
efficient than the doubling algorithms. This is the situation where max aii �
min aii and max djj � min djj , but max aii ≈ max djj .

Newton-like methods for algebraic Riccati equations 11

To illustrate this, we have performed some experiments in MATLAB. We
use the normalized residual

NRes =
‖XCX −XD −AX +B‖1

‖X‖1(‖C‖1‖X‖1 + ‖A‖1 + ‖D‖1) + ‖B‖1

to measure the accuracy of an approximate solution X for the MARE (1). Our
stopping criterion is NRes < 10−14. Since max aii and max djj do not differ by
too much in our examples, SDA, SDA-ss and ADDA have roughly the same
performance. Thus we only need to compare Newton-like methods with SDA of
[18], which will be referred to as the doubling algorithm. We use X0 = 0 for all
Newton-like methods, unless otherwise specified. For m = n sufficiently large,
Newton’s method requires 68n3 flops each iteration, Chebyshev’s method re-
quires 82n3 flops each iteration, and modified Chebyshev method requires 98n3

flops each iteration. The doubling algorithm requires 64
3 n

3 flops each iteration
(Checking the stopping criterion using the residual would require an additional
6n3 flops each iteration for the doubling algorithm. But in practice we can use
a different stopping criterion with a negligible cost).

Example 1 We consider the MARE (1) with

A =

 3 + p −1− p 0
0 3 −1
−2 0 3

 , B =

 1 1 0
0 1 1
0 0 1

 ,
C =

1 1 0
0 1 1
0 0 2

 , D =

3 + p −1− p 0
0 3 −1
−1 0 3

 ,
where p is a parameter. Then matrix K in (2) is an irreducible singular M -
matrix for every p ≥ 0.

In Table 1 we report the number of iterations and the normalized residual
for Newton’s method, Chebyshev’s method, the modified Chebyshev method,
and the doubling algorithm for different values of p. The case p = 0 is the
perfect situation for the doubling algorithm, since all diagonal entries of A
and D are equal. In this case, the doubling algorithm requires 7 iterations, the
same as Newton’s method. As p gets larger, the number of iterations for the
Newton-like methods does not increase at all. For all the p values in the table
we have the non-critical case, so Newton’s method converges quadratically,
while Chebyshev’s method has third order convergence and modified Cheby-
shev method has fourth order convergence. The doubling algorithm converges
quadratically for each p value, but requires more iterations as p gets larger.
This is easily explained by (20) since one of the spectral radius in (20) is ex-
actly 1 for any p ≥ 0 and the other is very close to 1 when γ = 3 + p is very
large.

To illustrate the comparison of these methods for the MARE (1) with
larger coefficient matrices, we consider the MARE (1) with m = n and with
the matrix K in (2) given as follows.

12 Chun-Hua Guo

Table 1 Iteration count and normalized residual for Example 1

p Newton Chebyshev Modified Chebyshev Doubling

0 7 5 4 7
2.6 × 10−15 3.0 × 10−17 4.0 × 10−17 5.3 × 10−17

102 7 5 4 12
1.7 × 10−17 1.7 × 10−17 1.0 × 10−17 8.6 × 10−17

104 6 5 4 18
8.9 × 10−15 1.5 × 10−17 2.1 × 10−17 6.8 × 10−17

106 6 4 4 24
1.0 × 10−16 8.5 × 10−16 1.5 × 10−17 2.4 × 10−16

108 6 4 3 30
2.2 × 10−17 2.1 × 10−17 2.2 × 10−15 3.7 × 10−15

Example 2 We generate the matrix K using MATLAB:

n=100; p=10^6;

K=rand(2*n); K=diag(K*ones(2*n,1))-K;

K(1,1)=K(1,1)+p; K(1,2)=K(1,2)-p;

K(n+1,n+1)=K(n+1,n+1)+p; K(n+1,n+2)=K(n+1,n+2)-p;

The matrix K is again an irreducible singular M -matrix. The results for the
corresponding MARE (1) are reported in Table 2. In terms of flop counts, the
modified Chebyshev method and Chebyshev’s method are more efficient than
Newton’s method for this example. The same can be said even when the Lya-
punov equation is solved by the Hessenberg–Schur method, but the advantage
is very small for this example. In terms of flop counts, all three Newton-
like methods have roughly the same efficiency as the doubling algorithm if
the Lyapunov equation is solved by the Hessenberg–Schur method. When the
Lyapunov equation is solved by the Bartels–Stewart algorithm, the flop count
for the modified Chebyshev method is still slightly larger than that for the
doubling algorithm, but the Newton-like methods have provided smaller nor-
mailized residuals. Using a larger value of p would make Newton-like methods
more favorable. We also find that the Newton-like methods always produce
smaller normalized residuals than the doubling algorithm if we do not apply
the stopping criterion. This is not surprising since Newton-like methods are
correction methods and the doubling algorithm is not.

Table 2 Iteration count and normalized residual for Example 2

Newton Chebyshev Modified Chebyshev Doubling

11 8 6 25
1.2 × 10−16 1.0 × 10−18 1.0 × 10−17 1.9 × 10−15

Newton-like methods for algebraic Riccati equations 13

We now identify a situation where Newton-like methods can be significantly
more efficient than the doubling algorithm. Suppose we need to solve the
MARE (1) involving a parameter. Such a situation could happen when there
is some uncertainty for an entry of the matrix K in (2) and we would like to
determine numerically how sensitive the minimal solution is to the changes in
this entry. We use the following example to illustrate this and we note that
the MARE (1) involving multiple parameters can be considered in the same
way.

Example 3 We consider the MARE (1) with m = n = 100 and

A =


2 + p −1− p

3 −1
. . .

. . .

3 −1
−1 4

 , B =


1
1 1

. . .
. . .

1 1
q 1

 ,

C =


1 1

1 1
. . .

. . .

1 1
1

 , D =


3 + p −1− p

3 −1
. . .

. . .

3 −1
−1 2

 ,
where p, q ≥ 0 are parameters. Then the matrix K is irreducible. It is a singular
M -matrix for q = 2 and a nonsingular M -matrix for 0 ≤ q < 2.

We first take p = 0 and try to compute the minimal solution of the MARE
for some values of q near 2, say q = 1.98 + 0.0001j, j = 0, 1, . . . , 200. With the
stopping criterion NRes < 10−14, Newton’s method, Chebyshev’s method, the
modified Chebyshev method, and the doubling algorithm take 11, 8, 6, and 11
iterations, respectively, for j = 0. If we use the doubling algorithm to compute
the minimal solution S(j) for j = 0, 1, . . . , 200, then the algorithm will need 11
or 12 iterations for each j. We cannot use the computed solution for j = 0 to
reduce the number of iteration for computing the minimal solution for j = 1,
for example, since the doubling algorithm is not a correction method. If we use
Newton’s method, Chebyshev’s method or the modified Chebyshev method,
then we can use the approximate solution X(j) for S(j) as the initial guess
for S(j+1). Since S(j) ≤ S(j+1) by [11, Theorem 2.4], monotone convergence
is still guaranteed (in exact arithmetic) by Theorem 3 and Lemma 3 when
this cost-saving strategy is used. If we use Newton’s method, then we need
2 iterations for 1 ≤ j ≤ 162 and 3 iterations for 163 ≤ j ≤ 200. If we use
Chebyshev’s method, then we need 2 iterations for 1 ≤ j ≤ 200. If we use
the modified Chebyshev method, then we need 1 iteration for 1 ≤ j ≤ 125
and 2 iterations for 126 ≤ j ≤ 200. We also have complete freedom to switch
between the three methods. For example, we can use the modified Chebyshev
method for 1 ≤ j ≤ 126. After noticing that the method begins to requires
2 iterations for j = 126, we use the less expensive Newton’s method instead.

14 Chun-Hua Guo

We then find that Newton’s method requires 2 iterations for 127 ≤ j ≤ 162
and starts to require 3 iterations for j = 163. We can then use Chebyshev’s
method for 164 ≤ j ≤ 200 with 2 iterations for each j.

To make the Newton-like methods even more favorable, we take p = 105

and compute the minimal solution of the MARE for q = 1.98 + 0.0001j, j =
0, 1, . . . , 200, again with the stopping criterion NRes < 10−14. For j = 0, New-
ton’s method, Chebyshev’s method, the modified Chebyshev method, and the
doubling algorithm take 10, 7, 6, and 24 iterations, respectively. If we use the
doubling algorithm to compute the minimal solution S(j) for j = 0, 1, . . . , 200,
then the algorithm will need 24 or 25 iterations for each j. If we use Newton’s
method, Chebyshev’s method or the modified Chebyshev method, then we can
use the same cost-saving strategy as for the case p = 0. If we use Newton’s
method, then we need 2 iterations for 1 ≤ j ≤ 200. If we use Chebyshev’s
method or modified Chebyshev’s method, then we need just 1 iteration for
1 ≤ j ≤ 200.

5 Conclusions

We have proved monotone convergence results for some Newton-like methods
for M -matrix algebraic Riccati equations. We have explained that the Cheby-
shev method of order three and a two-step modified Chebyshev method of
order four can be more efficient than Newton’s method. We have also pointed
out that Newton-like methods can be more efficient than the doubling algo-
rithm in some situations.

References

1. Bai, Z.-Z., Guo, X.-X., Xu, S.-F.: Alternately linearized implicit iteration methods for
the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations.
Numer. Linear Algebra Appl. 13, 655–674 (2006)

2. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C. Comm.
ACM 15, 820–826 (1972)

3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, re-
vised reprint of the 1979 Academic Press original. SIAM, Philadelphia (1994)

4. Bini, D.A., Iannazzo, B., Latouche, G., Meini, B.: On the solution of Riccati equations
arising in fluid queues. Linear Algebra Appl. 413, 474–494 (2006)

5. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations.
SIAM, Philadelphia (2012)

6. Bini, D.A., Meini, B., Poloni, F.: Transforming algebraic Riccati equations into unilat-
eral quadratic matrix equations. Numer. Math. 116, 553–578 (2010)

7. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The
Chebyshev method. Computing 45, 355–367 (1990)

8. Chiang, C.-Y., Chu, E.K.-W., Guo, C.-H., Huang, T.-M., Lin, W.-W., Xu, S.-F.: Con-
vergence analysis of the doubling algorithm for several nonlinear matrix equations in
the critical case. SIAM J. Matrix Anal. Appl. 31, 227–247 (2009)

9. Gao, Y.-H., Bai, Z.-Z.: On inexact Newton methods based on doubling iteration scheme
for non-symmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 18, 325–
341 (2011)

Newton-like methods for algebraic Riccati equations 15

10. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg–Schur method for the problem
AX + XB = C. IEEE Trans. Autom. Control. 24, 909–913 (1979)

11. Guo, C.-H.: Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization
for M -matrices. SIAM J. Matrix Anal. Appl. 23, 225–242 (2001)

12. Guo, C.-H.: A note on the minimal nonnegative solution of a nonsymmetric algebraic
Riccati equation. Linear Algebra Appl. 357, 299–302 (2002)

13. Guo, C.-H.: Efficient methods for solving a nonsymmetric algebraic Riccati equation
arising in stochastic fluid models. J. Comput. Appl. Math. 192, 353–373 (2006)

14. Guo, C.-H., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equa-
tion. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

15. Guo, C.-H., Iannazzo, B., Meini, B.: On the doubling algorithm for a (shifted) nonsym-
metric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 1083–1100 (2007)

16. Guo, C.-H., Laub, A.J.: On the iterative solution of a class of nonsymmetric algebraic
Riccati equations. SIAM J. Matrix Anal. Appl. 22, 376–391 (2000)

17. Guo, X.-X., Bai, Z.-Z.: On the minimal nonnegative solution of nonsymmetric algebraic
Riccati equation. J. Comput. Math. 23, 305–320 (2005)

18. Guo, X.-X., Lin, W.-W., Xu, S.-F.: A structure-preserving doubling algorithm for non-
symmetric algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

19. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia
(2008)

20. Iannazzo, B., Poloni, F.: A subspace shift technique for nonsymmetric algebraic Ric-
cati equations associated with an M-matrix. Numer. Linear Algebra Appl. (2012). doi:
10.1002/nla.1836

21. Juang, J.: Existence of algebraic matrix Riccati equations arising in transport theory.
Linear Algebra Appl. 230, 89–100 (1995)

22. Juang, J., Lin, W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices. SIAM J. Matrix Anal. Appl. 20, 228–243 (1998)

23. Kelley, C.T.: A Shamanskii-like acceleration scheme for nonlinear equations at singular
roots. Math. Comput. 47, 609–623 (1986)

24. Lin, Y., Bao, L.: Convergence analysis of the Newton–Shamanskii method for a non-
symmetric algebraic Riccati equation. Numer. Linear Algebra Appl. 15, 535–546 (2008)

25. Rogers, L.C.G.: Fluid models in queueing theory and Wiener–Hopf factorization of
Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

26. Sargolzaei, P., Soleymani, F.: Accurate fourteenth-order methods for solving nonlinear
equations. Numer. Algorithms 58, 513–527 (2011)

27. Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accel-
erated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)

28. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood
Cliffs (1964)

29. Wang, W.-G., Wang, W.-C., Li, R.-C.: Alternating-directional doubling algorithm for
M -matrix algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 33, 170–194 (2012)

30. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of M -matrix algebraic Riccati equations.
Numer. Math. 120, 671–700 (2012)

