CONVERGENCE ANALYSIS OF THE DOUBLING ALGORITHM
FOR SEVERAL NONLINEAR MATRIX EQUATIONS IN THE
CRITICAL CASE *
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Abstract. In this paper, we review two types of doubling algorithm and some techniques for
analyzing them. We then use the techniques to study the doubling algorithm for three different
nonlinear matrix equations in the critical case. We show that the convergence of the doubling
algorithm is at least linear with rate 1/2. As compared to earlier work on this topic, the results we
present here are more general, and the analysis here is much simpler.
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1. Introduction. The doubling algorithm has been studied for various nonlinear
matrix equations in [1, 6, 7, 19, 21, 24, 27, 28, 34]. Its convergence behaviour in the
critical case, however, has not been fully investigated. The doubling algorithm is said
to be structure-preserving (and denoted by SDA) because it preserves certain block
structures for matrix pairs (or pencils) related to matrix equations.

In section 2, we review two types of doubling algorithm and some techniques for
analyzing them. The presentation here is more general than in [34] and [24], to al-
low direct application to various matrix equations. In sections 3-5, the techniques
reviewed in section 2 are used to study the convergence behaviour of the doubling
algorithm for three different nonlinear matrix equations in the critical case. As com-
pared to previous papers, the results here are obtained with only basic assumptions.
In particular, the results we obtain about a quadratic matrix equation arising from
quasi-birth-death processes are more general than previous results, and the analysis
here is much simpler. A connection between the doubling algorithm and the cyclic
reduction algorithm is also pointed out for that quadratic matrix equation. Some
concluding remarks are made in section 6.

2. The doubling algorithm. The first three subsections are based on [34], [24],
and [27], but the presentation here is more general. The last subsection is directly
from [27].

*Version of September 15, 2008.

TDepartment of Mathematics, National Tsinghua University, Hsinchu 300, Taiwan
(d907201@oz.nthu.edu.tw).

¥School of Mathematical Sciences, Building 28, Monash University, VIC 3800, Australia
(eric.chu@sci.monash.edu.au).

§Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
(chguo@math.uregina.ca). The work of this author was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada.

TDepartment of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
(min@math.ntnu.edu.tw). The work of this author was partially supported by the National Sci-
ence Council and the National Center for Theoretical Sciences in Taiwan.

HDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
(wwlin@math.nctu.edu.tw). The work of this author was partially supported by the National Science
Council and the National Center for Theoretical Sciences in Taiwan.

**LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
(xsf@pku.edu.cn).



2 C. CHIANG, E. CHU, C. GUO, T. HUANG, W. LIN, AND S. XU

2.1. SDA-1. For a given matrix pair

_ 1 —Go _ EO 0
L0_|:0 FO :|7 M0_|:_HO I:|7 (21)
where Ey, Fy, Go, Hyp are n X n, m X m, n X m, m X n, respectively, we are going to
define
- I _Gk: _ E, 0
=G ] B0 22

for all £ > 0. Assume that Ly and My have been defined and I — Gy Hy, (and thus
I — HyGy) is nonsingular for & > 0. Then we can define the matrices

E _ I 7Ek(17 Gka)ile M _ Ek(I* Gk'Hk)il 0
k= 0 Fk(I — Hka)il ’ k= —Fk(-[_ Hka)ilHk I

It is easily verified that szk = MkLk. We then define

I3 _z L, — I —(Gk'f‘Ek(I—Gka)ileFk)
kL= ZkEE = Fo(I — H,Gi) " Fy, ’

~ Ex(I — GyH) 'E 0
Mk+1:MkMk:|:_ K ( kHy) k }

(Hk + Fk(I - Hka)_lHkEk) I

Therefore, the sequence { Ly, M} can be defined by the following doubling algorithm
if no breakdown occurs.

ALGORITHM 2.1. (SDA-1) Given Ey, Fy, Gy, Hp.
For k=0,1,... compute

Epy1 = Ex(I — GpHy) ' Ey, (2.3)
Fyy1 = Fiy(I — H,Gy) ™' Fy, (2.4)
Gr1 = Gr + Ep(I — GpHy) ™ 'GrFy, (2.5)
Hy41 = Hy, + Fi,(I — H,Gy,) ' HyEy, (2.6)

The algorithm requires about %mi)’ + 6m2n + 6mn? + 13—4713 flops each iteration.
Note that the flop count is %n?’ when m = n.

2.2. SDA-2. For a given matrix pair

| PR I | Vo O
e[ 1) e[ )
where all matrix blocks are n X n, we are going to define
| =P I | e 0
Lk_{Tk 0], Mk_[Qk I] (2.7)

for all £ > 0. Assume that L and M} have been defined and Q) — Py is nonsingular
for £k > 0. Then we can define the matrices

7 I —Vi(Qr — Pp)™? M. — Vi@Qr—Pr)™' 0
Lo @ —Po)7t ) T -T(@Qr - Pt T
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It is easily verified that szk = MkLk. We then define

~ — (P Vi — P) T, I
Lk+1=LkLk=[ (P + Vi(Qs k) k) O:|7

Tw(Qr — Pi) Ty,

~ Vi — Py, 0
Miq1r = My My, = [ W@ = Fi) Wi ] .

Qr — Tu(Qr — Pr)~ 'V —I

Therefore, the sequence { Ly, M} can be defined by the following doubling algorithm
if no breakdown occurs.

ALGORITHM 2.2. (SDA-2) Given Vy, Ty, Qo, Po.
Fork=0,1,..., compute

Vi1 = Vi(Qr — Pi) " 'Vi,
Tior1 = Ti(Qr — Py) "' Ty,
Qi1 = Qr — Tr(Qr — Pr) ™' Vi,
Py =P, + Vk(Qk — Pk)flTk.

38

“n3 flops each iteration.

This algorithm requires about
2.3. Relation between L; and M. Suppose we have
LoU = MyUE, (2.8)
where the matrix pair (Lg, Mp) is the initialization for either SDA-1 or SDA-2, F is
a square matrix, and U is any matrix of suitable dimension.
Pre-multiplying (2.8) with Ly and using LoMy = MyLg, we get L;U = M;UE?.
In general, we have for each k£ > 0
LU = MyUE?". (2.9)
Suppose that there are nonsingular matrices V' and Z such that
VLoZ =Jn, VMoZ = Jy, (2.10)
and Jr,Jy = JarJr,. Then it follows that
MoZJy =V Iydp =V pdy = LoZJu,
and
M ZJ? = MoMoZJ? = MoLoZJyJy, = LoMoZ Iy = LoLoZJ%, = L ZJ%,.

In general, we have for each k > 0

My ZJ2 = L, ZJ%. (2.11)
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2.4. Result on special Jordan blocks. Let J, , be the p x p Jordan block
with a unimodular eigenvalue w = e*?:

[w 1 0 - 0]
Jep=| 1 o |- (2.12)
: DR |
0 - - 0w |

When p = 2m, let I ,,, be determined through the partition

ijz.m:[ A ] (2.13)

The following useful Lemma is proved in [27].
LEMMA 2.1. The matriz I'y, ., is invertible and satisfies

T L J2 = 07", [J2, Tk 02l =0@27F) ask — cc. (2.14)

In the next three sections, we will apply the techniques reviewed in this section
to three different nonlinear matrix equations. Although the general approach will
be the same, we will need to fully exploit the special properties of each equation.
Among other things, the following two issues deserve special attention: (1) Given a
nonlinear matrix equation, how should we rewrite it in its equivalent form (2.8)? If
possible, we should try to get a form (2.8) that would lead to SDA-2 rather than
SDA-1, since SDA-2 is less expensive. (2) How should we choose the matrices Jy, and
Jar in (2.10)? The matrices must satisty JpJy = JarJp, and the resulting equation
(2.11) and an equation from a similar procedure should be easy to handle together.
We will keep these issues in mind when we carry out the convergence analysis for the
three equations.

3. A special nonlinear matrix equation. In this section we consider the
nonlinear matrix equation (NME)

X+ ATX 1A =q, (3.1)

where A, Q € R™"*" with @ being symmetric positive definite. Various aspects of the
NME, like solvability, numerical solution, perturbation and applications, can be found
in [8,9, 13, 17, 22, 35, 38, 39, 40, 41] and the references therein.

For symmetric matrices X and Y, we write X >Y (X >Y) if X — Y is positive
semidefinite (definite). We use this definition of ordering only in this section, and will
use the elementwise order in sections 4 and 5. We assume that (3.1) has a symmetric
positive definite solution. Then [9] it has a maximal symmetric positive definite
solution X4 (X1 > X for any symmetric positive definite solution X of (3.1)), and
p(X7'A) <1, where p(-) is the spectral radius.

Let

LOHT é] MO{S _OI} (3.2)
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It is easy to verify that the pencil My — ALg (also denoted by (M, Lo)) is symplectic,
ie.,

MoJMI = LoJLE for J= [ _? é ]

Using Algorithm 2.2 with Vo = A, Ty = AT, Qo = Q, Py = 0, we have T}, = V,I, Q¥ =
Qk, PT = Py. So Algorithm 2.2 is simplified to the following, where we have used Ay,
for Vk

ALGORITHM 3.1. Let Ag=A,Q0=Q, P, =0.
Fork=0,1,..., compute

Apy1 = Ar(Qr, — Pi) ™ Ag,
Qr+1 = Qr — AL (Qr — Pr) " Ay,
Pii1 =Py + Ar(Qr — Pr) AL

The matrices Ly, My, in (2.7) are now given by

Lk{_ff é] Mk[g’; _H. (3.3)

It is noted in [34] that the cyclic reduction algorithm in [35] is recovered from
Algorithm 3.1 when Qi — P and @y are replaced by @ and X, respectively, where
the latter Q) and X} are the notations used in [35, Algorithm 3.1]. So we know
from [35] that Qi — P > 0 in Algorithm 3.1. Thus the algorithm is well defined and
0 < P, < Qr < Q. This fact is also proved in [34] without using the results in [35].

It is easy to verify that

Moy [ )A ] =L { XI+ }X;lA. (3.4)
We are interested in the case with p(X;'A) = 1. It follows from [13, Theorem 2.4]
that the eigenvalues of X;lA have the following characterization.

THEOREM 3.1. For (3.1), the eigenvalues of the matriz X;lA are precisely the
eigenvalues of the matriz pencil My — ALq inside or on the unit circle, with half of the
(necessarily even) partial multiplicities for each unimodular eigenvalue of the pencil.

In view of the connection between Algorithm 3.1 and the cyclic reduction algo-
rithm in [35], we know from [13] that the sequence @y in Algorithm 3.1 converges to
X at least linearly with rate 1/2, as long as all eigenvalues of X ;lA on the unit circle
are semisimple. With the tools in section 2, we are going to prove more convergence
results for Algorithm 3.1, without any assumption on the unimodular eigenvalues of
XA

Suppose there are r Jordan blocks associated with unimodular eigenvalues of
(Mo, Lp). Then they have the form

ms Lom.
ij,2mj = Juj,m] 0my ) FO,mj = emje{7 (35)
0 wj M
where w; = €% for j =1,...,7.
By the results on Kronecker canonical form for a symplectic pencil (see [11] and
[33]), there exist nonsingular matrices V and Z such that



6 C. CHIANG, E. CHU, C. GUO, T. HUANG, W. LIN, AND S. XU

In On _
VIgZ = { 0, JH eI, } =J, (3.6)
_ | Lo el | _
VMyZ = |: 0, L&, :| =Ju, (37)

where J; € C'*! consists of stable Jordan blocks (so p(Js) < 1), J1 = Juy iy @+ D
Jorme Lo =Lom, @ @Lom,, m=mi+---+m,, | =n—m, ® denotes the direct
sum of matrices and (-) the conjugate transpose. Moreover, the nonsingular matrix
Z can be taken to be of the form Z = Z,Z, with Z, symplectic and Z, = I,, & Z,.
It follows that span{Z(:,1: n)} forms the unique weakly stable Lagrangian deflating
subspace of (Mg, Lg) corresponding to Js & Ji.

Let T'x,m; be given by (2.13) with w = w; and m = m;. Since JpJyr = JyJ1, we
have by (2.11)

k k
M, Z é (JsH)Sk o1 ] = L2 I f Ji 10;5922’1 : (3.8)
where Iy, =T, @ ® T,
Similarly, there exist nonsingular matrices T" and W such that
TMW = Jr, TLW = Jypy, (3.9)
and
! K
LkW[ é (JSH)‘; . ] _ | % f‘]f fg;’i (3.10)
By Lemma 2.1 we have
DI = 0@, T =0@7F) ask—oo.  (3.11)
We now prove some convergence results for Algorithm 3.1. Partition Z and W as
Z:[% gﬂ W:W; gi] (3.12)

where Z;, W; € C"*" (i =1,...,4).
THEOREM 3.2. When p(X_IlA) = 1, the sequences {Ag, Qr, Pr} generated by
Algorithm 3.1 satisfy
() | 4:] = 0@);
(b) Qk — X+l = 0@ ) and X, = 277
(¢) |Pe — X_|| = O(27%) for X_ = WoW ' if Wy is invertible; if A is also
invertible, then X_ is a solution of (3.1) and the eigenvalues of X~'A are
the reciprocals of the eigenvalues of X;lA;
(d) Qx — Px converges to a singular matriz as k — oo.
Proof. (a) Substituting L and M}, of (3.3) and Z of (3.12) into (3.8), we obtain

MZy = (—PuZy + Zo)(J2" @ J2), (3.13)
ApZ3(TEV @ 1) = (~PuZy + Z2)(0 @ T) + (—PuZs + Z)(T & J2), (3.14)
QnZy — Zo = ALZ, (I @ J2), (3.15)
(QuZs — Z)((JI? @ 1) = ATZ (0@ Ty) + AL Zs(T @ J7). (3.16)
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From (3.6) and (3.7) we have

Mo[§; ] LO{Z}(JS@L).

By Theorem 3.1, X;lA is similar to Jgs @ J;. Then from (3.4) and the uniqueness of
weakly stable Lagrangian deflating subspaces of (My, Lg) corresponding to Js @ Ji,

we have
Z1 I
= R
FiNES
for a nonsingular matrix R. It follows that Z; ! exists and X, = ZoZ; '
Post-multiplying (3.14) by (0 & F;lJfk)Zfl and using (3.13), we have
Ay [1 — Z;00 r,;ljfk)zl—l}
= (=PuZ1 + Z2)(J¥ @ 0)Z7 " — (—PuZs + Z4) (0@ J2 T 2 ) 27
It follows from (3.11) and the boundedness of { Py} that
IAx] = O(27%). (3.17)
(b) Post-multiplying (3.16) by (0 ® T 'J2")Z; ! and using (3.15), we get
Qn [I ~ Zs(0® r,;lJf’“)z;l} ~ X,
- [A{Zl(Jf’“ ®0)— AL 25000 JX T ) — Zy(0 @ r,;lJf’“)} Z7t (3.18)
By (3.11) and (3.17), we have
1Qk = X[l = O@27").
(c) Substituting Ly and My, of (3.3) and W of (3.12) into (3.10), we have
Wo — PaWi = AWi (Jfk @ Jfk) , (3.19)
(Wy — PW3) ((JSH)Qk ® 1) = AW (0@ Ty) + AW (1 ® Jfk) . (3.20)
Let X_ = WoW,*. As before, post-multiplying (3.20) by (O @F;lJfk> Wt and
using (3.19), we get
X =P [1-ws (0ar ) Wit
- —1 y2* 2k 2F -1 72F —1
= (Wi (0e T2 ) + Ay (72 @ 0) — aws (0@ 2 T ) Wit 3.21)
By (3.11) and the result of (a), we have
IX- — Pyl = 0@27").

From (3.9) we get

L S0 T=16 ST ]
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where R_ = Wy (J, @ J;)W; . Tt follows that
X_ =AR_, AT =(Q-X_)R_.
When A is invertible, the matrices X;lA, R_, X_ are all invertible and we obtain
X_ +ATX'A=Q.

Moreover, the eigenvalues of X~ A are the reciprocals of the eigenvalues of R_ (and
thus X;lA).
(d) From (3.13) and (3.15), we get

—PZy (I @ I = Mz — Zo(J @ T2,
Q2 (¥ @ T = 272 © T + AT 20 (2% @ T,

This implies that

0 0

Since 0 < P, < P41 < @, the sequence Py converges even if Wi is singular. Let
lim(Qy, — Pr) = R.. It follows from (3.22) and the result of (a) that

R.Z, { [O } —0.

Thus R, is singular. O

The most important conclusion in Theorem 3.2 is that the sequence @ from the
doubling algorithm converges to X, at least linearly with rate 1/2, regardless of the
values of m; (j = 1,2,...,r). Thisis in sharp contrast with the behaviour of Newton’s
method. The NME (3.1) is a special case of the discrete algebraic Riccati equation
studied in [12]. It is conjectured in [12] that the convergence of Newton’s method
is linear with rate 1/ /2, where ¢ = maxi<j<,m;. This conjecture is confirmed in
numerical experiments on (3.1) with A being a ¢ x ¢ Jordan block with eigenvalue 1
and Q = I + AT A, for small values of q. We know form [13] that X, = I in all those
examples. Newton’s method is given in [13, Algorithm 3.3].

4. A quadratic matrix equation from quasi-birth-death problems. A
discrete-time quasi-birth-death (QBD) process is a Markov chain with state space
{(#,7)]i > 0,1 <j <n}, and with a transition probability matrix of the form

By Bi 0 0
Ay AL Ay 0
p_| 0 A A A
0 0 A A

where By, By, Ag, A1, and As are n X n nonnegative matrices such that P is stochastic.
In particular, (Ag + Ay + Az)e = e, where e = (1,1,...,1)7.

We make the standard assumption that the matrix P and the matrix A = Ay +
Ay + Ay are both irreducible. Thus, Ag # 0 and Ay # 0. Moreover, there exists
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a unique positive vector o with a”e = 1 and a”A = o”. The QBD is positive
recurrent if a” Age > o Ase, transient if o’ Age < a’ Ase, and null recurrent if
aT Age = a7 Ase.

The minimal nonnegative solution G of the matrix equation
G = A+ A1G + AyG? (4.1)

plays an important role in the study of the QBD process (see [32]). We will also need
the dual equation

F=Ay+ A F + AgF?, (4.2)

and we let F' be its minimal nonnegative solution. It is well known (see [32], for exam-
ple) that if the QBD is positive recurrent, then G is stochastic and F' is substochastic
with spectral radius p(F') < 1; if the QBD is transient, then F is stochastic and G
is substochastic with p(G) < 1; if the QBD is null recurrent, then G and F are both
stochastic.

The Latouche-Ramaswami (LR) algorithm [31] and the cyclic reduction (CR)
algorithm [5] are both efficient iterative methods for finding the minimal solution G.
The convergence of these two algorithms is quadratic for positive recurrent and tran-
sient QBDs. A convergence analysis has been performed in [15] for the LR algorithm
in the null recurrent case under two additional assumptions. The first assumption is
that A = 1 is a simple eigenvalue of G and F' and there are no other eigenvalues of
G or F on the unit circle; the second assumption is made under the first assumption
and is more technical. The convergence rate for the LR algorithm is the same in view
of the relationship between CR and LR, given in [3].

We can also use the doubling algorithm (SDA-1 or SDA-2) to find the minimal
solution G. We will choose to use SDA-2 since it is less expensive. Moreover, there is a
close connection between the CR algorithm and SDA-2. In this section we determine
the convergence rate of SDA-2 in the null recurrent case, without the two additional
assumptions in [15]. The convergence rate for the CR (or LR) algorithm in the null
recurrent case is the same in view of their connections to SDA-2. As compared to
[15], the result here is more general and the analysis here is much simpler.

We mention that a doubling algorithm is also derived in [26] for finding the
minimal nonnegative solution of a polynomial equation that is more general than
(4.1). The algorithm there is different from SDA-2 when applied to (4.1).

The CR algorithm for (4.1), or for —Ag + (I — A1)G — A;G? = 0, is the following:

ALGORITHM 4.1. Set To = Ag, Ug=I1—-Ay, Vog=As, So=1-A;.
Fork=0,1,..., compute

Ty1 = ToUy T,

U1 = Uy — T,U,, Vi, — ViU ' T,
Viep1 = ViUg 'V,

Sk+1 = Sk — ViU, Ty,

The above CR algorithm is as presented in [3], but with one minor change: if
we follow [3] exactly, Ty and Vj, here would have to be replaced by —T} and —V}, for
k> 0.

The following result is known from the discussions in [4] and [32].
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THEOREM 4.1. The sequences {Ti},{Uk}, {Vi}, {Sk} in Algorithm 4.1 are well
defined. For each k > 0, Ty, and Vi are nonnegative, and Ugand Sy are nonsingular
M -matrices. When the QBD is positive recurrent or transient, the sequence {S}
converges quadratically to a nonsingular M-matriz S, and S;'Ag = G.

We note that Algorithm 4.1 may break down if we do not assume the irreducibility
of the transition matrix P. As an example, we consider

0 0 0 1
AO_|:1 0:|) A1_07 A2_|:0 0:|

It is easy to see that P is not irreducible, although Ag+ A1 4+ As is. For this example,
U; = 0in Algorithm 4.1, so the algorithm breaks down. The LR algorithm also breaks
down for this example.

To use the doubling algorithm to find G, we may rewrite (4.1) as

0o I 11 [1 o I,

Ay A1—1 G| |0 —A G ’
Multiplying the second block row by —(I — A;)~! and eliminating the I in the (1, 2)
block of the leftmost matrix, we get

[ S, 28] =1 o] [6]e

We can then use SDA-1 to find the matrix G. However, the less expensive SDA-2 can
also be used if we rewrite (4.1) as

I I
LO|:A2G:|:MO|:A2G:|G’ (4.3)
where

_[o 1 [ 4 o0
LO{AO o}’ MO[I—Al —1}

It is easily seen that Ly — AMj is a linearization of —Ag + A(I — A1) — A2 As.

If we use SDA-1, the matrix G can be approximated directly by a sequence gen-
erated by SDA-1. One may have some concern about the SDA-2 approach: how can
one get G if A3G is obtained and A, is singular? This concern will turn out to be
unnecessary.

In this section SDA-2 is Algorithm 2.2 with the initialization

To=Ay, Qo=1I—-A, Py=0, Vo= As. (4.4)

The algorithm generates the sequence {Ly, My} (see (2.7)) if no breakdown occurs.
It is readily seen that Algorithm 4.1 is recovered from SDA-2 by letting Uy =
Qr — Py, and Sy, = Sy — P;. By Theorem 4.1, Qp — P, = Uy are nonsingular M-
matrices for all £k > 0. So SDA-2 is also well defined.
In view of (2.9) we have for each k > 0

I o I ok
Lk{AQG]Mk[AQG}G |
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So
P4 AyG = G2, Ty = QG — 4,62

Similarly we have

where

~ (o I —~ [Ty, o©
L"‘[Voo}’ MO‘[Qo f}

It is easily seen that Z/\l\o — )\Eo is also a linearization of —Ag + A(J — A1) —

For each k£ > 0 we now have

o ] _/\ I ok
e[ e [ =] ]

where

= P I T T, 0

L - M: ~

’ {Vk 0]’ : [Qk —1]
with

Po=1-A—Qs, Qp=1-A4 —
So

P+ AgF = T F2', Vi = QuF% — A F2'+1.

11

A2 As.

(4.6)

(4.7)

We mentioned before that the Sy in Algorithm 4.1 satisfies Sy = Sy — P, =

I - A1 Pk So we have @k = Sk

When the QBD is positive recurrent or transient, we know by Theorem 4.1 that

@k converges quadratically to a nonsingular M-matrix Q* and Q 1Ay =

G. Here we

give a quick proof using the doubling algorithm. By the first equation in (4.5) and

the second equation in (4.6), we have
Ow — I+ Ay + AsG = VG2
Eliminating V) using the second equation in (4.7) gives
Ou(I—F2G¥)=T1— A; — 4G — A P2 1162

It follows that

timsup /|0 — (T — 4 — A4sG)[ < p(F)p(G) < 1.

k—oo

Since Q* = I — A; — A5G is a nonsingular M-matrix and Ay = @*G, we have
G = Q7'Ap. Similarly, Q) converges quadratically to the nonsingular M-matrix

Q*:I—Al—AoFandF:Q*_lAg.
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Our main purpose of this section, however, is to determine the convergence rate
of SDA-2 for the null recurrent case.

We start with a review of an important result about the spectral properties of
the quadratic pencil —Ag + A(I — A1) — A2 A, and of the matrices G and F when the
QBD is null recurrent. See Proposition 14 and Theorem 4 of [10] and Theorem 4.10
of [4].

THEOREM 4.2. Let the QBD be null recurrent. Then

(a) For some integer r > 1 the quadratic pencil —Ag + MN(I — A1) — A\2Ay has
n — r eigenvalues inside the unit circle, n — r eigenvalues outside the unit
circle (which include eigenvalues at infinity), and 2r eigenvalues on the unit
circle, which are the rth roots of unity, each with multiplicity two.

(b) The partial multiplicity of each eigenvalue on the unit circle is exactly two.

(¢) The eigenvalues of G are the n — r eigenvalues of the pencil inside the unit
circle plus the r simple eigenvalues at the rth roots of unity, the eigenvalues
of F are the reciprocals of the n — r eigenvalues of the pencil outside the unit
circle plus the r simple eigenvalues at the rth roots of unity.

Using the Kronecker form for matrix pairs, we have nonsingular matrices V' and
Z such that

I, 0 _
VMyZ = |: 0 Jhal, :| = Jy, (48)
[ sneD, o0&l |_
VL()Z — |: O In7T @ DT :| = JL7 (49)

where J; and Jy are (n —r) X (n — r) matrices consisting of the Jordan blocks with
diagonal elements inside the unit circle, D,. is a r x r diagonal matrix with the rth
roots of unity on the diagonal.

Similarly, we have nonsingular matrices 7' and W such that

=~ 1, 0 .

TLoW = |: 0 Lal, :| =Juy, (4.10)
— . J1® D, 0 =

TMyW = |: 0&l, I,.®D, :| =J. (4.11)

We have for each k& > 0
My ZJ2 = Lo ZJ%, LiWJZ = MwJZ. (4.12)

Let Z and W be partitioned as in (3.12). From (4.8) and (4.9) we have

Lo[g ] :MO{Z } (J1 @ D).

Comparing this with (4.3) and using Theorem 4.2, we know that Z; is nonsingular
and ZyZ; ' = A,G. Similarly, W5 is nonsingular and WaWs~ L= AyF.



CONVERGENCE ANALYSIS OF THE DOUBLING ALGORITHM 13
Using block matrix multiplication for (4.12), we have

ok ok
ViZi(JZ @ D) = —PuZy + Zs, 4.13

(4.13)
(QuZy — Z2)(J2" & D?") = T}, 7y, (4.14)
ViZi(0® 28D2 1) 4+ Vi Z3(I @ D) = (—PuZs + Z4)(J2 & I), (4.15)
(QuZy — Z2)(0 ® 2°D2" 1) + (QuZs — Z4)(I & D) = Ty Z3(J2 & I), (4.16)
) ok 2k D k2~ —1
(=B + W) (J2" @ D2) + (—PWs + Wy)(0 @ 28D 1) = T,Wy,  (4.17)
VWi (J2 @ D2°) + ViiWs(0 @ 28 D2~ 1) = Qu Wy — W, (4.18)
(—BWs + W) (I & D2) = T, W3 (J2" & 1), (4.19)
VeWs(I ® D) = (QrW; — W) (J2" @ I). (4.20)

Post-multiplying (4.16) by 0 @ 27%D,. and subtracting the result from (4.14), we get
Ty (71— Z3s(0827%D,)) = (QrZ1— Za) (J? B0)— (QiZs— Z4) (02~ F D2 +1). (4.21)
By (4.19) we have
— P = —WuW5 '+ TuWs(J2 @ D2 ywi (4.22)
Thus, in view of (4.6),
-1 2" —2F\1r—1
Qr=1—A —W,W5 '+ TWs(J2 & D2 Yywi . (4.23)
Inserting (4.23) into (4.21) and letting Q. = I — Ay — W,W3 ', we get
Ty |21~ Z3(0® 27" D) = Wy (5" & D)W N (21 (' @ 0) - Z3 (0@ 27FDE )|
= Q21 = Z)(J} ©0) = (QuZs — Z0)(0® 27D+,
from which it follows that
I Tx[l = O27").
It then follows from (4.23) that
1Qk = (I = Ar = WaW5 h)|| = 0(27F).
Post-multiplying (4.15) by 0 @ 27% D, and subtracting the result from (4.13), we get
—k _ 2" —k 2k +1
—PyZ\+Zo—(—PrpZ3+74) (00277 D,) = Vi (Z1(J7 €0)—Z5(0927"D; ™). (4.24)
By (4.20),
A ok —ok -1
Vi = (QiWs — Wy)(J5 @ D, )W3 . (4.25)
Inserting (4.25) into (4.24) and using Qy = I — Ay — Py, we get

—PuZy + Zo — (=PyZ3 + Z)(0® 27"D,) = (I — Ay — Pp)W3 — W,)Cy
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for some Cy with |Cy|| = O(27%). Thus,
Py(Z1 — Zs(0® Q_kDr) —W5Ck) = Zo — Z4(0® Q_kD,«) — (I — A)W3 — Wy)Cy.
It follows that
1Px — 22277 = 0(27%).

Post-multiplying (4.18) by 06 2-*D1-2" we get

VaW1(0®27%D,) + ViWs(0 & I) = (Q) W1 — Wa)(0 @ 27FD1=2"), (4.26)
Post-multiplying (4.20) by I & 0, we get

VeWs(I @ 0) = (Qr W5 — Wi)(J2" @ 0). (4.27)
Adding (4.26) and (4.27) gives
Vi(Ws + Wi(0®27%D,)) = (QuWy — Wa)(0® 275 DL2") 4 (QuWs — W) (J3 @ 0).
It follows that
Vil = 0(27"),

since W3 is nonsingular and {@k} has been shown to be bounded.
In summary, we have proved the following result.
THEOREM 4.3. Let the @BD be null-recurrent. Then for SDA-2 we have

[Vill = 0@27%), ||T]| = O(27%),
1Qr — (I — A1 — AgF)|| =0(27%), [|Px — A:G|| =0(27%).

COROLLARY 4.4. Let limQy = Q. and lim P, = P.. Then Q. is nonsingular
and Q1 Ay = F, I — Ay — P, is nonsingular and (I — Ay — P,)"1Ag = G. The matriz
Q. — Py is a singular M -matrix.

Proof. By Theorem 4.3, Q. = [—A;1—AgF and [— A1 — P, = I— A1 — A3G. These
two matrices are known to be nonsingular [32]. Since Q. F = (I — Ay — AgF)F = A,
Q*_lAQ = F'. Since (I—Al —P*)G = (I—A]_ —AQG)G = Ao, (I—Al —P*)_lAO =G.
@« — Py is a singular M-matrix since

(Q* —P*)GZ (I—Al —A()F—AQG)GZ € — (Al +A0+A2)6:0

This completes the proof. 0

When the QBD is null recurrent, the interpretation of the CR algorithm as a
doubling algorithm has allowed us to show that the minimal solutions G and F' can
be found by the CR algorithm (or the closely related LR algorithm) simultaneously
and with at least linear convergence with rate 1/2. It is important to note that we
no longer need the assumption that the matrices G and F' have no eigenvalues on the
unit circle other than the simple eigenvalue 1. With that assumption, one would use
the shift technique as studied in [25], [16] and [4], and apply the CR algorithm or the
LR algorithm to the shifted equation. When GG and F' have more than one eigenvalues
on the unit circle, the shift technique is not helpful and the CR algorithm or the LR
algorithm will be applied directly to the equation (4.1).
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5. A nonsymmetric algebraic Riccati equation. In this section we consider
the nonsymmetric algebraic Riccati equation (NARE)

XCX - XD—-AX+B=0, (5.1)

where A, B, C, D are real matrices of sizes m X m, m X n,n X m,n X n, respectively,
and the matrix

D _C} (5.2)

K{—B A

is a nonsingular M-matrix or an irreducible singular M-matrix. The NARE arises
in the study of Wiener—Hopf factorization of Markov chains [37], and it includes the
NARE arising from transport theory [29, 30]. We will also need the dual equation of
(5.1)

YBY —YA—DY +C =0, (5.3)

which is in the same form of (5.1).

We will use the elementwise order for matrices: for any matrices A = [a;;], B =
[bij] S Rmxn7 we write A > B(A > B) if Q5 > bij(aij > bij) for all 1,7.

A basic result about (5.1) and (5.3) is the following [14].

THEOREM 5.1. If the matriz K in (5.2) is a nonsingular M -matriz or an irre-
ducible singular M -matriz, then the NARE (5.1) and the NARE (5.3) have minimal
nonnegative solutions X and Y, respectively. Moreover, D — CX and A — BY are
M -matrices.

The minimal nonnegative solution of the NARE is the solution of practical inter-
est. There have been a number of methods for finding this solution. The methods
and their analyses can be found in [2, 14, 18, 20, 21, 23, 24, 36]. Among the iterative
methods, the doubling algorithm proposed in [24] stands out for its overall efficiency.
The algorithm is analyzed in [24] for the case when K is a nonsingular M-matrix, and
is analyzed in [21] for the case when K is an irreducible singular M-matrix. When
K is an irreducible singular M-matrix, we let [vf,v3]T > 0 and [uf,ud]T > 0 be
the right and the left null vectors of K in (5.2), respectively. If ulv; # ul'vo, then
the convergence of the doubling algorithm is still quadratic; if uf vy = ul'vy, then the
convergence is observed to be linear with rate 1/2 (see [21]). The later case will be
referred to as the critical case for the NARE. For this critical case, the convergence
of Newton’s method has been shown to at least linear with rate 1/2 [14, 20, 23]. We
will reach the same conclusion for the doubling algorithm.

We start with a brief review of the doubling algorithm in [24]. Let

D -C
H = {B —A] , (5.4)
and
R=D-CX, S=A-BY, (5.5)

where X and Y are given in Theorem 5.1. Then the NAREs (5.1) and (5.3) can be
rewritten as

H[%]{%}R (5.6)
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and

Applying the Cayley transform to equation (5.6) with a scalar v > 0 we have

-0 | | =erean| | n,

where R, = (R + ~vI,) (R —vI,). Premultiplying the above equation by a proper
nonsingular matrix gives

MO{IX"}:LO{“%}RT (5.8)

Here Ly and M are given by (2.1) with

Ey=1I, -2V, ", Fo =1, —29W; ", 59)
Go=2yD;'CW;',  Ho=2yW;'BD;", '
where
A, = A+~I,, D, =D +~I,,
7 7 . 7 7 ) (5.10)
W, = A, - BD;'C, V,=D,-CA;'B.
Similarly,
Y Y
w[ ¥ ]s-n] )] 1

where S, = (S + 1) "1 (S — ).
In this section SDA-1 denotes Algorithm 2.1 with Ey, Fy, Go, Ho given by (5.9).
The following result from [21] improves the original results given in [24].
THEOREM 5.2. Let the matriz K in (5.2) be a nonsingular M-matriz or an
irreducible singular M -matriz, and X,Y > 0 be the minimal nonnegative solutions of
the NAREs (5.1) and (5.3), respectively. If ~ satisfies

>~y = . dy; 5.12
7> maX{lrgniag;l Gy AX ”}, (5.12)

where a;; and di; are the diagonal entries of A and D, respectively, then the sequence
{E), Fk, Hy, Gy} in SDA-1 is well defined. Moreover, we have

(a) Fo,Fyo <0 and Ey, Fx, >0 for k> 1;

(b) Fork>0,0< Hy < Hipy1 < X,0< G < Ggy1 <Y

(¢) Fork >0, I, — H,Gy, and I,, — G H}, are nonsingular M-matrices.

From now on we assume that K in (5.2) is an irreducible singular M-matrix, and
consider the critical case of the NARE (5.1). We always assume that v satisfies (5.12).

The Kronecker form for the pencil (My, Lo) can be determined with the help of
the following result [14], where C_ and C; denote the open left and the open right
half planes, respectively.

THEOREM 5.3. For the critical case of the NARE (5.1), the matriz H has n — 1
eigenvalues in C;, m—1 eigenvalues in C_, and two zero eigenvalues with a quadratic
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divisor. Moreover, R and S in (5.5) are irreducible singular M-matrices (so each of
them has a simple eigenvalue 0 and the remaining eigenvalues are in C,.).

In view of Theorem 5.3, the properties of the Cayley transform, and the process
leading to (5.8) and (5.11), we know that there are nonsingular matrices V and Z
such that

In On,m —
VL7 = { O Jon 1] } =J, (5.13)
VMyZ = [ Onn Ty [-1] ] = Jur, (5.14)

in which
J=J1s@[-12R,, Jo=Jo@[-1]XS,, T=0,1m1D[l]=enel, (5.15)

where p(J15) < 1, p(Ja.s) < 1, and “X” denotes the similarity transformation. Since
Jr. Iy = Iy Jr, for the matrices Ly and My, given by (2.2) we have by (2.11)

M ZJY = Ly 2J%. (5.16)

On the other hand, there are nonsingular matrices T" and W such that

JQ f _ 7
TLoW = =J, 5.17
0 |: On,m In—l b [_1] :| o ( )
Tvw = | Im O (5.18)
0 B On,m Jl,s @ [1} A '
where T' = emel. We now have
LyWJ2 = MW J2 . (5.19)

The following result determines the convergence rate of SDA-1 in the critical case.

THEOREM 5.4. Let X, Y > 0 be the minimal nonnegative solutions of the NAREs
(5.1) and (5.3), respectively, and let {Ey, Fy,, G, Hy} be generated by SDA-1. Then
for the critical case

1Bk =0@27%), [Fll=027"), |Hi-X|=02"), |Gi-Y|=0027")

Proof. Partition the matrices Z and W as

_ Zl Z3 _ W1 Wg
-[4 2] wo]mm] )

where Zy, W5 € R"*™ and Z4, Wy € R™*™_ Then from (5.13) and (5.14), and from
(5.17) and (5.18), we have

VA Z W 0%
MO{Z;}:LO[Z;]A, MO[W;}JQZLO{W;} (5.21)

Comparing (5.21) with (5.8) and (5.11), and using (5.15), we know that Z; and Ws
are invertible and X = Z,Z; ', Y = W, W, .
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Note that for £ > 1 we have

ok 1, 0 ok lek Ty ok 1, 0 ok J22k fk
‘]L_[o Jgk}’JM_[ o I, ™Mo 2 =0 5 ]

where Iy, = —2FT = —2F¢, el | fk = 2 = —2ke,el. Tt follows from (5.16) and
(5.19) that for £ > 1

EvZy = (Z1 — G Z2) 2, (5.22)
EnZ3J2" = (Zy — Gy Za)Th + (Z3 — G Z4), (5.23)
—HpZ\+ Z, :FkZ2J12ka (5.24)
(—HyZs + Z4)J2" = FyZoTy + Fiu Za, (5.25)
Wi — G Wa = EW1J3 (5.26)
(W3 — GpWa)J2 = EyWiTy + E,Ws, (5.27)
F W = (Wo — HW:)JZ, (5.28)
F W2 = (W — HyWi)Tx + (W — HyW3). (5.29)

Post-multiplying (5.29) by fL = —27kT, the Moore-Penrose pseudo inverse of fk,
subtracting the result from (5.28), and noting that l"klﬂ;rC = Opp—1 @ [1], we get

Fiu(Wo + 27 "Wy J2'T) = (W, — kal)(JQZZ @ [0]) +27%(Wy — HWs)T'. (5.30)

Since Wj is invertible and {H}} is bounded by Theorem 5.2(b), it follows from (5.30)
that || Fy| = O(27%). It then follows from (5.24) that ||[Hy — X| = O(27F).

Similarly, post-multiplying (5.23) by FL = —27*T, subtracting the result from
(5.22), and noting that TyI'l = 0,,_; @ [1], we get

En(Z + 27" 2303 T) = (21 — GuZo)(J2 @ [0)) + 275(Zs — G Za)T. (5.31)

Since Z; is invertible and {G}} is bounded by Theorem 5.2(b), it follows from (5.31)
that || Ex|| = O(27F). It then follows form (5.26) that |G}, — Y| = O(27%). O

We note that lim(I — GyHy) =1 —Y X and lim(I — H;yGy) = I — XY are both
singular M-matrices (see [21]).

The critical case we have considered is a singular case, and the singularity can
be removed by applying a proper shift technique. Indeed, a shift technique has been
introduced in [21] and SDA-1 applied to the shifted NARE has quadratic convergence
if no breakdown happens. However, whether breakdown is possible remains an open
problem in general, although some partial results have been obtained in [21].

Since K is an irreducible singular M-matrix, we may assume without loss of
generality that Ke = 0. In this case, one can transform the NARE to a quadratic
matrix equation of the type in section 4, but with (m + n) x (m + n) matrices in
the equation (see [36]). One can then apply CR and LR to the transformed equation
(see [2, 18]). A specific shift technique (following [25]) is introduced in [18] to the
transformed equation, and quadratic convergence is recovered for the LR algorithm
(thus also for the CR algorithm) if no breakdown happens. It has been shown in
[20] that the LR algorithm is indeed well-defined when the shift technique is used.
However, when m = n, the computational work required in each iteration is nearly
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twice that for SDA-1, due to the dimension expansion from n to 2n. If we use the
shift technique in [18] with the CR approach in [2], then no breakdown happens and
the complexity is down to 34n3 flops each iteration when m = n.

Although it is preferable to use a shift technique for the critical case of the NARE
(with an irreducible singular M-matrix K), our convergence results in Theorem 5.4
still provide some insights about the convergence behaviour of SDA-1 for nearby
NAREs with a nonsingular M-matrix K (where the shift technique is no longer app-
plicable). The exact solution of a singular NARE is quite sensitive to the input data
in the NARE (see [20]). For the singular NARE and nearby NAREs, it would be
reasonable to stop the iteration when ||Hj — Hy_1| < €'/2, where € is the machine
epsilon, and take Hj as an approximation to the exact solution X. Further iterations
for SDA-1 may not be able to improve the accuracy significantly in view of the pertur-
bation behaviour of X and the fact that I — Gy Hy and I — Hy Gy, are nearly singular
for large k. So we are mainly interested in the behaviour of SDA-1 for iterations up
to the point where || Hy, — Hy_1|| < ¢'/? (assuming this is achievable). And up to that
point, the behaviour of SDA-1 for those nearby NAREs would be very much similar
to that of SDA-1 for the singular NARE. We use one example to illustrate this point.

EXAMPLE 5.1. Let T be a 16 x 16 doubly stochastic matrix given by T =
sossmagic(16), where magic is the Matlab function that generates magic squares.
Let K =1 — T, and let the 8 x 8 matrices A, B,C, D be determined through (5.2).
The matrix K is an irreducible singular M-matrix and we have the critical case for
the NARE (5.1). We take 7 to be the largest diagonal entry of K (which is the last
diagonal entry of K) and apply SDA-1. We find that ||Hy, — Hy_1|| < 1077 is satisfied
for k = 24. The convergence rate of Hyp — X is determined through that of Fj (see
the proof of Theorem 5.4). We find that the values of {/||Fj||o are between 0.4924
and 0.5001 for k =4 : 24.

We then increase the (1,1) entry of K by 1072, So K is now a nonsingular
M-matrix. The matrix D is changed accordingly. The change in K does not change
the largest diagonal entry of K. So we apply SDA-1 to the new NARE with the same
v. We find that ||Hy — Hy_1]| < 1077 is satisfied for k& = 23, and that the values
of {/||Fk|lco are between 0.4924 and 0.5000 for k = 4 : 21 (the values are 0.4855
and 0.4570 for k = 22 and k = 23, respectively). Thus, the (non-terminal and more
important) convergence behaviour of SDA-1 for this nearby NARE is largely dictated
by our theoretical results in Theorem 5.4.

6. Conclusion. We have determined the convergence rate of the doubling algo-
rithm in the critical (or singular) case for three different nonlinear matrix equations. It
is possible to apply the techniques we reviewed in section 2 to other nonlinear matrix
equations. Through this study, we have also gained more insights for the convergence
behaviour for the doubling algorithm for nearly singular cases.
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