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Abstract. In studying the vibration of fast trains, we encounter a palindromic quadratic eigen-
value problem (QEP) (λ2AT +λQ+A)z = 0, where A,Q ∈ Cn×n and QT = Q. Moreover, the matrix
Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upper-
right corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach,
one typically starts with deflating these known eigenvalues, for the sake of efficiency. However, this
initial deflation process involves the inverses of two potentially ill-conditioned matrices. As a result,
large error might be introduced into the data for the reduced problem. In this paper we propose
using the solvent approach directly on the original QEP, without any deflation process. We apply a
structure-preserving doubling algorithm to compute the stabilizing solution of the matrix equation
X + ATX−1A = Q, whose existence is guaranteed by a result on the Wiener–Hopf factorization of
rational matrix functions associated with semi-infinite block Toeplitz matrices and a generalization
of Bendixson’s theorem to bounded linear operators on Hilbert spaces. The doubling algorithm is
shown to be well defined and quadratically convergent. The complexity of the doubling algorithm
is drastically reduced by using the Sherman–Morrison–Woodbury formula and the special structures
of the problem. Once the stabilizing solution is obtained, all nonzero finite eigenvalues of the QEP
can be found efficiently and with the automatic reciprocal relationship, while the known eigenvalues
at zero or infinity remain intact.

Key words. palindromic quadratic eigenvalue problem, nonlinear matrix equation, stabilizing
solution, structure-preserving, doubling algorithm
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1. Introduction. In this paper we consider a quadratic eigenvalue problem
(QEP) occurring in the vibration analysis of rail tracks under excitation arising from
high speed trains [14, 15, 17]. This problem has provided much of the motivation
for the study of palindromic polynomial eigenvalue problems in [22] and subsequent
papers [5, 16, 18, 19, 20, 23]. Yet the problem itself has not been solved satisfactorily.

The standard approach for solving a QEP is to use a proper linearization and
solve a generalized eigenvalue problem of twice the size. Another approach for solving
a QEP is through finding a solution (called a solvent) of a related matrix equation.
This solvent approach has been explored in [6] and more recently in [13] and [26].
The difficulty associated with the solvent approach is obvious. It is possible that
the related matrix equation does not have a solvent. Even if a solvent exists, the
computation of a solvent can still be a difficult task. As a result, the solvent approach
can outperform the linearization approach only for special types of QEPs [9, 11].

So far every method for the special QEP here starts with the linearization ap-
proach. For the sake of efficiency, a deflation process is used in the beginning. This
initial deflation process involves the sucessive application of the inverses of two po-
tentially ill-conditioned matrices (see [5] for example). As a result, large error might
be introduced into the data for the reduced problem. Several methods have been
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proposed recently to solve the reduced QEP. In particular, the solvent approach is
used in [5]. However, some major issues associated with the solvent approach remain
unsolved in [5]. Another efficient method is proposed and compared to two other
methods in [16]. These methods continue to use the linearization approach for the
reduced QEP. The computational work for all these different methods are dominated
by that of the same deflation process. The accuracy of the computed solution is thus
the main issue here.

In this paper we will see that the QEP arising in the study of high speed trains is
very amenable for the solvent approach, if used directly on the original QEP, without
any deflation process. At first sight, the solvent approach applied to the original QEP
would also be very expensive. In this paper we will show that the solvent approach
can be implemented to have a complexity roughly the same as that for other efficient
methods using the linearization approach and the initial deflation process. Numerical
experiments show that our solvent approach, applied to the original QEP, produces
better accuracy in the computed results.

2. The quadratic eigenvalue problem. The vibration analysis of rail tracks
can be performed through a finite element model, in which we generate [5] two real
symmetric matrices M and K of the form

M =



M0 MT
1 0 · · · 0 M1

M1 M0 MT
1 0 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0

0
. . . M1 M0 MT

1

MT
1 0 · · · 0 M1 M0


m×m

, (2.1)

K =



K0 KT
1 0 · · · 0 K1

K1 K0 KT
1 0 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0

0
. . . K1 K0 KT

1

KT
1 0 · · · 0 K1 K0


m×m

, (2.2)

where each block in M and K is q × q. So M,K ∈ Rn×n with n = mq. The matrices
M and K are thus block Toeplitz (actually block circulant). This special structure is
not used in [5] and the notation used there for M and K is more general. A matrix D
(the damping matrix) is then taken to be a positive linear combination of M and K.
That is, D = c1M + c2K with c1, c2 > 0. So D has the same structure as M and K.
We write M = Mt +Mc +MT

c , where Mt is the block tridiagonal part of M , and Mc

is the matrix with M1 in the upper-right corner and zero blocks elsewhere. Similarly,
we have K = Kt + Kc + KT

c and D = Dt + Dc + DT
c . We also denote by ω > 0 the

frequency of the external excitation force.
For the vibration anaysis, one needs to solve the palindromic QEP [5]

P (λ)z = 0, z 6= 0, (2.3)
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with

P (λ) = λ2AT + λQ+A, (2.4)

where

Q = Kt + iωDt − ω2Mt (2.5)

with i =
√
−1 (so QT = Q), and

A = Kc + iωDc − ω2Mc. (2.6)

The set of eigenvalues of the quadratic P (λ) demonstrates a “symplectic” be-
haviour (i.e., a symmetry with respect to the unit circle, which is denoted by T
throughout this paper). More precisely, a number ξ is an eigenvalue of the quadratic
P (λ) if and only if ξ−1 is so, and they have the same partial multiplicities (see [22,
Theorem 2.2]).

Let `2 be the usual Hilbert space of all square summable sequence of complex
numbers, and let `q2 be the Cartesian product of q copies of `2. The infinite matrices

TM =


M0 MT

1

M1 M0 MT
1

M1 M0
. . .

. . . . . .

 , TK =


K0 KT

1

K1 K0 KT
1

K1 K0
. . .

. . . . . .

 (2.7)

are then seen to be in B(`q2), the set of all bounded linear operators on `q2. They are
also self-adjoint operators in B(`q2). It is well known that the spectrum of a self-adjoint
operator is real [27].

By the way the matrices M and K are generated in the finite element model, we
know that TK is positive semidefinite, written TK ≥ 0, in the sense that 〈TKf, f〉 ≥ 0
for all f ∈ `q2. We also know that TM ≥ εI (i.e., TM−εI ≥ 0) for the identity operator I
and some ε > 0. These properties on TK and TM can also be verified independently (in
case significant errors are introduced in setting up the matrices M0,M1,K0,K1). As
noted in [7], TK ≥ 0 if and only if ψK(λ) = K0 +λK1 +λ−1KT

1 is positive semidefinite
on T. So TM ≥ εI for some ε > 0 if and only if ψM (λ) = M0 + λM1 + λ−1MT

1 is
positive definite on T. The latter holds if and only if the matrix equation

X +MT
1 X

−1M1 = M0 (2.8)

has a positive definite solution X with ρ(X−1M1) < 1 (see [7]), where ρ(·) denotes the
spectral radius. The equation (2.8), where M0 is symmetric positive definite, has been
well studied (see [4, 7, 9, 10, 21, 25, 30]). In particular, instead of checking ψM (λ) is
positive definite on T, one can attempt to find the maximal positive definite solution
of the equation (2.8) by the cyclic reduction method in [25] or the doubling algorithm
in [21]. These methods are very efficient, and the computational work involved is
only a small fraction of that for solving the QEP, which involves mq ×mq matrices
while the matrices in (2.8) are q × q. Recall that D = c1M + c2K for c1, c2 > 0. So
TD ≥ c1εI, where

TD =


D0 DT

1

D1 D0 DT
1

D1 D0
. . .

. . . . . .

 , D0 = c1M0 + c2K0, D1 = c1M1 + c2K1. (2.9)
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From now on we assume that TD ≥ ηI for some η > 0, which can be verified as we
have described for TM .

3. Theoretical results for the solvent approach. We first show that the
QEP does not have any eigenvalues on T. The following result, due essentially to
Bendixson [2], can be found in [28].

Lemma 3.1. (Bendixson’s theorem) Let X and Y be any k × k Hermitian ma-
trices. Suppose that the eigenvalues of X are λ1 ≤ λ2 ≤ · · · ≤ λk and the eigenvalues
of Y are µ1 ≤ µ2 ≤ · · · ≤ µk. Then the eigenvalues of X + iY are contained in the
rectangle [λ1, λk]× [µ1, µk] in the complex plane.

Theorem 3.2. The quadratic P (λ) in (2.4) has no eigenvalues on T.
Proof. The quadratic P (λ) has eigenvalues on T if and only if detP (λ) = 0

for some λ ∈ T, or equivalently det(λAT + λ−1A + Q) = 0 for some λ ∈ T. This
is impossible since we can show that for each fixed λ ∈ T all eigenvalues of the
matrix λAT + λ−1A+Q have positive imaginary parts. In fact, λAT + λ−1A+Q =
X(λ) + iY (λ) with Hermitian matrices

X(λ) = Kt − ω2Mt + λ−1(Kc − ω2Mc) + λ(Kc − ω2Mc)T ,

Y (λ) = ω(Dt + λ−1Dc + λDT
c ).

By Bendixson’s theorem, we only need to show that Y (λ) > 0 on T, or equivalently
T̂D ≥ εI for some ε > 0, where

T̂D =


Dt DT

c

Dc Dt DT
c

Dc Dt
. . .

. . . . . .

 . (3.1)

The latter is true since T̂D is precisely (a partition of) TD in (2.9).
We now consider the matrix equation

X +ATX−1A = Q, (3.2)

where Q and A are given in (2.5) and (2.6). Suppose X is a solution of (3.2). Then
we have the factorization for the quadratic P (λ) in (2.4):

λ2AT + λQ+A = (λAT +X)X−1(λX +A).

So the eigenvalues of the quadratic P (λ) are a collection of the eigenvalues of the
pencils λAT +X and λX +A. We have already shown that P (λ) has no eigenvalues
on T. Suppose a solution X of (3.2) can be found such that the eigenvalues of the
pencil λX + A (or equivalently the eigenvalues of the matrix −X−1A) are inside T.
Then the remaining eigenvalues of P (λ) are obtained by taking the reciprocals of
these eigenvalues. Such a solution X is called a stabilizing solution of (3.2). In this
process, the known eigenvalues of P (λ) at zero or infinity remain intact, regardless of
the accuracy of the computed X.

There are two advantages of the solvent approach over the linearization approach.
First, in the linearization approach, a deflation procedure is used for the sake of effi-
ciency, which involves the inverses of two potentially ill-conditioned matrices. When
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the QEP is reduced to a smaller QEP (even if in a structure-preserving manner),
the input data obtained in the smaller QEP could be significantly different from the
true data. In the solvent approach, the ill-conditioning of those matrices may also
affect the accuracy of the solution X computed by some efficient method, but we can
always use Newton’s method as a correction method afterwards, as in [10]. Second,
in the linearization approach, the eigenvalues of the smaller QEP range in modulus
from ε to ε−1, where ε is close to 0, while in the solvent approach the eigenvalues
of λX + A range in modulus from ε to 1. The situation in the solvent approach is
easier to handle, and the symplectic structure of the eigenvalues of P (λ) is preserved
automatically.

The success of the solvent approach hinges on the existence of a stabilizing so-
lution of (3.2) and an efficient method for its computation. In this section we prove
the existence of a stabilizing solution. In the next section we show that a doubling
algorithm can be used to compute it efficiently.

We start with a generalization of Bendixson’s theorem to bounded linear operators
in Hilbert spaces. It seems that such a generalization has not been given before,
although special cases of this are being proved in recent literature.

Lemma 3.3. (generalization of Bendixson’s theorem) Let B and C be self-adjoint
bounded linear operators on a Hilbert space. Suppose that the spectrum of B is con-
tained in [u1, u2] and the spectrum of C is contained in [v1, v2]. Then the spectrum of
B + iC is contained in the rectangle [u1, u2]× [v1, v2] in the complex plane.

Proof. Some special cases have been proved in the literature. For example, it is
proved in [1] (see Corollary 4 there) that B + iC is invertible if B is invertible and
positive definite (or equivalently [27, Section 7.4, Corollary 2] if minσ(B) ≥ ε for
some ε > 0). Also, it is proved in [12] (see the proof of Lemma 3.1 there) that B+ iC
is invertible if C ≥ εI for some ε > 0 (or equivalently [27, Section 7.4, Corollary
2] if minσ(C) ≥ ε). Note that the result in [12] follows from the result in [1] by a
multiplication with i. The general statement in Lemma 3.3 can also be proved quickly
using the special case proved in [1]. We only need to prove that each point a+ bi in
the spectrum of B+ iC satisfies a ≥ u1 (the rest can be proved by multiplying B+ iC
with −1 or i). We may assume u1 > 0 by shifting B to B + ηI for some η > 0. Since
σ(B + iC) is a compact set [27, Theorem 5.14], the distance between the imaginary
axis and σ(B + iC) is attained for a point a∗ + b∗i in σ(B + iC). We need to show
a∗ ≥ u1. Suppose a∗ < u1. Then B − a∗I ≥ (u1 − a∗)I with u1 − a∗ > 0 and thus
(B+ iC)− (a∗+ b∗i)I = (B− a∗I) + i(C − b∗I) is invertible by [1, Corollary 4]. This
is a contradiction since a∗ + b∗i is in σ(B + iC).

To prove the existence of a stabilizing solution of (3.2), we consider the semi-
infinite block Toeplitz matrix

T =


Q AT

A Q AT

A Q
. . .

. . . . . .

 . (3.3)

Associated with T is the rational matrix function φ(λ) = λA+Q+λ−1AT . It is clear
that T is in B(`n2 ) and we will show that T is invertible.
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By (2.5) and (2.6) we have T = B + iC with

B =


Bt BT

c

Bc Bt BT
c

Bc Bt
. . .

. . . . . .

 ,
where Bt = Kt − ω2Mt and Bc = Kc − ω2Mc, and C = ωT̂D, where T̂D is given in
(3.1). Note that B and C are self-adjoint operators in B(`n2 ). Since T̂D is a partition
of TD and TD ≥ ηI for some η > 0, we have C ≥ ωηI and thus minσ(C) ≥ ωη. By
Lemma 3.3, 0 /∈ σ(B + iC). So T = B + iC is invertible.

We can now prove the following result.
Theorem 3.4. The equation (3.2) has a unique stabilizing solution, and the

solution is complex symmetric. Moreover, the dual equation of (3.2)

X̂ +AX̂−1AT = Q (3.4)

also has a unique stabilizing solution and the solution is complex symmetric.
Proof. Since T is invertible, we know from a result on linear operators (see

[8, Chapter XXIV, Theorem 4.1] and [24]) that φ(λ) has the so-called Wiener–Hopf
factorization

φ(λ) = (I − λ−1L)D(I − λU) (3.5)

with D invertible, ρ(L) < 1 and ρ(U) < 1. From (3.5) we see that

A = −DU, AT = −LD, Q = D + LDU.

Thus

D +ATD−1A = Q (3.6)

with ρ(D−1A) < 1 and ρ(ATD−1) < 1. So D is a stabilizing solution of the equation
(3.2). We will see in the next section that the pencil N0 − λL0 defined by (4.1)
has exactly n eigenvalues inside T, and that for any stabilizing solution Xs of (3.2)
the column space of [I XT

s ]T is, by (4.3), the (necessarily unique) deflating subspace
of the pencil N0 − λL0 corresponding to its n eigenvalues inside T. It follows that
(3.2) has exactly one stabilizing solution. Now, taking transpose in (3.6) gives DT +
AT (DT )−1A = Q. Note that ρ((DT )−1A) = ρ(ATD−1) < 1. So DT is also a
stabilizing solution of (3.2). The uniqueness of stabilizing solutions implies that DT =
D.

The statements about the dual equation can be proved in a similar way. The only
difference is that we now need to show that the self-adjoint operator in B(`n2 )

T̃D =


Dt Dc

DT
c Dt Dc

DT
c Dt

. . .
. . . . . .

 (3.7)

is such that T̃D ≥ εI for some ε > 0. This is true since T̃D is related to T̂D in (3.1) by

T̃D = WT̂DW,
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where

W =

 V
V

. . .

 , V =

 Iq
·

·
·

Iq


m×m

,

and Iq is the q×q identity matrix. Thus for any f ∈ `n2 , 〈T̃Df, f〉 = 〈T̂D(Wf),Wf〉 ≥
η‖Wf‖2 = η‖f‖2. So T̃D ≥ ηI.

4. Computation of the stabilizing solution. A doubling algorithm has been
studied in [21] for the equation (3.2) with a real A and a real symmetric positive
definite Q. In our case, A is complex and Q is complex symmetric. However, the
more general presentation in [4] can be used directly.

Let

N0 =
[
A 0
Q −I

]
, L0 =

[
0 I
AT 0

]
. (4.1)

Then the pencil N0 − λL0 is a linearization of the T -palindromic polynomial λ2AT −
λQ+A. It is easy to verify that the pencil N0 − λL0 is T -symplectic, i.e.,

N0JN
T
0 = L0JL

T
0 for J =

[
0 I
−I 0

]
.

We can define the sequences {Nk} and {Lk}, where

Nk =
[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
AT

k 0

]
, (4.2)

by the following doubling algorithm [4] if no breakdown occurs.
Algorithm 4.1. Let A0 = A,Q0 = Q,P0 = 0.

For k = 0, 1, . . ., compute

Ak+1 = Ak(Qk − Pk)−1Ak,

Qk+1 = Qk −AT
k (Qk − Pk)−1Ak,

Pk+1 = Pk +Ak(Qk − Pk)−1AT
k .

We now show that this algorithm will not break down, and Qk converges quadrat-
ically to the stabilizing solution of (3.2).

Theorem 4.1. Let A and Q be given by (2.6) and (2.5). Let Xs be the stabilizing
solution of (3.2) and X̂s be the stabilizing solution of the dual equation (3.4). Then

(a) The sequences {Ak}, {Qk}, {Pk} in Algorithm 4.1 are well-defined, and Qk

and Pk are complex symmetric.
(b) Qk converges to Xs quadratically, Ak converges to 0 quadratically, Q − Pk

converges to X̂s quadratically, with

lim sup
k→∞

2k
√
‖Qk −Xs‖ ≤ (ρ(X−1

s A))2, lim sup
k→∞

2k
√
‖Ak‖ ≤ ρ(X−1

s A),

lim sup
k→∞

2k
√
‖Q− Pk − X̂s‖ ≤ (ρ(X−1

s A))2,

where ‖ · ‖ is any matrix norm.
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Proof. Let Tk be the leading principal block k × k submatrix of T in (3.3) and
write Tk = Bk + iCk, where Bk and Ck are Hermitian. So

Ck = ω


Dt DT

c

Dc Dt
. . .

. . . . . . DT
c

Dc Dt


k×k

.

Since TD ≥ ηI, we have 〈TDf, f〉 ≥ η‖f‖2 for all f ∈ `q2. Taking f =
[
g
0

]
with

g ∈ Ckmq, we know that for all g ∈ Ckmq,

〈Ckg, g〉 = ω〈TDf, f〉 ≥ ωη‖f‖2 = ωη‖g‖2.

Thus Ck is positive definite for each k ≥ 1. It then follows from Bendixson’s theorem
that Tk is invertible for each k ≥ 1.

Let Wk = Qk − Pk in Algorithm 4.1. Then the sequence {Wk} satisfies

Wk+1 = Wk −AT
kW

−1
k Ak −AkW

−1
k AT

k , W0 = Q.

It follows from [3, Theorem 13, see also equation (9)] that Wk is nonsingular for each
k ≥ 0. The sequences {Ak}, {Qk}, {Pk} are then well-defined. It is easy to see by
induction that Qk and Pk are complex symmetric since Q is complex symmetric. This
proves (a).

To prove (b), we start with the easily verified relation

N0

[
I
Xs

]
= L0

[
I
Xs

]
X−1

s A. (4.3)

From the discussions in [4] we have for each k ≥ 0

Nk

[
I
Xs

]
= Lk

[
I
Xs

]
(X−1

s A)2
k

. (4.4)

Substituting (4.2) into (4.4) yields

Ak = (Xs − Pk)(X−1
s A)2

k

, Qk −Xs = AT
k (X−1

s A)2
k

. (4.5)

Similarly we have

N̂0

[
I

X̂s

]
= L̂0

[
I

X̂s

]
X̂−1

s AT ,

where

N̂0 =
[
AT 0
Q −I

]
, L̂0 =

[
0 I
A 0

]
.

The pencil N̂0−λL̂0 is a linearization of λ2A−λQ+AT , which has the same eigenvalues
as λ2AT −λQ+A. It follows that X̂−1

s AT and X−1
s A have the same eigenvalues, and

thus ρ(X̂−1
s AT ) = ρ(X−1

s A). For each k ≥ 0 we now have

N̂k

[
I

X̂s

]
= L̂k

[
I

X̂s

]
(X̂−1

s AT )2
k

, (4.6)
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where

N̂k =

[
Âk 0
Q̂k −I

]
, L̂k =

[
−P̂k I

ÂT
k 0

]

are defined by Algorithm 4.1, starting with Â0 = AT , Q̂0 = Q, P̂0 = 0. It is easy to
prove by induction that for all k ≥ 0

Âk = AT
k , P̂k = Q−Qk, Q̂k = Q− Pk. (4.7)

Indeed, assuming (4.7) for k, we have

Q̂k+1 = Q̂k − ÂT
k (Q̂k − P̂k)−1Âk = Q− Pk −Ak(Qk − Pk)−1AT

k = Q− Pk+1,

and similarly we have Âk+1 = AT
k+1 and P̂k+1 = Q−Qk+1.

By (4.6) and (4.7) we now have

AT
k = (X̂s − P̂k)(X̂−1

s AT )2
k

, Q̂k − X̂s = Ak(X̂−1
s AT )2

k

. (4.8)

By (4.5), (4.8) and (4.7), we have

Qk −Xs = AT
k (X−1

s A)2
k

= (X̂s − P̂k)(X̂−1
s AT )2

k

(X−1
s A)2

k

= (Qk −Xs + (Xs + X̂s −Q))(X̂−1
s AT )2

k

(X−1
s A)2

k

,

from which we obtain

(Qk −Xs)(I − (X̂−1
s AT )2

k

(X−1
s A)2

k

) = (Xs + X̂s −Q)(X̂−1
s AT )2

k

(X−1
s A)2

k

. (4.9)

It follows that

lim sup
k→∞

2k
√
‖Qk −Xs‖ ≤ ρ(X̂−1

s AT )ρ(X−1
s A) = (ρ(X−1

s A))2 < 1.

So Qk converges to Xs quadratically. Then we know {P̂k} is bounded and have by
the first equation in (4.8) that

lim sup
k→∞

2k
√
‖Ak‖ ≤ ρ(X−1

s A) < 1.

So Ak converges to 0 quadratically. By the second equations in (4.7) and (4.8) we get

lim sup
k→∞

2k
√
‖(Q− Pk)− X̂s‖ ≤ (ρ(X−1

s A))2 < 1.

So Q− Pk converges to X̂s quadratically. This completes the proof of (b).
Algorithm 4.1 is said to be structure-preserving since for each k ≥ 0 Nk and Lk

have the structures given in (4.2) and the pencil Nk − λLk is T -symplectic.
The complexity of Algorithm 4.1 can be reduced drastically by using the special

structure of the matrix A given by (2.6). Write Qk = Q−Rk. Then it is easy to see
by induction that the matrices Ak, Rk, and Pk have the special forms

Ak =


Ek

0
·

·
·

0

 , Rk =


0

. . .
0

Fk

 , Pk =


Gk

0
. . .

0

 ,
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where the q×q matrices Ek, Fk, and Gk can be determined by the following simplified
algorithm, in which

Q =


H0 HT

1

H1 H0
. . .

. . . . . . HT
1

H1 H0


m×m

(4.10)

is given by (2.5), with

H0 = K0 + iωD0 − ω2M0, H1 = K1 + iωD1 − ω2M1.

Algorithm 4.2. Let E0 = H1, F0 = 0, G0 = 0.
For k = 0, 1, . . ., compute


Sk,1

Sk,2

...
Sk,m

 =

Q−

Gk

0
. . .

0
Fk




−1 

Ek

0
...
0

 , (4.11)


Tk,1

Tk,2

...
Tk,m

 =

Q−

Gk

0
. . .

0
Fk




−1 

0
...
0
ET

k

 , (4.12)

where all matrix blocks on the left side of (4.11) and (4.12) are q×q, and then compute

Ek+1 = EkSk,m, Fk+1 = Fk + ET
k Sk,1, Gk+1 = Gk + EkTk,m. (4.13)

The main task of Algorithm 4.2 is to solve the large sparse linear systems in (4.11)
and (4.12). We rewrite the common matrix in (4.11) and (4.12) as

Q−


Gk

0
. . .

0
Fk

 = Q−BkC
T
k (4.14)

with

Bk =
[
GT

k 0 · · · 0
0 · · · 0 FT

k

]T

, CT
k =

[
Iq 0 · · · 0
0 · · · 0 Iq

]
, (4.15)

and solve the linear systems by the Sherman–Morrison–Woodbury formula

(Q−BkC
T
k )−1 = Q−1 +Q−1Bk(I2q − CT

k Q
−1Bk)−1CT

k Q
−1. (4.16)
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Let Q = UHR be a qr-factorization of Q, where U is unitary and R is upper
triangular. Since QT = Q, a linear system QX = B can be solved by

X = R−1UB or X = UTR−TB. (4.17)

Write Q = [Qij ]mi,j=1 with
Qii = H0, i = 1, · · · ,m,
Qi+1,i = QT

i,i+1 = H1, i = 1, · · · ,m− 1,
Qij = 0q, |i− j| > 1,

(4.18)

where 0q is the q×q zero matrix. Let Uk denote the set of all k×k unitary matrices, and
∆k the set of all k × k upper triangular matrices. The following algorithm computes
the qr-factorization of Q in a sparse way.

Algorithm 4.3. sqr-factorization: [U ,R]= sqr(Q).
Input: Q as in (4.18).
Output: U =

{
U (i,i+1) ∈ U2q, i = 1 : m− 1, U (m,m) ∈ Uq

}
and R ∈ ∆n.

Set R← 0n;
For i = 1 : m− 1,

compute the qr-factorization[
Qii

Qi+1,i

]
→ (U (i,i+1))H

[
Qii

0

]
,

where U (i,i+1) ∈ U2q and the new Qii is in ∆q,
compute[

Qij

Qi+1,j

]
← U (i,i+1)

[
Qij

Qi+1,j

]
, j = i+ 1 : min{i+ 2,m};

Compute the qr-factorization Qmm → (U (m,m))HQm,m,
where U (m,m) ∈ Uq and the new Qmm is in ∆q;
Rij ← Qij , i = 1 : m, j = i : min{i+ 2,m}.

The above algorithm gives the qr-factorization Q = UHR, where the unitary
matrix U = [Ui,j ]mi,j=1, with Ui,j ∈ Cq×q, is given in a sparse factored form. More
precisely, U = Ũ (m,m)

∏1
i=m−1 Ũ

(i,i+1) with Ũ (i,i+1) and Ũ (m,m) being the extensions
of U (i,i+1) and U (m,m), respectively, by adding appropriate 1’s on the diagonal. We
now use the sqr-factorization of Q to solve the linear system QX = B with B =
[Iq, 0q, . . . , 0q]T . Note that Iq appears in the top position in B. In this process,
Ui,1 (i = 1 : m) are obtained explicitly for later use.

Algorithm 4.4. [X1, Xm, U1:m,1] = Solt(U , R).
Input: The output from Algorithm 4.3.
Output: The first and last submatrices of the solution X = [Xi]mi=1 ∈ Cn×q

with Xi ∈ Cq×q for the linear system QX = [Iq, 0q, . . . , 0q]T , and the first
block column of U .

Set B1 ← Iq;
For i = 1 : m− 1, compute[

Bi

Bi+1

]
← U (i,i+1)(1 : 2q, 1 : q) Bi;

Compute Bm ← U (m,m)Bm;
Set Ui,1 ← Bi, i = 1 : m;
For i = m : −1 : 1, compute Xi = R−1

ii

(
Bi −

∑min{i+2,m}
j=i+1 RijXj

)
.

For the linear system QX = B with B = [0q, . . . , 0q, Iq]T , it is possible to compute
X1 and Xm directly without computing Xk(k = 2, . . . ,m− 1).
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Algorithm 4.5. [X1, Xm] = Solb(U , R, Um,1).
Input: The output from Algorithm 4.3 and Um,1 from Algorithm 4.4.
Output: The first and the last submatrices of the solution X = [Xi]mi=1 ∈ Cn×q

with Xi ∈ Cq×q for the linear system QX = [0q, . . . , 0q, Iq]T .

Set
[
Bm−1

Bm

]
← U (m−1,m)(1 : 2q, q + 1 : 2q);

Compute Bm ← U (m,m)Bm; Xm ← R−1
m,mBm; (by the 1st eq. in (4.17))

Compute X1 ← UT
m,1R

−T
m,m. (by the 2nd eq. in (4.17))

The following algorithm gives a more detailed implementation of Algorithm 4.2
and computes the stabilizing solutions of (3.2) and (3.4) by Theorem 4.1.

Algorithm 4.6. Computation of Xs and X̂s.

Input: H0,H1 ∈ Cq×q, tolerance τ .
Output: The solutions Xs ∈ Cn×n for (3.2) and X̂s ∈ Cn×n for (3.4).

Take Q in (4.18), E0 = H1, F0 = 0, G0 = 0;
Call [U , R] = sqr(Q);

[Y1, Ym, U1:m,1] = Solt(U , R);
[Z1, Zm] = Solb(U , R, Um,1);

For k = 0, 1, · · ·
Xk,1 = [Y1Gk, Z1Fk], Xk,m = [YmGk, ZmFk];
[Xf

k,1, X
f
k,m] = [Y1Ek, YmEk];

[Xg
k,1, X

g
k,m] = [Z1E

T
k , ZmE

T
k ];

Sk,i = Xf
k,i +Xk,i

[
I2q −

(
Xk,1

Xk,m

)]−1
(
Xf

k,1

Xf
k,m

)
, i = 1,m,

Tk,m = Xg
k,m +Xk,m

[
I2q −

(
Xk,1

Xk,m

)]−1(
Xg

k,1

Xg
k,m

)
;

Ek+1 = EkSk,m, Fk+1 = Fk + ET
k Sk,1, Gk+1 = Gk + EkTk,m;

If ‖ET
k Sk,1‖ ≤ τ‖Fk‖ and ‖EkTk,m‖ ≤ τ‖Gk‖, then

Xs ← Q, Xs(n′ : n, n′ : n)← H0 − Fk+1,

X̂s ← Q, X̂s(1 : q, 1 : q)← H0 −Gk+1,
where n′ = (m− 1)q + 1, and stop.

5. Numerical results. The sqr-factorization in Algorithm 4.3 requires about
86
3 mq

3 flops. The linear system solvers in Algorithm 4.4 and Algorithm 4.5 require
9mq3 and 4q3 flops, respectively. Each iteration of the doubling algorithm in Algo-
rithm 4.6 requires about 154

3 q3 flops. Algorithm 4.6 is efficient since no more than 10
iterations are typically needed for convergence. For large q and m the total computa-
tional work for Algorithm 4.6 is thus roughly 113

3 mq3, assuming that the number of
iterations for the doubling algorithm is bounded independent of q and m. We note
that Algorithms 4.3, 4.4 and 4.5 presented in this paper can also be used in the initial
deflation procedure [5] for the linearization approach. So the deflation procedure can
be completed in about 113

3 mq3 flops as well.
In this section we present numerical results to illustrate the efficiency and accu-

racy of the solvent approach for computing the eigenpairs of the QEP (2.3), through
computing the solvent Xs by Algorithm 4.6.

We first explain how the eigenpairs can be computed after the solvent Xs is
obtained. By Algorithm 4.6 we see that

Q−Xs = [0, · · · , 0, Iq]T [0, · · · , 0, F∞], (5.1)
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where F∞ = limk→∞ Fk. Write A =
[
0n−q Ht

1

0 0q

]
, where Ht

1 = [HT
1 , 0, · · · , 0]T .

Applying U (given implicitly in a sparse factored form) in Algorithm 4.3 to A and
Xs, respectively, we have

UA =
[
0n−q H̃t

1

0 Φ1

]
, UXs =

[
X1 X2

0 Φ2

]
, (5.2)

where X1 = R(1 : n−q, 1 : n−q) and X2(1 : n−3q, 1 : q) = 0. From the factorization
P (λ) = (λAT +Xs)X−1

s (λXs +A), the nonzero stable eigenpairs (λs, zs) of P (λ) are
those of λXs +A and can be computed by

Φ1zs,2 = −λsΦ2zs,2, (5.3)

zs,1 = −X−1
1 (X2zs,2 + λ−1

s H̃t
1zs,2), zs =

[
zs,1

zs,2

]
, (5.4)

for s = 1, . . . , q. Recall that the first block column of U is known from Algorithm 4.4.
So Φ1 = Um,1H1 and H̃t

1 = U1:m−1,1H1.
If we are only interested in the eigenvalues, then we can find all nonzero stable

eigenvalues from (5.3) and get all finite unstable eigenvalues by taking the reciprocals
of the nonzero stable ones. The cost is O(q3) flops. Eigenvectors corresponding to
nonzero stable eigenvalues can be found from (5.4) with a cost of 7mq3 flops, noting
that X1 is block 3-banded upper triangular and that H̃t

1zs,2 = U1:m−1,1(H1zs,2).
Some further work is required if the eigenvectors corresponding to finite unstable

eigenvalues are also needed. We first compute all left eigenvectors of λΦ2 + Φ1 by

yT
s Φ1 = −λsy

T
s Φ2, (5.5)

for s = 1, · · · , q, at a cost of O(q3) flops. The finite unstable eigenpairs (λu, zu) of
P (λ) satisfy

P (λu)zu ≡ P (1/λs)zu =
1
λ2

s

(
AT + λsXs

)
X−1

s (Xs + λsA) zu = 0. (5.6)

From (5.2) and (5.5) follows that

(
AT + λsXs

)
UT

[
0
ys

]
=
([

0 0
H̃1 ΦT

1

]
+
[
λsX

T
1 0

λsX
T
2 λsΦT

2

])[
0
ys

]
= 0. (5.7)

From (5.6) and (5.2) the eigenvector zu corresponding to λu = λ−1
s can be found by

solving the linear system

(Xs + λsA) zu = Xs

(
UT

[
0
ys

])
=
[

0
ΦT

2 ys

]
. (5.8)

Pre-multiplying (5.8) with U and using (5.2) again, we see that the finite unstable
eigenpairs (λu, zu) of P (λ) can be computed by[

ζu,1

ζu,2

]
= U

[
0

ΦT
2 ys

]
, zu,2 = (Φ2 + λsΦ1)−1

ζu,2, (5.9)
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zu,1 = X−1
1

[
ζu,1 −

(
X2 + λsH̃

t
1

)
zu,2

]
, zu =

[
zu,1

zu,2

]
, (5.10)

for u = 1, · · · , q. Note that Φ2 +λsΦ1 is nonsingular since Φ2 +λΦ1 only has unstable
eigenvalues by (5.3). The vectors zu,2 in (5.9) can be found in O(q3) flops via a
Hessenberg-triangular form of the pair (Φ2,Φ1) obtained by the qz-algorithm. So
(5.9) requires O(q3) flops, while (5.10) requires 7mq3 flops.

ω = 100 ω = 1000 ω = 3000 ω = 5000
k ρ = 0.9622 ρ = 0.8831 ρ = 0.8080 ρ = 0.7569
1 2.0e− 02 1.4e− 02 9.7e− 03 8.1e− 03
2 3.4e− 03 1.8e− 03 1.7e− 03 1.5e− 03
3 7.4e− 04 6.0e− 04 2.9e− 04 1.5e− 04
4 3.2e− 04 8.2e− 05 9.3e− 06 1.8e− 06
5 1.0e− 04 1.6e− 06 9.3e− 09 2.4e− 10
6 8.5e− 06 5.4e− 10 9.5e− 15 2.3e− 18
7 6.1e− 08 6.2e− 17 0
8 3.2e− 12 0
9 1.1e− 22
10 0

Table 5.1. ‖Fk+1 − Fk‖2/‖Fk‖2 for different ω values, (q,m) = (159, 11)

ω = 100 ω = 1000 ω = 3000 ω = 5000
k ρ = 0.9307 ρ = 0.7933 ρ = 0.6692 ρ = 0.5953
1 2.2e− 02 1.3e− 02 1.1e− 02 8.4e− 03
2 3.9e− 03 1.9e− 03 9.3e− 04 5.9e− 04
3 1.2e− 03 2.4e− 04 3.8e− 05 9.5e− 06
4 2.3e− 04 6.0e− 06 6.2e− 08 2.4e− 09
5 2.3e− 05 3.6e− 09 1.6e− 13 1.4e− 16
6 2.3e− 07 1.3e− 15 0 0
7 2.4e− 11 0
8 1.3e− 20
9 0

Table 5.2. ‖Fk+1 − Fk‖2/‖Fk‖2 for different ω values, (q,m) = (303, 19)

In the linearization approach, the computation of stable and unstable eigenvectors
involves the successive application of the inverses of the two potentially ill-conditioned
matrices used in the initial deflation process [5]. In our solvent approach, the matrix
Xs used in the computation of stable eigenpairs is usually well-conditioned. So we
expect to have better accuracy in the computed results, at least for stable eigenpairs,
when using the solvent approach proposed in this paper.

We now present numerical results on three sets of test data generated by a fi-
nite element package, with (q,m) = (159, 11), (303, 19), (705, 51), respectively. The
matrices M and K are given by (2.1) and (2.2), and we take D = 0.8M + 0.2K.
All numerical experiments are carried out in MATLAB 2008b with machine precision
eps ≈ 2.22× 10−16.

Our solvent approach is efficient since we have fully exploited the sparse struc-
ture in the QEP. The only uncertainty is the number of iterations needed for the
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ω = 100 ω = 1000 ω = 3000 ω = 5000
k ρ = 0.9593 ρ = 0.8745 ρ = 0.7925 ρ = 0.7406
1 1.1e− 01 1.0e− 01 7.0e− 02 5.7e− 02
2 2.8e− 02 1.2e− 02 1.0e− 02 8.8e− 03
3 4.7e− 03 3.6e− 03 1.5e− 03 7.8e− 04
4 2.1e− 03 4.2e− 04 3.8e− 05 6.4e− 06
5 5.7e− 04 5.8e− 06 2.2e− 08 4.3e− 10
6 4.0e− 05 1.1e− 09 7.7e− 15 2.9e− 19
7 1.9e− 07 3.5e− 17 0
8 4.6e− 12 0
9 0

Table 5.3. ‖Fk+1 − Fk‖2/‖Fk‖2 for different ω values, (q,m) = (705, 51)

10−20 10−10 100 1010 1020
10−35

10−30

10−25

10−20

10−15

| λ |

R
el

at
iv

e 
re

si
du

al
s 

of
 e

ig
en

pa
irs

(q,m) = (159,11), ω = 1000

 

 
SDA_CHLW
SA_HLQ
SDA_GL

convergence of {Fk} and {Gk} in Algorithm 4.6. In Tables 5.1–5.3 we give ‖Fk+1 −
Fk‖2/‖Fk‖2 for the three pairs of (q,m) and for ω = 100, 1000, 3000, 5000, respec-
tively. The values ρ = ρ(X−1

s A) are also given for the ω values. From the tables we
can see that the sequence {Fk} converges within 10 iterations for each ω. The con-
vergence behaviour of {Gk} is roughly the same, as indicated by Theorem 4.1. There
is no significant difference in the performance of Algorithm 4.6 for different values of
(q,m).

To show numerically that our method has better accuracy than existing methods,
we compare our method (SDA GL) to the method in [5] (SDA CHLW) and the method
SA-I in [16] (SA HLQ). The latter method has been shown in [16] to have better
accuracy than two other methods compared there.

To measure the accuracy of an approximate eigenpair (λ, z) for P (λ) we use the
relative residual

RRes =
‖λ2AT z + λQz +Az‖2

(|λ|2‖A‖F + |λ|‖Q‖F + ‖A‖F )‖z‖2
. (5.11)

In the three figures we plot for ω = 1000 the relative residuals of approximate eigen-
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pairs, for (q,m) = (159, 11), (303, 19), (705, 51), respectively. Indeed, our new method
(SDA GL) has significantly better accuracy for stable eigenpairs.

6. Conclusion. We have solved a structured quadratic eigenvalue problem effi-
ciently and accurately, by using a structure-preserving doubling algorithm in the sol-
vent approach. The doubling algorithm has fast convergence and exploits the sparsity
of the QEP. Theoretical issues involved in this solvent approach are settled satisfac-
torily. In particular, we present a generalization of the classical Bendixson’s theorem
to bounded linear operators in infinite-dimensional Hilbert spaces, which could also
be useful elsewhere. We also mention that the solvent approach studied in this paper
can also be applied to QEPs with more general sparsity structures, such as the QEPs
arising in SAW-filter simulations [29].
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