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Abstract. In this paper, we review two types of doubling algorithm and some techniques for
analyzing them. We then use the techniques to study the doubling algorithm for three different
nonlinear matrix equations in the critical case. We show that the convergence of the doubling
algorithm is at least linear with rate 1/2. As compared to earlier work on this topic, the results we
present here are more general, and the analysis here is much simpler.
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1. Introduction. The doubling algorithm has been studied for various nonlinear
matrix equations in [1, 6, 7, 19, 21, 24, 27, 28, 34]. Its convergence behaviour in the
critical case, however, has not been fully investigated. The doubling algorithm is said
to be structure-preserving (and denoted by SDA) because it preserves certain block
structures for matrix pairs (or pencils) related to matrix equations.

In section 2, we review two types of doubling algorithm and some techniques for
analyzing them. The presentation here is more general than in [34] and [24], to al-
low direct application to various matrix equations. In sections 3–5, the techniques
reviewed in section 2 are used to study the convergence behaviour of the doubling
algorithm for three different nonlinear matrix equations in the critical case. As com-
pared to previous papers, the results here are obtained with only basic assumptions.
In particular, the results we obtain about a quadratic matrix equation arising from
quasi-birth-death processes are more general than previous results, and the analysis
here is much simpler. A connection between the doubling algorithm and the cyclic
reduction algorithm is also pointed out for that quadratic matrix equation. Some
concluding remarks are made in section 6.

2. The doubling algorithm. The first three subsections are based on [34], [24],
and [27], but the presentation here is more general. The last subsection is directly
from [27].
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2.1. SDA-1. For a given matrix pair

L0 =
[

I −G0

0 F0

]
, M0 =

[
E0 0
−H0 I

]
, (2.1)

where E0, F0, G0,H0 are n × n, m ×m, n ×m, m × n, respectively, we are going to
define

Lk =
[

I −Gk

0 Fk

]
, Mk =

[
Ek 0

−Hk I

]
(2.2)

for all k ≥ 0. Assume that Lk and Mk have been defined and I − GkHk (and thus
I −HkGk) is nonsingular for k ≥ 0. Then we can define the matrices

L̃k =
[

I −Ek(I −GkHk)−1Gk

0 Fk(I −HkGk)−1

]
, M̃k =

[
Ek(I −GkHk)−1 0

−Fk(I −HkGk)−1Hk I

]
.

It is easily verified that L̃kMk = M̃kLk. We then define

Lk+1 = L̃kLk =
[

I −(Gk + Ek(I −GkHk)−1GkFk)
0 Fk(I −HkGk)−1Fk

]
,

Mk+1 = M̃kMk =
[

Ek(I −GkHk)−1Ek 0
−(Hk + Fk(I −HkGk)−1HkEk) I

]
.

Therefore, the sequence {Lk,Mk} can be defined by the following doubling algorithm
if no breakdown occurs.

Algorithm 2.1. (SDA-1) Given E0, F0, G0,H0.
For k = 0, 1, . . . compute

Ek+1 = Ek(I −GkHk)−1Ek, (2.3)

Fk+1 = Fk(I −HkGk)−1Fk, (2.4)

Gk+1 = Gk + Ek(I −GkHk)−1GkFk, (2.5)

Hk+1 = Hk + Fk(I −HkGk)−1HkEk. (2.6)

The algorithm requires about 14
3 m3 + 6m2n + 6mn2 + 14

3 n3 flops each iteration.
Note that the flop count is 64

3 n3 when m = n.

2.2. SDA-2. For a given matrix pair

L0 =
[
−P0 I
T0 0

]
, M0 =

[
V0 0
Q0 −I

]
,

where all matrix blocks are n× n, we are going to define

Lk =
[
−Pk I
Tk 0

]
, Mk =

[
Vk 0
Qk −I

]
(2.7)

for all k ≥ 0. Assume that Lk and Mk have been defined and Qk − Pk is nonsingular
for k ≥ 0. Then we can define the matrices

L̃k =
[

I −Vk(Qk − Pk)−1

0 Tk(Qk − Pk)−1

]
, M̃k =

[
Vk(Qk − Pk)−1 0
−Tk(Qk − Pk)−1 I

]
.
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It is easily verified that L̃kMk = M̃kLk. We then define

Lk+1 = L̃kLk =
[
−(Pk + Vk(Qk − Pk)−1Tk) I

Tk(Qk − Pk)−1Tk 0

]
,

Mk+1 = M̃kMk =
[

Vk(Qk − Pk)−1Vk 0
Qk − Tk(Qk − Pk)−1Vk −I

]
.

Therefore, the sequence {Lk,Mk} can be defined by the following doubling algorithm
if no breakdown occurs.

Algorithm 2.2. (SDA-2) Given V0, T0, Q0, P0.
For k = 0, 1, . . ., compute

Vk+1 = Vk(Qk − Pk)−1Vk,

Tk+1 = Tk(Qk − Pk)−1Tk,

Qk+1 = Qk − Tk(Qk − Pk)−1Vk,

Pk+1 = Pk + Vk(Qk − Pk)−1Tk.

This algorithm requires about 38
3 n3 flops each iteration.

2.3. Relation between Lk and Mk. Suppose we have

L0U = M0UE, (2.8)

where the matrix pair (L0,M0) is the initialization for either SDA-1 or SDA-2, E is
a square matrix, and U is any matrix of suitable dimension.

Pre-multiplying (2.8) with L̃0 and using L̃0M0 = M̃0L0, we get L1U = M1UE2.
In general, we have for each k ≥ 0

LkU = MkUE2k

. (2.9)

Suppose that there are nonsingular matrices V and Z such that

V L0Z = JL, V M0Z = JM , (2.10)

and JLJM = JMJL. Then it follows that

M0ZJL = V −1JMJL = V −1JLJM = L0ZJM ,

and

M1ZJ2
L = M̃0M0ZJ2

L = M̃0L0ZJMJL = L̃0M0ZJLJM = L̃0L0ZJ2
M = L1ZJ2

M .

In general, we have for each k ≥ 0

MkZJ2k

L = LkZJ2k

M . (2.11)
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2.4. Result on special Jordan blocks. Let Jω,p be the p × p Jordan block
with a unimodular eigenvalue ω = eiθ:

Jω,p ≡



ω 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 ω


. (2.12)

When p = 2m, let Γk,m be determined through the partition

J2k

ω,2m =

[
J2k

ω,m Γk,m

0 J2k

ω,m

]
. (2.13)

The following useful Lemma is proved in [27].
Lemma 2.1. The matrix Γk,m is invertible and satisfies

‖Γ−1
k,mJ2k

ω,m‖ = O(2−k), ‖J2k

ω,mΓ−1
k,mJ2k

ω,m‖ = O(2−k) as k →∞. (2.14)

In the next three sections, we will apply the techniques reviewed in this section
to three different nonlinear matrix equations. Although the general approach will
be the same, we will need to fully exploit the special properties of each equation.
Among other things, the following two issues deserve special attention: (1) Given a
nonlinear matrix equation, how should we rewrite it in its equivalent form (2.8)? If
possible, we should try to get a form (2.8) that would lead to SDA-2 rather than
SDA-1, since SDA-2 is less expensive. (2) How should we choose the matrices JL and
JM in (2.10)? The matrices must satisfy JLJM = JMJL, and the resulting equation
(2.11) and an equation from a similar procedure should be easy to handle together.
We will keep these issues in mind when we carry out the convergence analysis for the
three equations.

3. A special nonlinear matrix equation. In this section we consider the
nonlinear matrix equation (NME)

X + AT X−1A = Q, (3.1)

where A,Q ∈ Rn×n with Q being symmetric positive definite. Various aspects of the
NME, like solvability, numerical solution, perturbation and applications, can be found
in [8, 9, 13, 17, 22, 35, 38, 39, 40, 41] and the references therein.

For symmetric matrices X and Y , we write X ≥ Y (X > Y ) if X − Y is positive
semidefinite (definite). We use this definition of ordering only in this section, and will
use the elementwise order in sections 4 and 5. We assume that (3.1) has a symmetric
positive definite solution. Then [9] it has a maximal symmetric positive definite
solution X+ (X+ ≥ X for any symmetric positive definite solution X of (3.1)), and
ρ(X−1

+ A) ≤ 1, where ρ(·) is the spectral radius.
Let

L0 =
[

0 I
AT 0

]
, M0 =

[
A 0
Q −I

]
. (3.2)
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It is easy to verify that the pencil M0−λL0 (also denoted by (M0, L0)) is symplectic,
i.e.,

M0JMT
0 = L0JLT

0 for J =
[

0 I
−I 0

]
.

Using Algorithm 2.2 with V0 = A, T0 = AT , Q0 = Q,P0 = 0, we have Tk = V T
k , QT

k =
Qk, PT

k = Pk. So Algorithm 2.2 is simplified to the following, where we have used Ak

for Vk.
Algorithm 3.1. Let A0 = A,Q0 = Q, P0 = 0.

For k = 0, 1, . . ., compute

Ak+1 = Ak(Qk − Pk)−1Ak,

Qk+1 = Qk −AT
k (Qk − Pk)−1Ak,

Pk+1 = Pk + Ak(Qk − Pk)−1AT
k .

The matrices Lk,Mk in (2.7) are now given by

Lk =
[
−Pk I
AT

k 0

]
, Mk =

[
Ak 0
Qk −I

]
. (3.3)

It is noted in [34] that the cyclic reduction algorithm in [35] is recovered from
Algorithm 3.1 when Qk − Pk and Qk are replaced by Qk and Xk, respectively, where
the latter Qk and Xk are the notations used in [35, Algorithm 3.1]. So we know
from [35] that Qk − Pk > 0 in Algorithm 3.1. Thus the algorithm is well defined and
0 ≤ Pk < Qk ≤ Q. This fact is also proved in [34] without using the results in [35].

It is easy to verify that

M0

[
I

X+

]
= L0

[
I

X+

]
X−1

+ A. (3.4)

We are interested in the case with ρ(X−1
+ A) = 1. It follows from [13, Theorem 2.4]

that the eigenvalues of X−1
+ A have the following characterization.

Theorem 3.1. For (3.1), the eigenvalues of the matrix X−1
+ A are precisely the

eigenvalues of the matrix pencil M0−λL0 inside or on the unit circle, with half of the
(necessarily even) partial multiplicities for each unimodular eigenvalue of the pencil.

In view of the connection between Algorithm 3.1 and the cyclic reduction algo-
rithm in [35], we know from [13] that the sequence Qk in Algorithm 3.1 converges to
X+ at least linearly with rate 1/2, as long as all eigenvalues of X−1

+ A on the unit circle
are semisimple. With the tools in section 2, we are going to prove more convergence
results for Algorithm 3.1, without any assumption on the unimodular eigenvalues of
X−1

+ A.
Suppose there are r Jordan blocks associated with unimodular eigenvalues of

(M0, L0). Then they have the form

Jωj ,2mj
=

[
Jωj ,mj

Γ0,mj

0 Jωj ,mj

]
, Γ0,mj

≡ emj
eT
1 , (3.5)

where ωj = eiθj for j = 1, . . . , r.
By the results on Kronecker canonical form for a symplectic pencil (see [11] and

[33]), there exist nonsingular matrices V and Z such that
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V L0Z =
[

In 0n

0n JH
s ⊕ Im

]
≡ JL, (3.6)

V M0Z =
[

Js ⊕ J1 0l ⊕ Γ0

0n Il ⊕ J1

]
≡ JM , (3.7)

where Js ∈ Cl×l consists of stable Jordan blocks (so ρ(Js) < 1), J1 = Jω1,m1 ⊕ · · · ⊕
Jωr,mr , Γ0 ≡ Γ0,m1 ⊕· · ·⊕Γ0,mr , m = m1 + · · ·+mr, l = n−m, ⊕ denotes the direct
sum of matrices and (·)H the conjugate transpose. Moreover, the nonsingular matrix
Z can be taken to be of the form Z = ZaZb with Za symplectic and Zb = In ⊕ Zc.
It follows that span{Z(:, 1 : n)} forms the unique weakly stable Lagrangian deflating
subspace of (M0, L0) corresponding to Js ⊕ J1.

Let Γk,mj be given by (2.13) with ω = ωj and m = mj . Since JLJM = JMJL, we
have by (2.11)

MkZ

[
I 0
0 (JH

s )2
k ⊕ I

]
= LkZ

[
J2k

s ⊕ J2k

1 0⊕ Γk

0 I ⊕ J2k

1

]
, (3.8)

where Γk = Γk,m1 ⊕ · · · ⊕ Γk,mr
.

Similarly, there exist nonsingular matrices T and W such that

TM0W = JL, TL0W = JM , (3.9)

and

LkW

[
I 0
0 (JH

s )2
k ⊕ I

]
= MkW

[
J2k

s ⊕ J2k

1 0⊕ Γk

0 I ⊕ J2k

1

]
. (3.10)

By Lemma 2.1 we have

‖Γ−1
k J2k

1 ‖ = O(2−k), ‖J2k

1 Γ−1
k J2k

1 ‖ = O(2−k) as k →∞. (3.11)

We now prove some convergence results for Algorithm 3.1. Partition Z and W as

Z =
[

Z1 Z3

Z2 Z4

]
, W =

[
W1 W3

W2 W4

]
, (3.12)

where Zi,Wi ∈ Cn×n (i = 1, . . . , 4).
Theorem 3.2. When ρ(X−1

+ A) = 1, the sequences {Ak, Qk, Pk} generated by
Algorithm 3.1 satisfy

(a) ‖Ak‖ = O(2−k);
(b) ‖Qk −X+‖ = O(2−k) and X+ = Z2Z

−1
1 ;

(c) ‖Pk − X−‖ = O(2−k) for X− = W2W
−1
1 if W1 is invertible; if A is also

invertible, then X− is a solution of (3.1) and the eigenvalues of X−1
− A are

the reciprocals of the eigenvalues of X−1
+ A;

(d) Qk − Pk converges to a singular matrix as k →∞.
Proof. (a) Substituting Lk and Mk of (3.3) and Z of (3.12) into (3.8), we obtain

AkZ1 = (−PkZ1 + Z2)(J2k

s ⊕ J2k

1 ), (3.13)

AkZ3((JH
s )2

k

⊕ I) = (−PkZ1 + Z2)(0⊕ Γk) + (−PkZ3 + Z4)(I ⊕ J2k

1 ), (3.14)

QkZ1 − Z2 = AT
k Z1(J2k

s ⊕ J2k

1 ), (3.15)

(QkZ3 − Z4)((JH
s )2

k

⊕ I) = AT
k Z1(0⊕ Γk) + AT

k Z3(I ⊕ J2k

1 ). (3.16)
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From (3.6) and (3.7) we have

M0

[
Z1

Z2

]
= L0

[
Z1

Z2

]
(Js ⊕ J1).

By Theorem 3.1, X−1
+ A is similar to Js ⊕ J1. Then from (3.4) and the uniqueness of

weakly stable Lagrangian deflating subspaces of (M0, L0) corresponding to Js ⊕ J1,
we have [

Z1

Z2

]
=

[
I

X+

]
R

for a nonsingular matrix R. It follows that Z−1
1 exists and X+ = Z2Z

−1
1 .

Post-multiplying (3.14) by (0⊕ Γ−1
k J2k

1 )Z−1
1 and using (3.13), we have

Ak

[
I − Z3(0⊕ Γ−1

k J2k

1 )Z−1
1

]
= (−PkZ1 + Z2)(J2k

s ⊕ 0)Z−1
1 − (−PkZ3 + Z4)(0⊕ J2k

1 Γ−1
k J2k

1 )Z−1
1 .

It follows from (3.11) and the boundedness of {Pk} that

‖Ak‖ = O(2−k). (3.17)

(b) Post-multiplying (3.16) by (0⊕ Γ−1
k J2k

1 )Z−1
1 and using (3.15), we get

Qk

[
I − Z3(0⊕ Γ−1

k J2k

1 )Z−1
1

]
−X+

=
[
AT

k Z1(J2k

s ⊕ 0)−AT
k Z3(0⊕ J2k

1 Γ−1
k J2k

1 )− Z4(0⊕ Γ−1
k J2k

1 )
]
Z−1

1 . (3.18)

By (3.11) and (3.17), we have

‖Qk −X+‖ = O(2−k).

(c) Substituting Lk and Mk of (3.3) and W of (3.12) into (3.10), we have

W2 − PkW1 = AkW1

(
J2k

s ⊕ J2k

1

)
, (3.19)

(W4 − PkW3)
(
(JH

s )2
k

⊕ I
)

= AkW1 (0⊕ Γk) + AkW3

(
I ⊕ J2k

1

)
. (3.20)

Let X− = W2W
−1
1 . As before, post-multiplying (3.20) by

(
0⊕ Γ−1

k J2k

1

)
W−1

1 and
using (3.19), we get

X− − Pk

[
I −W3

(
0⊕ Γ−1

k J2k

1

)
W−1

1

]
=

[
W4

(
0⊕ Γ−1

k J2k

1

)
+ AkW1

(
J2k

s ⊕ 0
)
−AkW3

(
0⊕ J2k

1 Γ−1
k J2k

1

)]
W−1

1 . (3.21)

By (3.11) and the result of (a), we have

‖X− − Pk‖ = O(2−k).

From (3.9) we get[
0 I

AT 0

] [
I

X−

]
=

[
A 0
Q −I

] [
I

X−

]
R−,
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where R− = W1(Js ⊕ J1)W−1
1 . It follows that

X− = AR−, AT = (Q−X−)R−.

When A is invertible, the matrices X−1
+ A,R−, X− are all invertible and we obtain

X− + AT X−1
− A = Q.

Moreover, the eigenvalues of X−1
− A are the reciprocals of the eigenvalues of R− (and

thus X−1
+ A).

(d) From (3.13) and (3.15), we get

−PkZ1(J2k

s ⊕ J2k

1 ) = AkZ1 − Z2(J2k

s ⊕ J2k

1 ),

QkZ1(J2k

s ⊕ J2k

1 ) = Z2(J2k

s ⊕ J2k

1 ) + AT
k Z1(J2·2k

s ⊕ J2·2k

1 ).

This implies that

(Qk − Pk)Z1

[
0

Im

]
= AkZ1

[
0

J−2k

1

]
+ AT

k Z1

[
0

J2k

1

]
. (3.22)

Since 0 ≤ Pk ≤ Pk+1 ≤ Q, the sequence Pk converges even if W1 is singular. Let
lim(Qk − Pk) = R∗. It follows from (3.22) and the result of (a) that

R∗Z1

[
0

Im

]
= 0.

Thus R∗ is singular.
The most important conclusion in Theorem 3.2 is that the sequence Qk from the

doubling algorithm converges to X+ at least linearly with rate 1/2, regardless of the
values of mj (j = 1, 2, . . . , r). This is in sharp contrast with the behaviour of Newton’s
method. The NME (3.1) is a special case of the discrete algebraic Riccati equation
studied in [12]. It is conjectured in [12] that the convergence of Newton’s method
is linear with rate 1/ q

√
2, where q = max1≤j≤r mj . This conjecture is confirmed in

numerical experiments on (3.1) with A being a q × q Jordan block with eigenvalue 1
and Q = I + AT A, for small values of q. We know form [13] that X+ = I in all those
examples. Newton’s method is given in [13, Algorithm 3.3].

4. A quadratic matrix equation from quasi-birth-death problems. A
discrete-time quasi-birth-death (QBD) process is a Markov chain with state space
{(i, j) | i ≥ 0, 1 ≤ j ≤ n}, and with a transition probability matrix of the form

P =


B0 B1 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 ,

where B0, B1, A0, A1, and A2 are n×n nonnegative matrices such that P is stochastic.
In particular, (A0 + A1 + A2)e = e, where e = (1, 1, . . . , 1)T .

We make the standard assumption that the matrix P and the matrix A = A0 +
A1 + A2 are both irreducible. Thus, A0 6= 0 and A2 6= 0. Moreover, there exists
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a unique positive vector α with αT e = 1 and αT A = αT . The QBD is positive
recurrent if αT A0e > αT A2e, transient if αT A0e < αT A2e, and null recurrent if
αT A0e = αT A2e.

The minimal nonnegative solution G of the matrix equation

G = A0 + A1G + A2G
2 (4.1)

plays an important role in the study of the QBD process (see [32]). We will also need
the dual equation

F = A2 + A1F + A0F
2, (4.2)

and we let F be its minimal nonnegative solution. It is well known (see [32], for exam-
ple) that if the QBD is positive recurrent, then G is stochastic and F is substochastic
with spectral radius ρ(F ) < 1; if the QBD is transient, then F is stochastic and G
is substochastic with ρ(G) < 1; if the QBD is null recurrent, then G and F are both
stochastic.

The Latouche–Ramaswami (LR) algorithm [31] and the cyclic reduction (CR)
algorithm [5] are both efficient iterative methods for finding the minimal solution G.
The convergence of these two algorithms is quadratic for positive recurrent and tran-
sient QBDs. A convergence analysis has been performed in [15] for the LR algorithm
in the null recurrent case under two additional assumptions. The first assumption is
that λ = 1 is a simple eigenvalue of G and F and there are no other eigenvalues of
G or F on the unit circle; the second assumption is made under the first assumption
and is more technical. The convergence rate for the LR algorithm is the same in view
of the relationship between CR and LR, given in [3].

We can also use the doubling algorithm (SDA-1 or SDA-2) to find the minimal
solution G. We will choose to use SDA-2 since it is less expensive. Moreover, there is a
close connection between the CR algorithm and SDA-2. In this section we determine
the convergence rate of SDA-2 in the null recurrent case, without the two additional
assumptions in [15]. The convergence rate for the CR (or LR) algorithm in the null
recurrent case is the same in view of their connections to SDA-2. As compared to
[15], the result here is more general and the analysis here is much simpler.

We mention that a doubling algorithm is also derived in [26] for finding the
minimal nonnegative solution of a polynomial equation that is more general than
(4.1). The algorithm there is different from SDA-2 when applied to (4.1).

The CR algorithm for (4.1), or for −A0 +(I−A1)G−A2G
2 = 0, is the following:

Algorithm 4.1. Set T0 = A0, U0 = I −A1, V0 = A2, S0 = I −A1.
For k = 0, 1, . . ., compute

Tk+1 = TkU−1
k Tk,

Uk+1 = Uk − TkU−1
k Vk − VkU−1

k Tk,

Vk+1 = VkU−1
k Vk,

Sk+1 = Sk − VkU−1
k Tk.

The above CR algorithm is as presented in [3], but with one minor change: if
we follow [3] exactly, Tk and Vk here would have to be replaced by −Tk and −Vk for
k ≥ 0.

The following result is known from the discussions in [4] and [32].
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Theorem 4.1. The sequences {Tk}, {Uk}, {Vk}, {Sk} in Algorithm 4.1 are well
defined. For each k ≥ 0, Tk and Vk are nonnegative, and Ukand Sk are nonsingular
M -matrices. When the QBD is positive recurrent or transient, the sequence {Sk}
converges quadratically to a nonsingular M -matrix S∗ and S−1

∗ A0 = G.
We note that Algorithm 4.1 may break down if we do not assume the irreducibility

of the transition matrix P . As an example, we consider

A0 =
[

0 0
1 0

]
, A1 = 0, A2 =

[
0 1
0 0

]
.

It is easy to see that P is not irreducible, although A0 +A1 +A2 is. For this example,
U1 = 0 in Algorithm 4.1, so the algorithm breaks down. The LR algorithm also breaks
down for this example.

To use the doubling algorithm to find G, we may rewrite (4.1) as[
0 I

A0 A1 − I

] [
I
G

]
=

[
I 0
0 −A2

] [
I
G

]
G.

Multiplying the second block row by −(I −A1)−1 and eliminating the I in the (1, 2)
block of the leftmost matrix, we get[

(I −A1)−1A0 0
−(I −A1)−1A0 I

] [
I
G

]
=

[
I −(I −A1)−1A2

0 (I −A1)−1A2

] [
I
G

]
G.

We can then use SDA-1 to find the matrix G. However, the less expensive SDA-2 can
also be used if we rewrite (4.1) as

L0

[
I

A2G

]
= M0

[
I

A2G

]
G, (4.3)

where

L0 =
[

0 I
A0 0

]
, M0 =

[
A2 0

I −A1 −I

]
.

It is easily seen that L0 − λM0 is a linearization of −A0 + λ(I −A1)− λ2A2.
If we use SDA-1, the matrix G can be approximated directly by a sequence gen-

erated by SDA-1. One may have some concern about the SDA-2 approach: how can
one get G if A2G is obtained and A2 is singular? This concern will turn out to be
unnecessary.

In this section SDA-2 is Algorithm 2.2 with the initialization

T0 = A0, Q0 = I −A1, P0 = 0, V0 = A2. (4.4)

The algorithm generates the sequence {Lk,Mk} (see (2.7)) if no breakdown occurs.
It is readily seen that Algorithm 4.1 is recovered from SDA-2 by letting Uk =

Qk − Pk and Sk = S0 − Pk. By Theorem 4.1, Qk − Pk = Uk are nonsingular M -
matrices for all k ≥ 0. So SDA-2 is also well defined.

In view of (2.9) we have for each k ≥ 0

Lk

[
I

A2G

]
= Mk

[
I

A2G

]
G2k

.
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So

−Pk + A2G = VkG2k

, Tk = QkG2k

−A2G
2k+1. (4.5)

Similarly we have

L̂0

[
I

A0F

]
= M̂0

[
I

A0F

]
F,

where

L̂0 =
[

0 I
V0 0

]
, M̂0 =

[
T0 0
Q0 −I

]
.

It is easily seen that M̂0 − λL̂0 is also a linearization of −A0 + λ(I −A1)− λ2A2.
For each k ≥ 0 we now have

L̂k

[
I

A0F

]
= M̂k

[
I

A0F

]
F 2k

,

where

L̂k =
[
−P̂k I
Vk 0

]
, M̂k =

[
Tk 0
Q̂k −I

]
with

P̂k = I −A1 −Qk, Q̂k = I −A1 − Pk. (4.6)

So

−P̂k + A0F = TkF 2k

, Vk = Q̂kF 2k

−A0F
2k+1. (4.7)

We mentioned before that the Sk in Algorithm 4.1 satisfies Sk = S0 − Pk =
I −A1 − Pk. So we have Q̂k = Sk.

When the QBD is positive recurrent or transient, we know by Theorem 4.1 that
Q̂k converges quadratically to a nonsingular M -matrix Q̂∗ and Q̂−1

∗ A0 = G. Here we
give a quick proof using the doubling algorithm. By the first equation in (4.5) and
the second equation in (4.6), we have

Q̂k − I + A1 + A2G = VkG2k

.

Eliminating Vk using the second equation in (4.7) gives

Q̂k(I − F 2k

G2k

) = I −A1 −A2G−A0F
2k+1G2k

.

It follows that

lim sup
k→∞

2k
√
‖Q̂k − (I −A1 −A2G)‖ ≤ ρ(F )ρ(G) < 1.

Since Q̂∗ = I − A1 − A2G is a nonsingular M -matrix and A0 = Q̂∗G, we have
G = Q̂−1

∗ A0. Similarly, Qk converges quadratically to the nonsingular M -matrix
Q∗ = I −A1 −A0F and F = Q−1

∗ A2.
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Our main purpose of this section, however, is to determine the convergence rate
of SDA-2 for the null recurrent case.

We start with a review of an important result about the spectral properties of
the quadratic pencil −A0 + λ(I −A1)− λ2A2 and of the matrices G and F when the
QBD is null recurrent. See Proposition 14 and Theorem 4 of [10] and Theorem 4.10
of [4].

Theorem 4.2. Let the QBD be null recurrent. Then
(a) For some integer r ≥ 1 the quadratic pencil −A0 + λ(I − A1) − λ2A2 has

n − r eigenvalues inside the unit circle, n − r eigenvalues outside the unit
circle (which include eigenvalues at infinity), and 2r eigenvalues on the unit
circle, which are the rth roots of unity, each with multiplicity two.

(b) The partial multiplicity of each eigenvalue on the unit circle is exactly two.
(c) The eigenvalues of G are the n − r eigenvalues of the pencil inside the unit

circle plus the r simple eigenvalues at the rth roots of unity, the eigenvalues
of F are the reciprocals of the n− r eigenvalues of the pencil outside the unit
circle plus the r simple eigenvalues at the rth roots of unity.

Using the Kronecker form for matrix pairs, we have nonsingular matrices V and
Z such that

V M0Z =
[

In 0
0 J2 ⊕ Ir

]
≡ JM , (4.8)

V L0Z =
[

J1 ⊕Dr 0⊕ Ir

0 In−r ⊕Dr

]
≡ JL, (4.9)

where J1 and J2 are (n − r) × (n − r) matrices consisting of the Jordan blocks with
diagonal elements inside the unit circle, Dr is a r × r diagonal matrix with the rth
roots of unity on the diagonal.

Similarly, we have nonsingular matrices T and W such that

T L̂0W =
[

In 0
0 J2 ⊕ Ir

]
= JM , (4.10)

TM̂0W =
[

J1 ⊕Dr 0
0⊕ Ir In−r ⊕Dr

]
≡ ĴL. (4.11)

We have for each k ≥ 0

MkZJ2k

L = LkZJ2k

M , L̂kWĴ2k

L = M̂kWJ2k

M . (4.12)

Let Z and W be partitioned as in (3.12). From (4.8) and (4.9) we have

L0

[
Z1

Z2

]
= M0

[
Z1

Z2

]
(J1 ⊕Dr).

Comparing this with (4.3) and using Theorem 4.2, we know that Z1 is nonsingular
and Z2Z

−1
1 = A2G. Similarly, W3 is nonsingular and W4W

−1
3 = A0F .
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Using block matrix multiplication for (4.12), we have

VkZ1(J2k

1 ⊕D2k

r ) = −PkZ1 + Z2, (4.13)

(QkZ1 − Z2)(J2k

1 ⊕D2k

r ) = TkZ1, (4.14)

VkZ1(0⊕ 2kD2k−1
r ) + VkZ3(I ⊕D2k

r ) = (−PkZ3 + Z4)(J2k

2 ⊕ I), (4.15)

(QkZ1 − Z2)(0⊕ 2kD2k−1
r ) + (QkZ3 − Z4)(I ⊕D2k

r ) = TkZ3(J2k

2 ⊕ I), (4.16)

(−P̂kW1 + W2)(J2k

1 ⊕D2k

r ) + (−P̂kW3 + W4)(0⊕ 2kD2k−1
r ) = TkW1, (4.17)

VkW1(J2k

1 ⊕D2k

r ) + VkW3(0⊕ 2kD2k−1
r ) = Q̂kW1 −W2, (4.18)

(−P̂kW3 + W4)(I ⊕D2k

r ) = TkW3(J2k

2 ⊕ I), (4.19)

VkW3(I ⊕D2k

r ) = (Q̂kW3 −W4)(J2k

2 ⊕ I). (4.20)

Post-multiplying (4.16) by 0⊕ 2−kDr and subtracting the result from (4.14), we get

Tk(Z1−Z3(0⊕2−kDr)) = (QkZ1−Z2)(J2k

1 ⊕0)−(QkZ3−Z4)(0⊕2−kD2k+1
r ). (4.21)

By (4.19) we have

−P̂k = −W4W
−1
3 + TkW3(J2k

2 ⊕D−2k

r )W−1
3 . (4.22)

Thus, in view of (4.6),

Qk = I −A1 −W4W
−1
3 + TkW3(J2k

2 ⊕D−2k

r )W−1
3 . (4.23)

Inserting (4.23) into (4.21) and letting Q∗ = I −A1 −W4W
−1
3 , we get

Tk

[
Z1 − Z3(0⊕ 2−kDr)−W3(J2k

2 ⊕D−2k

r )W−1
3 (Z1(J2k

1 ⊕ 0)− Z3(0⊕ 2−kD2k+1
r ))

]
= (Q∗Z1 − Z2)(J2k

1 ⊕ 0)− (Q∗Z3 − Z4)(0⊕ 2−kD2k+1
r ),

from which it follows that

‖Tk‖ = O(2−k).

It then follows from (4.23) that

‖Qk − (I −A1 −W4W
−1
3 )‖ = O(2−k).

Post-multiplying (4.15) by 0⊕ 2−kDr and subtracting the result from (4.13), we get

−PkZ1+Z2−(−PkZ3+Z4)(0⊕2−kDr) = Vk(Z1(J2k

1 ⊕0)−Z3(0⊕2−kD2k+1
r )). (4.24)

By (4.20),

Vk = (Q̂kW3 −W4)(J2k

2 ⊕D−2k

r )W−1
3 . (4.25)

Inserting (4.25) into (4.24) and using Q̂k = I −A1 − Pk, we get

−PkZ1 + Z2 − (−PkZ3 + Z4)(0⊕ 2−kDr) = ((I −A1 − Pk)W3 −W4)Ck
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for some Ck with ‖Ck‖ = O(2−k). Thus,

Pk(Z1 − Z3(0⊕ 2−kDr)−W3Ck) = Z2 − Z4(0⊕ 2−kDr)− ((I −A1)W3 −W4)Ck.

It follows that

‖Pk − Z2Z
−1
1 ‖ = O(2−k).

Post-multiplying (4.18) by 0⊕ 2−kD1−2k

r , we get

VkW1(0⊕ 2−kDr) + VkW3(0⊕ I) = (Q̂kW1 −W2)(0⊕ 2−kD1−2k

r ). (4.26)

Post-multiplying (4.20) by I ⊕ 0, we get

VkW3(I ⊕ 0) = (Q̂kW3 −W4)(J2k

2 ⊕ 0). (4.27)

Adding (4.26) and (4.27) gives

Vk(W3 + W1(0⊕ 2−kDr)) = (Q̂kW1 −W2)(0⊕ 2−kD1−2k

r ) + (Q̂kW3 −W4)(J2k

2 ⊕ 0).

It follows that

‖Vk‖ = O(2−k),

since W3 is nonsingular and {Q̂k} has been shown to be bounded.
In summary, we have proved the following result.
Theorem 4.3. Let the QBD be null-recurrent. Then for SDA-2 we have

‖Vk‖ = O(2−k), ‖Tk‖ = O(2−k),
‖Qk − (I −A1 −A0F )‖ = O(2−k), ‖Pk −A2G‖ = O(2−k).

Corollary 4.4. Let limQk = Q∗ and limPk = P∗. Then Q∗ is nonsingular
and Q−1

∗ A2 = F , I−A1−P∗ is nonsingular and (I−A1−P∗)−1A0 = G. The matrix
Q∗ − P∗ is a singular M -matrix.

Proof. By Theorem 4.3, Q∗ = I−A1−A0F and I−A1−P∗ = I−A1−A2G. These
two matrices are known to be nonsingular [32]. Since Q∗F = (I −A1−A0F )F = A2,
Q−1
∗ A2 = F . Since (I−A1−P∗)G = (I−A1−A2G)G = A0, (I−A1−P∗)−1A0 = G.

Q∗ − P∗ is a singular M -matrix since

(Q∗ − P∗)e = (I −A1 −A0F −A2G)e = e− (A1 + A0 + A2)e = 0.

This completes the proof.
When the QBD is null recurrent, the interpretation of the CR algorithm as a

doubling algorithm has allowed us to show that the minimal solutions G and F can
be found by the CR algorithm (or the closely related LR algorithm) simultaneously
and with at least linear convergence with rate 1/2. It is important to note that we
no longer need the assumption that the matrices G and F have no eigenvalues on the
unit circle other than the simple eigenvalue 1. With that assumption, one would use
the shift technique as studied in [25], [16] and [4], and apply the CR algorithm or the
LR algorithm to the shifted equation. When G and F have more than one eigenvalues
on the unit circle, the shift technique is not helpful and the CR algorithm or the LR
algorithm will be applied directly to the equation (4.1).
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5. A nonsymmetric algebraic Riccati equation. In this section we consider
the nonsymmetric algebraic Riccati equation (NARE)

XCX −XD −AX + B = 0, (5.1)

where A,B, C, D are real matrices of sizes m×m,m × n, n×m,n × n, respectively,
and the matrix

K =
[

D −C
−B A

]
(5.2)

is a nonsingular M -matrix or an irreducible singular M -matrix. The NARE arises
in the study of Wiener–Hopf factorization of Markov chains [37], and it includes the
NARE arising from transport theory [29, 30]. We will also need the dual equation of
(5.1)

Y BY − Y A−DY + C = 0, (5.3)

which is in the same form of (5.1).
We will use the elementwise order for matrices: for any matrices A = [aij ], B =

[bij ] ∈ Rm×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij) for all i, j.
A basic result about (5.1) and (5.3) is the following [14].
Theorem 5.1. If the matrix K in (5.2) is a nonsingular M -matrix or an irre-

ducible singular M -matrix, then the NARE (5.1) and the NARE (5.3) have minimal
nonnegative solutions X and Y , respectively. Moreover, D − CX and A − BY are
M -matrices.

The minimal nonnegative solution of the NARE is the solution of practical inter-
est. There have been a number of methods for finding this solution. The methods
and their analyses can be found in [2, 14, 18, 20, 21, 23, 24, 36]. Among the iterative
methods, the doubling algorithm proposed in [24] stands out for its overall efficiency.
The algorithm is analyzed in [24] for the case when K is a nonsingular M -matrix, and
is analyzed in [21] for the case when K is an irreducible singular M -matrix. When
K is an irreducible singular M -matrix, we let [vT

1 , vT
2 ]T > 0 and [uT

1 , uT
2 ]T > 0 be

the right and the left null vectors of K in (5.2), respectively. If uT
1 v1 6= uT

2 v2, then
the convergence of the doubling algorithm is still quadratic; if uT

1 v1 = uT
2 v2, then the

convergence is observed to be linear with rate 1/2 (see [21]). The later case will be
referred to as the critical case for the NARE. For this critical case, the convergence
of Newton’s method has been shown to at least linear with rate 1/2 [14, 20, 23]. We
will reach the same conclusion for the doubling algorithm.

We start with a brief review of the doubling algorithm in [24]. Let

H =
[
D −C
B −A

]
, (5.4)

and

R = D − CX, S = A−BY, (5.5)

where X and Y are given in Theorem 5.1. Then the NAREs (5.1) and (5.3) can be
rewritten as

H

[
In

X

]
=

[
In

X

]
R (5.6)
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and

H

[
Y
Im

]
=

[
Y
Im

]
(−S). (5.7)

Applying the Cayley transform to equation (5.6) with a scalar γ > 0 we have

(H − γI)
[

In

X

]
= (H + γI)

[
In

X

]
Rγ ,

where Rγ = (R + γIn)−1(R − γIn). Premultiplying the above equation by a proper
nonsingular matrix gives

M0

[
In

X

]
= L0

[
In

X

]
Rγ . (5.8)

Here L0 and M0 are given by (2.1) with

E0 = In − 2γV −1
γ , F0 = Im − 2γW−1

γ ,

G0 = 2γD−1
γ CW−1

γ , H0 = 2γW−1
γ BD−1

γ ,
(5.9)

where

Aγ = A + γIm, Dγ = D + γIn,

Wγ = Aγ −BD−1
γ C, Vγ = Dγ − CA−1

γ B.
(5.10)

Similarly,

M0

[
Y
Im

]
Sγ = L0

[
Y
Im

]
, (5.11)

where Sγ = (S + γIm)−1(S − γIm).
In this section SDA-1 denotes Algorithm 2.1 with E0, F0, G0,H0 given by (5.9).
The following result from [21] improves the original results given in [24].
Theorem 5.2. Let the matrix K in (5.2) be a nonsingular M -matrix or an

irreducible singular M -matrix, and X, Y ≥ 0 be the minimal nonnegative solutions of
the NAREs (5.1) and (5.3), respectively. If γ satisfies

γ ≥ γ0 ≡ max
{

max
1≤i≤m

aii, max
1≤i≤n

dii

}
, (5.12)

where aii and dii are the diagonal entries of A and D, respectively, then the sequence
{Ek, Fk, Hk, Gk} in SDA-1 is well defined. Moreover, we have

(a) E0, F0 < 0 and Ek, Fk > 0 for k ≥ 1;
(b) For k ≥ 0, 0 ≤ Hk < Hk+1 < X, 0 ≤ Gk < Gk+1 < Y ;
(c) For k ≥ 0, Im −HkGk and In −GkHk are nonsingular M-matrices.
From now on we assume that K in (5.2) is an irreducible singular M -matrix, and

consider the critical case of the NARE (5.1). We always assume that γ satisfies (5.12).
The Kronecker form for the pencil (M0, L0) can be determined with the help of

the following result [14], where C− and C+ denote the open left and the open right
half planes, respectively.

Theorem 5.3. For the critical case of the NARE (5.1), the matrix H has n− 1
eigenvalues in C+, m−1 eigenvalues in C−, and two zero eigenvalues with a quadratic
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divisor. Moreover, R and S in (5.5) are irreducible singular M-matrices (so each of
them has a simple eigenvalue 0 and the remaining eigenvalues are in C+).

In view of Theorem 5.3, the properties of the Cayley transform, and the process
leading to (5.8) and (5.11), we know that there are nonsingular matrices V and Z
such that

V L0Z =
[

In 0n,m

0m,n J2,s ⊕ [1]

]
≡ JL, (5.13)

V M0Z =
[

J1 Γ
0m,n Im−1 ⊕ [−1]

]
≡ JM , (5.14)

in which

J1 = J1,s⊕ [−1] s∼ Rγ , J2 ≡ J2,s⊕ [−1] s∼ Sγ , Γ = 0n−1,m−1⊕ [1] ≡ eneT
m, (5.15)

where ρ(J1,s) < 1, ρ(J2,s) < 1, and “ s∼” denotes the similarity transformation. Since
JLJM = JMJL, for the matrices Lk and Mk given by (2.2) we have by (2.11)

MkZJ2k

L = LkZJ2k

M . (5.16)

On the other hand, there are nonsingular matrices T and W such that

TL0W =
[

J2 Γ̂
0n,m In−1 ⊕ [−1]

]
≡ ĴL, (5.17)

TM0W =
[

Im 0m,n

0n,m J1,s ⊕ [1]

]
≡ ĴM , (5.18)

where Γ̂ = emeT
n . We now have

LkWĴ2k

M = MkWĴ2k

L . (5.19)

The following result determines the convergence rate of SDA-1 in the critical case.
Theorem 5.4. Let X, Y ≥ 0 be the minimal nonnegative solutions of the NAREs

(5.1) and (5.3), respectively, and let {Ek, Fk, Gk,Hk} be generated by SDA-1. Then
for the critical case

‖Ek‖ = O(2−k), ‖Fk‖ = O(2−k), ‖Hk −X‖ = O(2−k), ‖Gk − Y ‖ = O(2−k).

Proof. Partition the matrices Z and W as

Z =
[

Z1 Z3

Z2 Z4

]
, W =

[
W1 W3

W2 W4

]
, (5.20)

where Z1,W3 ∈ Rn×n and Z4,W2 ∈ Rm×m. Then from (5.13) and (5.14), and from
(5.17) and (5.18), we have

M0

[
Z1

Z2

]
= L0

[
Z1

Z2

]
J1, M0

[
W1

W2

]
J2 = L0

[
W1

W2

]
. (5.21)

Comparing (5.21) with (5.8) and (5.11), and using (5.15), we know that Z1 and W2

are invertible and X = Z2Z
−1
1 , Y = W1W

−1
2 .
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Note that for k ≥ 1 we have

J2k

L =
[

In 0
0 J2k

2

]
, J2k

M =
[

J2k

1 Γk

0 Im

]
, Ĵ2k

M =
[

Im 0
0 J2k

1

]
, Ĵ2k

L =
[

J2k

2 Γ̂k

0 In

]
,

where Γk = −2kΓ = −2keneT
m, Γ̂k = −2kΓ̂ = −2kemeT

n . It follows from (5.16) and
(5.19) that for k ≥ 1

EkZ1 = (Z1 −GkZ2)J2k

1 , (5.22)

EkZ3J
2k

2 = (Z1 −GkZ2)Γk + (Z3 −GkZ4), (5.23)

−HkZ1 + Z2 = FkZ2J
2k

1 , (5.24)

(−HkZ3 + Z4)J2k

2 = FkZ2Γk + FkZ4, (5.25)

W1 −GkW2 = EkW1J
2k

2 , (5.26)

(W3 −GkW4)J2k

1 = EkW1Γ̂k + EkW3, (5.27)

FkW2 = (W2 −HkW1)J2k

2 , (5.28)

FkW4J
2k

1 = (W2 −HkW1)Γ̂k + (W4 −HkW3). (5.29)

Post-multiplying (5.29) by Γ̂†k = −2−kΓ, the Moore-Penrose pseudo inverse of Γ̂k,
subtracting the result from (5.28), and noting that Γ̂kΓ̂†k = 0m−1 ⊕ [1], we get

Fk(W2 + 2−kW4J
2k

1 Γ) = (W2 −HkW1)(J2k

2,s ⊕ [0]) + 2−k(W4 −HkW3)Γ. (5.30)

Since W2 is invertible and {Hk} is bounded by Theorem 5.2(b), it follows from (5.30)
that ‖Fk‖ = O(2−k). It then follows from (5.24) that ‖Hk −X‖ = O(2−k).

Similarly, post-multiplying (5.23) by Γ†k = −2−kΓ̂, subtracting the result from
(5.22), and noting that ΓkΓ†k = 0n−1 ⊕ [1], we get

Ek(Z1 + 2−kZ3J
2k

2 Γ̂) = (Z1 −GkZ2)(J2k

1,s ⊕ [0]) + 2−k(Z3 −GkZ4)Γ̂. (5.31)

Since Z1 is invertible and {Gk} is bounded by Theorem 5.2(b), it follows from (5.31)
that ‖Ek‖ = O(2−k). It then follows form (5.26) that ‖Gk − Y ‖ = O(2−k).

We note that lim(I −GkHk) = I − Y X and lim(I −HkGk) = I −XY are both
singular M -matrices (see [21]).

The critical case we have considered is a singular case, and the singularity can
be removed by applying a proper shift technique. Indeed, a shift technique has been
introduced in [21] and SDA-1 applied to the shifted NARE has quadratic convergence
if no breakdown happens. However, whether breakdown is possible remains an open
problem in general, although some partial results have been obtained in [21].

Since K is an irreducible singular M -matrix, we may assume without loss of
generality that Ke = 0. In this case, one can transform the NARE to a quadratic
matrix equation of the type in section 4, but with (m + n) × (m + n) matrices in
the equation (see [36]). One can then apply CR and LR to the transformed equation
(see [2, 18]). A specific shift technique (following [25]) is introduced in [18] to the
transformed equation, and quadratic convergence is recovered for the LR algorithm
(thus also for the CR algorithm) if no breakdown happens. It has been shown in
[20] that the LR algorithm is indeed well-defined when the shift technique is used.
However, when m = n, the computational work required in each iteration is nearly



CONVERGENCE ANALYSIS OF THE DOUBLING ALGORITHM 19

twice that for SDA-1, due to the dimension expansion from n to 2n. If we use the
shift technique in [18] with the CR approach in [2], then no breakdown happens and
the complexity is down to 34n3 flops each iteration when m = n.

Although it is preferable to use a shift technique for the critical case of the NARE
(with an irreducible singular M -matrix K), our convergence results in Theorem 5.4
still provide some insights about the convergence behaviour of SDA-1 for nearby
NAREs with a nonsingular M -matrix K (where the shift technique is no longer app-
plicable). The exact solution of a singular NARE is quite sensitive to the input data
in the NARE (see [20]). For the singular NARE and nearby NAREs, it would be
reasonable to stop the iteration when ‖Hk − Hk−1‖ < ε1/2, where ε is the machine
epsilon, and take Hk as an approximation to the exact solution X. Further iterations
for SDA-1 may not be able to improve the accuracy significantly in view of the pertur-
bation behaviour of X and the fact that I −GkHk and I −HkGk are nearly singular
for large k. So we are mainly interested in the behaviour of SDA-1 for iterations up
to the point where ‖Hk−Hk−1‖ < ε1/2 (assuming this is achievable). And up to that
point, the behaviour of SDA-1 for those nearby NAREs would be very much similar
to that of SDA-1 for the singular NARE. We use one example to illustrate this point.

Example 5.1. Let T be a 16 × 16 doubly stochastic matrix given by T =
1

2056magic(16), where magic is the Matlab function that generates magic squares.
Let K = I − T , and let the 8 × 8 matrices A,B,C, D be determined through (5.2).
The matrix K is an irreducible singular M -matrix and we have the critical case for
the NARE (5.1). We take γ to be the largest diagonal entry of K (which is the last
diagonal entry of K) and apply SDA-1. We find that ‖Hk−Hk−1‖ < 10−7 is satisfied
for k = 24. The convergence rate of Hk − X is determined through that of Fk (see
the proof of Theorem 5.4). We find that the values of k

√
‖Fk‖∞ are between 0.4924

and 0.5001 for k = 4 : 24.
We then increase the (1,1) entry of K by 10−12. So K is now a nonsingular

M -matrix. The matrix D is changed accordingly. The change in K does not change
the largest diagonal entry of K. So we apply SDA-1 to the new NARE with the same
γ. We find that ‖Hk − Hk−1‖ < 10−7 is satisfied for k = 23, and that the values
of k

√
‖Fk‖∞ are between 0.4924 and 0.5000 for k = 4 : 21 (the values are 0.4855

and 0.4570 for k = 22 and k = 23, respectively). Thus, the (non-terminal and more
important) convergence behaviour of SDA-1 for this nearby NARE is largely dictated
by our theoretical results in Theorem 5.4.

6. Conclusion. We have determined the convergence rate of the doubling algo-
rithm in the critical (or singular) case for three different nonlinear matrix equations. It
is possible to apply the techniques we reviewed in section 2 to other nonlinear matrix
equations. Through this study, we have also gained more insights for the convergence
behaviour for the doubling algorithm for nearly singular cases.
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