
TORIC VARIETIES

1. Background material I. Affine varieties

Definition. An affine variety in Cn is the common zero locus of a finite set of polynomials
f1, . . . , fp ∈ C[X1, . . . , Xn]. If I is the ideal of C[X1, . . . , Xn] generated by f1, . . . , fp, then
we denote

V(I) := {x ∈ C
n : f(x) = 0, ∀f ∈ I}.

There are two basic question which arise in this context: given two ideals I1, I2 ⊂
C[x1, . . . , xn], decide whether the varieties are V(I1) and V(I2) are equal, respectively iso-
morphic (in an appropriate sense).

In order to answer the first question, we note that if we enlarge I to the ideal
√
I := {f ∈ C[X1, . . . , Xn] : fm ∈ I for some m ∈ Z, m ≥ 0},

then the zero locus doesn’t change, i.e.

V(I) = V(
√
I).

Obviously
√
I1 =

√
I2 ⇒ V(I1) = V(I2). The converse is also true, in view of Hilbert’s

Nullstellensatz: first, we attach to each variety V ⊂ C
n the ideal

I(V ) := {f ∈ C[x1, . . . , xn] : f(x) = 0, ∀x ∈ V };
then Hilbert’s Nullstellensatz says that for any ideal I ⊂ C[X1, . . . , Xn] we have

I(V(I)) =
√
I.

In other words, algebraic varieties in Cn are in one-to-one correspondence with radical ideals,
which are ideals I with the property I =

√
I.

Example. Consider the ideal I = 〈X2Y 〉 of C[X, Y ]. Then
√
I = 〈XY 〉.

To answer the second question, we define a morphism between two algebraic varieties
V1 ⊂ Cn and V2 ⊂ Cm as a polynomial function ϕ : Cn → Cm such that ϕ(V1) ⊂ V2. We
attach to each variety V the coordinate ring

C[V ] = C[X1, . . . , Xn]/I(V ).

Every morphism ϕ : V1 → V2 induces the C-algebra homomorphism

ϕ∗ : C[V2] → C[V1], ϕ∗([f ]) = [f ◦ ϕ].

Consequently, if V1 and V2 are isomorphic as varieties, then C[V1] and C[V2] are isomorphic
as C-algebras. The converse is also true, as the following proposition says.

Proposition 1.1. (a) For any C-algebra homomorphism F : C[V2] → C[V1] there is a unique
variety homomorphism ϕ : V1 → V2 such that F = ϕ∗.

(b) Two affine varieties are isomorphic if and only if their coordinate rings C[V1] and
C[V2] are isomorphic.

Proof. (a) We first prove the existence of ϕ. Consider the polynomials ϕ1, . . . , ϕm ∈ C[X1, . . . , Xn]
such that the homomorphism

F : C[Y1, . . . , Ym]/I(V2) → C[V1] = C[X1, . . . , Xn]/I(V1)

has the form
F ([f(Y1, . . . , Ym)]) = [f(ϕ1, . . . , ϕm)].
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Note that if f(Y1, . . . , Ym) ∈ I(V2), then f(ϕ1, . . . , ϕm) ∈ I(V1). We claim that the
polynomial function ϕ := (ϕ1, . . . , ϕm) : Cn → Cm maps V1 to V2. Indeed, for any
g(Y1, . . . , Ym) ∈ I(V2) we have g(ϕ1, . . . , ϕm) ∈ I(V1). Consequently, if x0 ∈ V1 then
(ϕ1(x

0), . . . , ϕm(x0)) is in V2, because it lies in the kernel of g, where g was chosen arbi-
trary in I(V2). Finally, the equation F = ϕ∗ is obvious.

In order to prove the uniqueness, we assume that ϕ and ψ are both homomorphisms V1 →
V2, such that ϕ∗ = ψ∗, as maps C[V2] = C[Y1, . . . , Ym]/I(V2) → C[V1] = C[X1, . . . , Xn]/I(V1).
This implies that for any f ∈ C[Y1, . . . , Ym] we have f ◦ ϕ− f ◦ ψ ∈ I(V1). Consequently, if
we fix x0 ∈ V1, then for any f ∈ C[Y1, . . . , Ym] we have f(ϕ(x0)) = f(ψ(x0)). This implies
ϕ(x0) = ψ(x0).

(b) Because of the functoriality properties

ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗, id∗ = id

it is sufficient to show that if ϕ : V → V is a morphism such that ϕ∗ = id, then ϕ = id. This
follows from (a). �

Example. The varieties defined by xy = 1, respectively x2 − y2 = 1 in C2 are isomorphic.
Their coordinate rings are C[X, Y ]/〈XY − 1〉 and C[X, Y ]/〈X2 − Y 2 − 1〉 are obviously
isomorphic, e.g. via x 7→ X − Y, y 7→ X + Y.

Corollary 1.2. There is a one-to-one correspondence between points in V and C-algebra
homomorphisms C[V ] → C.

Proof. Let x0 = (x0
1, . . . , x

0
n) be a point of V . The affine variety in Cn described by all

polynomials I(V ) together with X1 − x0
1, . . . , Xn − x0

n consists of the point x0. Because the
coordinate ring of the latter variety is

C[X1, . . . , Xn]/〈I(V ), X1 − x0
1, . . . , Xn − x0

n〉 = C,

the inclusion map {x0} →֒ V is a homomorphism of affine varieties, hence it induces a
C-algebra homomorphism1 from C[V ] to C. Conversely, if F : C[V ] → C is a C-algebra
homomorphism, we regard C as C[X1, . . . , Xn]/〈X1, . . . , Xn〉, namely the coordinate ring
of the point 0 in Cn, and we deduce from the previous proposition that F = ϕ∗, where
ϕ : {0} → V is a morphism of varieties. The point induced by F is then x0 := ϕ(0). �

This corollary gives a direct relationship between the coordinate ring C[V ] and the affine
variety V . Formally, we can express this by saying

(1) V = HomC−alg(C[V ],C),

where HomC−alg stands for the set of all C-algebra homomorphisms. In turn, the latter can
be identified with the space Specm(C[V ]) of all maximal ideals of C[V ]. This leads us to
the abstract notion of affine scheme associated to an arbitrary commutative ring R. By
definition, this is the space Spec(R) of all prime ideals of R. We will not need anything of
this in our treatment of toric varieties. For more details one can consult for instance [Cox1,
section 1] (especially eq. (1.1) and the references), as well as [Ga, chapter 5] or [Ha, chapter
2].

1Strictly speaking, this is just the natural map

C[X1, . . . , Xn]/I(V ) → C[X1, . . . , Xn]/〈I(V ), X1 − x0

1
, . . . , Xn − x0

n〉
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We will end up this section with an answer to the following question: among all C-algebras
characterize those which are coordinate rings of affine varieties. The answer is given in the
following proposition (see [Su, Lecture 1, Proposition 1.1]).

Proposition 1.3. A C-algebra R is the coordinate ring of an affine variety if and only if
R is a finitely generated algebra with no nonzero nilpotents (i.e. if f ∈ R satisfies fm = 0,
then f = 0).

Proof. First assume that R = C[X1, . . . , Xn]/I(V ) for some affine variety V ⊂ C
n. If

f ∈ C[X1, . . . , Xn] has the property that fm is equal to 0 modulo I(V ), then fm ∈ I(V ).
Since I(V ) is a radical ideal, we deduce that f ∈ I(V ).

Conversely, if R is finitely generated, there exists a surjective homomorphism of C-algebras
A : C[X1, . . . , Xn] → R. One can prove that I := kerA is a radical ideal of C[X1, . . . , Xn].

By Hilbert’s Nullstellensatz, if we take the variety V := V(I), then I(V ) =
√
I, which

is the same as I (since R has no nonzero nilpotents). Consequently, we can write R as
C[X1, . . . , Xn]/I(V ). �

2. First examples of toric varieties

We will start by looking at a few examples of affine varieties. They will arise in the
following naive way. We start with a finitely generated ring R without nonzero nilpotents
(see Proposition 1.3) and construct the variety V = HomC−alg(R,C) whose coordinate ring
is R by expressing

R = C[Y1, . . . , Yr]/I.

The variety we need is V := V(I) ⊂ C
r.

Examples. 1. Consider the ring R = C[X1, X
−1
1 , . . . , Xn, X

−1
n ] of all Laurent polynomials

in the variables X1, . . . , Xn. We have the following presentation (in fact, ring isomorphism):

R ≃ C[X1, . . . , Xn, Xn+1]/〈X1 . . .Xn+1 − 1〉,
where C[X1, . . . , Xn+1] ∋ f(X1, . . . , Xn+1) 7→ f(X1, . . . , Xn, X

−1
1 . . .X−1

n ). We deduce that
the corresponding variety is

V(X1 . . .Xn+1 − 1) ⊂ C
n+1.

Note that there is a natural embedding of this variety into Cn, given by

V(X1 . . .Xn+1 − 1) ∋ (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn).

The image of this embedding is actually (C∗)n. This is why2 the variety V(I) is called the
complex n-dimensional torus. We note that there are some other embeddings of the variety
V(X1 . . .Xn+1 − 1) into Cn, whose image is also (C∗)n. For instance we have

V(X1 . . . Xn+1 − 1) ∋ (x1, . . . , xn, xn+1) 7→ (x±1
i1
, . . . , x±1

in
),

for a choice of the indeces 1 ≤ i1 < . . . < in ≤ n + 1 and of the signs ± (see example 3
below).

Finally, it is useful to note that the ring R we started with can be expressed as

R = C[S],

which means that R is the group ring of the semigroup S, where

S := Ze1 + . . .+ Zen = Z≥0e1 ⊕ Z≥0(−e1) ⊕ . . .⊕ Z≥0en ⊕ Z≥0(−en).

2The point is that if we “complexify” the “real” torus S1 × . . . × S1 as a Lie group, the result is just
C∗ × . . . × C∗.
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Here e1 = (1, 0 . . . , 0), . . . , en = (0, . . . , 0, 1) is the standard basis in Rn. Indeed, by definition,
the ring C[S] consists of all elements χu, u ∈ S, equipped with the multiplication

χu · χv := χu+v,

u, v ∈ S. We just set χei = Xi, 1 ≤ i ≤ n.

2. This time we start with the semigroup

S = Z≥0e1 ⊕ . . .⊕ Z≥0ek ⊕ Zek+1 ⊕ . . .⊕ Zen

and the corresponding group ring

R := C[S] = C[X1, . . . , Xk, Xk+1, X
−1
k+1, . . . , Xn, X

−1
n ].

In order to describe the affine variety V whose coordinate ring is this, we use again the
presentation

C[S] ≃ C[X1, . . . , Xn+1]/〈Xk+1 · . . . ·Xn+1 = 1〉
and obtain

V = C
k × (C∗)n−k.

Note that S can be described in terms of the cone

σ := R≥0e1 ⊕ . . .⊕ R≥0ek ⊂ R
n

as follows: it is the intersection of the dual cone3

σ∨ := {v ∈ R
n : 〈v, u〉 ≥ 0, ∀u ∈ σ}

with the lattice Zn. In other words,

S = σ∨ ∩ Z
n.

We write

Uσ = C
k × (C∗)n−k.

3. (see [Fu, section 1.1]) We consider the cone σ in R2 generated by e2 and 2e1 − e2.
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The dual cone is

σ∨ := {v ∈ R
2 : 〈v, u〉 ≥ 0, ∀u ∈ σ}

A vector v = v1e1 + v2e2 leaves in σ∨ if and only if

〈v1e1 + v2e2, 2ye1 + (x− y)e2〉 = 2v1y + v2(x− y) = v2x+ (2v1 − v2)y ≥ 0

3In this case we have σ∨ = σ. But in general, this is not the case, as one can see in the next examples.
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for any x, y ≥ 0. This gives v2 ≥ 0 and 2v1 − v2 ≥ 0. Because

v1e1 + v2e2 = (2v1 − v2)
1

2
e1 + v2(

1

2
e1 + e2),

we deduce that σ∨ is the cone in R2 generated by e1 and e1 + 2e2. The semigroup σ∨ ∩Zn is

Sσ := σ∨ ∩ Z
n = Z≥0e1 + Z≥0(e1 + e2) + Z≥0(e1 + 2e2).

In order to obtain the affine variety corresponding to the group ring C[S], we express the
latter in terms of generators and relations. The generators are

U := χe1 , V = χe1+e2,W = χe1+2e2 ,

and the (obvious) relation is V 2 = UW . So

C[S] = C[U, V,W ]/〈V 2 − UW 〉.
We deduce that the resulting affine variety, call it Uσ, is in C3, described by v2 = uw.

The next examples are more complicated, in the sense that we will start from a collection
of cones, which is called a fan, then we will construct the varieties corresponding to each
cone and we will glue those together in fairly natural way.

4. (see [Fu, section 1.1]) A simple example of a fan is given in the figure from below.

•
σ1 = R≥0e1σ0 = Oσ2 = R≥0(−e1)
C[X]C[X,X−1]C[X−1]

We have a collection of three cones, σ0, σ1, and σ2, with σ1 ∩ σ2 = σ0. To each of them we
attach a variety by using the method exposed above. More precisely, we have σ∨

1 = σ1, so
the semigroup Sσ1

is Z≥0e1, hence C[Sσ1
] is the polynomial ring C[X], via

X = χe1 .

If we use the latter convention, then C[Sσ2
] = C[X−1]. Finally, σ∨

0 = R, hence the semigroup
Sσ0

:= σ∨
0 ∩ Ze1 = Ze1 is generated by e1 and −e1. Consequently, if we set X1 := χe1 ,

X2 := χ−e1, then we have

C[Sσ0
] = C[X1, X2]/〈X1X2 − 1〉.

The corresponding varieties are

Uσ1
≃ C, Uσ0

≃ C
∗, Uσ2

≃ C.

Now the obvious embedding Sσ1
→֒ Sσ0

induces the natural inclusion

C[X] = C[Sσ1
] →֒ C[Sσ0

] = C[X1, X2]/〈X1X2 − 1〉, f(X) 7→ f(X1).

This gives the inclusion

C
∗ = V(X1X2 − 1) →֒ C, (x1, x2) 7→ x1.

Similarly, the embedding Sσ2
→֒ Sσ0

induces

C[X−1] = C[Sσ2
] →֒ C[Sσ0

] = C[X1, X2]/〈X1X2 − 1〉, f(X−1) 7→ f(X2).

This gives the inclusion

C
∗ = V(X1X2 − 1) →֒ C, (x1, x2) 7→ x2 = x−1

1 .

We have obtained the following two embeddings of C
∗ into C:

Uσ0
= C

∗ →֒ Uσ1
= C via x 7→ x,
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and
Uσ0

= C
∗ →֒ Uσ2

= C via x 7→ x−1.

We consider the space X obtained by gluing Uσ1
and Uσ2

along Uσ0
. This means

X = C1

∐

C2/ ∼
where C1 and C2 are two different copies of C and the equivalence relation ∼ is given by

x ∼ y if x = y or x ∈ C1, y ∈ C2 and y = x−1.

We note that the space X can be naturally identified with

C
2/C := {C(z1, z2) : (z1, z2) ∈ C

2}.
More precisely, the identification is given by

C1 ∋ x 7→ C(x, 1), C2 ∋ x 7→ C(1, x).

The map is well-defined, because C(1, x) = C(x−1, 1). Finally, note that C2/C represents
the space of all complex lines in C2, which is just the complex projective space P1.

5. We consider the fan from below, consisting of the cones σ0, σ1, σ2.

�
�

�
�

��

σ0 τ1 = Re1

τ2 = Re2

τ0 = R(−e1 − e2)

σ0
σ1

σ2

σ∨
1

σ∨
0

σ∨
2

τ∨2 is the upper half-plane

@
@

@
@

@
@

@
@

@
@

@@

It is obvious that σ∨
0 = σ0. The cone σ1 is generated by e2 and −e1 − e2. A vector

v = v1e1 + v2e2 leaves in σ∨
1 if and only if

〈v1e1 + v2e2, (x− y)e2 − ye1〉 = v2(x− y) − v1y = v2x− (v1 + v2)y ≥ 0

for all x, y ≥ 0. This gives v2 ≥ 0 and v1 + v2 ≤ 0. Since

v1e1 + v2e2 = v2(e2 − e1) − (v1 + v2)(−e1),
we deduce that σ∨

1 is generated by −e1 + e2 and −e1. Similarly (in fact, interchanging e1
and e2), we deduce that σ∨

2 is generated by e1 − e2 and −e2.
The semigroups Sσ0

, Sσ1
and Sσ2

(i.e. the intersections of σ∨
0 , σ∨

1 respectively σ∨
2 with Z2)

are generated by {e1, e2}, {−e1,−e1 + e2} and {−e2,−e2 + e1}. Set

X1 = χe1 , X2 = χe2 .

Then

C[Sσ0
] = C[X1, X2], C[Sσ1

] = C[X−1
1 , X−1

1 X2], C[Sσ2
] = C[X1X

−1
2 , X−1

2 ].

Each of the corresponding affine varieties is C2. Now we look at the affine variety corre-
sponding to τ2 = Re2. The semigroup Sτ2 is generated by e1, e2, and −e1. Set

X3 = χ−e1 , X4 = χ−e2.
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We have
C[Sτ2 ] = C[X1, X2, X3]/〈X1X3 − 1〉.

Similarly,
C[Sτ1 ] = C[X1, X2, X4]/〈X1X4 − 1〉

and
C[Sτ0 ] = C[X−1

1 , X−1
1 X2, X1X

−1
2 ]/〈(X−1

1 X2)(X1X
−1
2 ) − 1〉.

Consider now the inclusion

C[Sσ0
] →֒ C[Sτ2 ], f(X1, X2) 7→ f(X1, X2, X3).

This induces the inclusion

Uτ2 = V(X1X3 − 1) = C × C
∗ →֒ C

2 = Uσ0
, (x1, x2, x3) 7→ (x1, x2).

Similarly, we obtain the inclusion

Uτ2 = V(X1X3 − 1) = C × C
∗ →֒ C

2 = Uσ1
, (x1, x2, x3) 7→ (x−1

1 , x−1
1 x2).

The other obvious inclusions can be described in a similar way. The induced gluings lead to
the space

X = ((C2)1

∐

(C2)2

∐

(C2)3)/ ∼,
where (C2)1, (C

2)2, (C
2)3) are three different copies of C2 and the equivalence relation ∼ is

defined as follows:

(C∗ × C)1 ∋ (x1, x2) ∼ (x−1
1 , x−1

1 x2) ∈ (C∗ × C)2

(C × C
∗)1 ∋ (x1, x2) ∼ (x1x

−1
2 , x−1

2 ) ∈ (C × C
∗)3

(C × C
∗)2 ∋ (x1, x2) ∼ (x−1

2 , x1x
−1
2 ) ∈ (C∗ × C)3.

Like in the previous example, there is a natural identification between X and the space

C
3 \ {0}/C = {C(z1, z2, z3) : (z1, z2, z3) ∈ C

3 \ {0}}.
This is given by

(C2)1 ∋ (x1, x2) 7→ C(x1, x2, 1), (C2)2 ∋ (x1, x2) 7→ C(1, x2, x1), (C
2)3 ∋ (x1, x2) 7→ C(x1, 1, x2).

Finally we note that C
3 \ {0}/C represents the space of all complex lines in C

3, which is the
complex projective plane P2.

6. We consider the fan in the figure from below.

σ2

τ1

τ3

σ1
τ4τ2

σ4σ3

We have σ∨
i = σi, i = 1, 2, 3, 4. If we set

X1 = χe1, X2 = χe2 , X3 = χ−e1, X4 = χ−e2 ,
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then

C[Sσ1
] = C[X1, X2], C[Sσ2

] = C[X2, X3], C[Sσ3
] = C[X3, X4], C[Sσ4

] = C[X4, X1],

C[Sτ1 ] = C[X1, X2, X3],C[Sτ2 ] = C[X2, X3, X4],C[Sτ3 ] = C[X3, X4, X1],C[Sτ4 ] = C[X4, X1, X2].

This shows that all Uσi
are isomorphic to C2 and all Uτi

are isomorphic to C∗×C. By gluing
Uσ1

and Uσ2
we obtain P1 ×C (where the coordinate on C is X2), and by gluing Uσ3

and Uσ4

we obtain again P1 ×C (this time the coordinate on C is X4). The remaining two gluings —
of Uσ1

and Uσ4
, respectively Uσ2

and Uσ3
) — are equivalent to the gluing of the two copies of

C from above, which gives another P1. Consequently, the space we obtain after all gluings
is P1 × P1.

A slightly more complicated space is obtained from the following fan.

B
B

B
B
BB σ2

σ1

σ4

σ3

Here σ2 is determined by (0, 1) and (−1, a), where a is a positive integer. The resulting
space is called the Hirzebruch surface, usually denoted Σa, or Fa. This turns out to be a

smooth projective manifold, which has a natural structure of a P1 bundle over P1 (for more
details, see [Fu, section 1.1] or [Gu, Example 2.2]).

3. Background material II: Gluing algebraic varieties

The gluing process we made use of in the previous section is a common procedure in the
context of algebraic varieties. The goal of this section is to provide a few basic things needed
to understand this contruction. It is worth mentioning in advance (see the upcoming section
??) that a toric variety is in general obtained by gluing (affine) algebraic varieties, and the
result will be an algebraic variety.

The main reference for this section are A. Gathmann’s notes [Ga].

We return to the general setup from section 1. Let V = V(I) ⊂ Cn be an affine variety.
On V we can define the Zariski topology. By definition, the closed spaces in this topology
are exactly the affine varieties contained in V . The sets

Vf := {x ∈ V : f(x) 6= 0}
where f ∈ C[X1, . . . , Xn] are called principal open sets and they generate the Zariski topol-
ogy.

Remarks about the Zariski topology. 1. Any two nonempty open sets have a nonempty
intersection (in particular, the Zariski topology is not Hausdorff). To see that, just take two
open sets of the form Cn

f and Cn
g in Cn .
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2. Any open subset in V is dense. In order to understand the idea of the proof, let us
just show that Cn

f is dense in Cn. Take x ∈ Cn with f(x) = 0 and U an open set in Cn

which contains x. The subspace U is open in the usual topology as well, because the latter
is finer than the Zariski topology. Consequently, U has intersection points with Cn

f , because
otherwise f would vanish on U , hence f would be identically 0.

Definition. 1. We say that V is an irreducible variety if we cannot write V = V1∪V2, where
V1 and V2 are closed subsets of V , non-empty and different from X.

2. We say that V is connected if we cannot write V = V1 ∪ V2, where V1 and V2 are closed
subsets of V , V1 ∩ V2 = φ, V1 and V2 different from X

Remark. If V is irreducible, then V is connected, but not conversely. For example, V =
V(X1X2) in C2 is not irreducible, but it is connected. Indeed, the former assertion is clear;
to prove the latter one, we just need to note that the Zariski topology is coarser than the
usual topology, and V (the union of V(X1) and V(X2)) is connected in the usual topology.

We have the following characterization of irreducible affine varieties.

Proposition 3.1. Let V ⊂ Cn be an algebraic variety. The following assertions are equiva-
lent.

(i) V is irreducible.
(ii) I(V ) ⊂ C[X1, . . . , Xn] is a prime ideal4.
(iii) the coordinate ring C[V ] is an (integral) domain.

Proof. For the proof of the equivalence (i)⇔(ii) one can see for instance [Ga, Lemma 1.3.4].
The equivalence (ii)⇔(iii) is obvious. �

Examples. 1. The variety V(X2 − Y 2) ⊂ C2 is obviously not irreducible.

2. Consider the variety V = V(XY − ZV ) ⊂ C4. The polynomial XY − ZV is prime,
consequently the ideal 〈XY − ZV 〉 is a radical ideal. This implies I(V ) = 〈XY − ZV 〉 .
Again because the polynomial XY − ZV is prime, we deduce that I(V ) is a prime ideal,
hence V is an irreducible variety.

Remark. One can show that any affine variety in Cn is a disjoint union of finitely many
irreducible varieties (see [Ga, Proposition 1.3.8]).

Our next goal is to define the structure sheaf of an affine variety. First, we need a definition.

Definition. Let U be an open subspace of the affine variety V . A function ϕ : U → C

is called regular if for any x0 ∈ U there exists an open neighbourhood Ux0
of x0 in U and

two polynomials f, g ∈ C[X1, . . . , Xn] such that for any x ∈ Ux0
we have g(x) 6= 0 and

ϕ(x) = f(x)
g(x)

.

Example. Take V = V(X1X2 −X3X4) ⊂ C
4 and U = Vx2

∪ Vx3
. The function ϕ : U → C

given by

ϕ(x) =

{

x1

x3

, if x3 6= 0
x4

x2
, if x2 6= 0

is regular.

We denote by
OV (U) := {ϕ : U → C : ϕ is regular}.

4By definition, this means that if f1, f2 ∈ C[X1, . . . , Xn] have the property f1f2 ∈ I(V ), then f1 or f2 are
in I(V )
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This space has an obvious ring structure. It is called the ring of regular functions on U .
We note that the assignment {U ⊂ V : U is open} → {rings}, U 7→ OV (U) is a
sheaf of functions5 on V , in the sense that it (obviously) satisfies the following properties.

S1. For any two open subspaces U1, U2 with U1 ⊂ U2, the set-theoretic restriction map
ϕ 7→ ϕ|U1

maps OV (U2) to OV (U1).
S2. If U ⊂ V is an open subspace, {Ui}i∈I an open cover of U and ϕi ∈ OV (Ui), i ∈ I,

such that ϕi|Ui∩Uj
= ϕj |Ui∩Uj

for all i, j ∈ I, then there exists a unique ϕ ∈ OV (U)
such that ϕ|Ui

= ϕi, for all i ∈ I.

In general, a topological space X with a sheaf F is called a ringed space. There exists
a naturally defined notion of morphism of ringed space, which is a map satisfying the two
conditions mentioned below in Proposition 3.2 (a). We can talk about the category of ringed
spaces (for the details, see [Ga, Definition 2.3.1]).

The following result shows that an affine variety is determined uniquely by its structure
sheaf.

Proposition 3.2. (a) A map f : V1 → V2 between the affine varieties V1 and V2 is a
homomorphism in the sense defined in section 1 if and only if

• f is continuous, and
• for any open subset U ⊂ V2 and any ϕ ∈ OV2

(U), the function f ◦ ϕ : ϕ−1(U) → C

is in OV1
(ϕ−1(U)).

(b) Consequently, two affine varieties V1 and V2 are isomorphic in the sense defined in
section 1 if and only if the pairs (V1,OV1

) and (V2,OV2
) are isomorphic as ringed spaces.

Proof. See [Ga, Lemma 2.3.7]. �

We are ready to define algebraic varieties.

Definition. A prevariety is a ringed space (X,OX) such that X has an open cover {Vi}i∈I

with the property that for any i ∈ I, the pair (Vi,OX |Vi
) is isomorphic as a ringed space to

an affine variety.

Alternatively, we can say that a prevariety is constructed by gluing affine varieties. More
precisely, it arises from a collection ({Vi}i∈I , {Uij}i,j∈I, {gij}i,j∈I), where Vi is an affine variety,
Uij ⊂ Vi is open and gij : (Uij,OVi

|Uij
) → (Uji,OVj

|Uji
) is an isomorphism with the properties

that

• gii = idVi
,

• gjk|Ujk∩Uji
◦ gij|Uik∩Uij

= gik|Uik∩Uij
for all i, j, k

as follows. We set

(2) X =
∐

i∈I

Vi/ ∼,

where
Vi ∋ x ∼ y ∈ Vj if x ∈ Uij and y = gij(x).

We equip X with the quotient topology and we patch the sheaves OVi
to produce a sheaf

OX (for the details, see [Ga, section 2.4]).

5There exists many examples of sheaves in mathematics: continuous functions on a topological space,
smooth functions on a manifold, sections of a vector bundle (this is, by the way, not a sheaf of functions,
but rather a sheaf of sections) etc.
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The next goal is to define the notion of variety. To this end we have to define first the
notion of product of two varieties. First, if V = V(I) ⊂ Cn and W = V(J) ⊂ Cm are two
affine varieties, then we can see that the set theoretic cartesian product V ×W is the zero
locus in Cn × Cm = Cn+m of the polynomials f(X1, . . . , Xn) + g(Y1, . . . , Ym), where f ∈ I
and g ∈ J . In other words, the product of the varieties V and W is

V ×W = V(〈I + J〉).
Note that the Zariski topology on V ×W is not the product of the Zariski topologies on V
and W . Now assume that X and Y are two prevarieties, obtained from the gluing of the
affine varieties {Vi}i∈I , respectively {Wα}α∈A. There is a natural way of gluing the affine
varieties {Vi × Wα}(i,α)∈I×A. Set theoretical, the resulting space is the cartesian product
X × Y . The latter will come equipped with a structure of a prevariety.

Definition. A prevariety X is called a variety if the diagonal map

∆ : X 7→ X ×X, x 7→ (x, x),

is a closed map6.

Remark. Any affine variety is a variety. To prove this, take V = V(I) ⊂ Cn. The image
of ∆ in V × V ⊂ Cn × Cn is the joint zero locus of the polynomials

f(X1, . . . , Xn), for f ∈ I,X1 − Y1, . . . , Xn − Yn.

The question is now, when is the prevariety X described by (2) a variety? The answer is
given by the following proposition.X

X
X x X

( X )V V V
U

U ji
j i

i j
i jV 	

Figure 1. The product X ×X is represented as a square.

Proposition 3.3. If for any i, j ∈ I, the diagonal embedding7

Uij →֒ Vi × Vj, x 7→ (x, x)

is closed8, then the prevariety X given by (2) is actually a variety.

6By this we just mean that the image of ∆ is closed in X × X is a closed subset.
7Strictly speaking, this is the map (x, x) 7→ (x, gij(x)); but we assume that Uij and Uji have been

identified.
8It may be important to note that Vi × Vj is the product of the affine varieties Vi and Vj , in the sense

defined above.
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Proof. We need to show that the space

(X ×X) \ ∆(X) =
⋃

(Vi × Vj) \ ∆(Uij)

is open. But a union of open spaces is always open, which finishes the proof. �

Now let us try to understand the gluings in examples 4 and 5 from the previous section
by using the formalism just exposed. In example 4, we have the affine varieties Uσ0

= C1

and Uσ1
= C2, which are two copies of C. Inside each of them we have C

∗, which is (Zariski)
open – prove this!. More precisely, C∗

1 ⊂ C1 and C∗
2 ⊂ C2. We consider the map

g12 : C
∗
1 → C

∗
2, x 7→ x−1,

which is an isomorphism of varieties – prove this, too! The resulting space X is a prevariety.
Now let us show that it is a variety, by applying Proposition 3.3. We need to show that the
image of the map

C
∗ → C × C, x 7→ (x, x−1)

is closed in C × C with respect to the direct product of the two Zariski topologies. This is
true because the map

C × C → C, (x1, x2) 7→ x1x2

is continuous. Since the subspace {1} ⊂ C is closed, its preimage in C × C is closed as well.

C x C * C * x CC * x C * C x C *C * x C C * x C *

C x C * C * x CC * x C *

C x C C x C

C x C

1 2

3

As about example 5, let us just check that the maps

g12(x1, x2) := (x−1
1 , x−1

1 x2)

g13(x1, x2) := (x1x
−1
2 , x−1

2 )

g23(x1, x2) := (x−1
2 , x1x

−1
2 )
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satisfy the compatibility condition g12 = g13 ◦ g23. This is an easy exercise. Also see the
figure from above.

4. Convex polyhedral cones

The objects mentioned in the title are discussed in this section. We will be following [Fu,
section 1.2] and Lecture 1 of [Su] (written by D. Cox).

Let V be a finite dimensional vector space. A convex polyhedral cone in V is a set

σ = Cone(S) = {
n

∑

i=1

rivi : ri ≥ 0} ⊂ V,

where S = {v1, . . . , vs} is a finite subset of V . We say that S generates σ. The dimension
of σ is the dimension of the vector space Rσ. Let V ∗ = Hom(V,R) be the dual vector space
and consider the evaluation pairing

V ∗ × V → R, (u, v) 7→ 〈u, v〉 := u(v).

For each u ∈ V ∗ we consider the hyperplane Hu := ker u and the closed half-space

H+
u := {v ∈ V : 〈u, v〉 ≥ 0}.

Definition. If u ∈ V ∗ such that σ ⊂ H+
u , we say that σ ∩Hu is a face of σ.

The biggest face (in the sense of inclusion) of σ is σ itself. The smallest face is σ ∩ (−σ).
We summarize a few results about faces in the following lemma.

Lemma 4.1. If σ is a convex polyhedral cone, then we have:

a) every face of σ is a convex polyhedral cone,
b) an intersection of two faces of σ is also a face of σ,
c) a face of a face of σ is also a face of σ.

For a proof, see [Su, lecture 1, Lemma 3.2]. A face τ such that dim τ = dim σ− 1 is called
a facet. Let us just record the following result (which is property (6), page 10 of [Fu] or
Lemma 3.3 in [Su, Lecture 1]).

Lemma 4.2. If σ is a convex polyhedral cone, then any face is the intersection of all facets
which contain it.

If σ ⊂ V is a convex polyhedral cone, we consider the set

σ∨ := {u ∈ V ∗ | 〈u, v〉 ≥ 0, ∀v ∈ σ},
which is called the dual of σ. This is obviously a cone in V ∗. The next theorem says that it
is actually a convex polyhedral one.

Theorem 4.3. (Farkas’ Theorem) If σ is a convex polyhedral cone, then so is its dual σ∨.

Sketch of the proof (for more details, see the references mentioned at the beginning of the
section).

Step 1. (Duality Theorem) For any closed convex cone σ ∈ V we have (σ∨)∨ = σ.

Step 2. Assume that σ 6= V and let the facets of σ be τi = Hui
∩ σ, for ui ∈ V ∗ such that

σ ⊂ H+
ui

, 1 ≤ i ≤ s. Then one shows that

σ =

s
⋂

i=1

H+
ui
.



14

In other words, σ is an intersection of closed half-spaces9.

Step 3. The set Cone(u1, . . . , us) is a convex polyhedral cone in V ∗ and one shows that

Cone(u1, . . . , us)
∨ =

s
⋂

i=1

H+
ui

= σ.

Final Step. From the duality theorem we deduce that

(3) σ∨ = Cone(u1, . . . , us),

which is a convex polyhedral cone. �

It is important to characterize the faces of σ∨ in terms of the faces of σ. This is described
in the following proposition. First for any τ ⊂ V we denote

τ⊥ := {u ∈ V ∗ : 〈u, v〉 = 0, ∀v ∈ τ}.
Proposition 4.4. Let σ ⊂ V be a convex polyhedral cone.

(i) If τ is a face of σ, then σ∨ ∩ τ⊥ is a face of σ∨.

(ii) The map τ 7→ σ∨ ∩ τ⊥ is a bijective, inclusion reversing, correspondence between the
faces of σ and the faces of σ∨.

(iii) dim τ + dim(σ∨ ∩ τ⊥) = dimV .

From here on we make the assumption that V = N ⊗Z R, where N is a lattice.

This means that N is a free abelian group of finite rank, i.e. isomorphic to Zn. If M :=
HomZ(N,Z) is the dual lattice, then V ∗ = M ⊗Z R. Alternatively, one can say that M
consists of all u ∈ V ∗ with the property that u(N) ⊂ Z. The pairing 〈 , 〉 from above is the
R-bilinear extension of the evaluation pairing M ×N → Z.

Definition. A convex polyhedral cone σ ⊂ V is rational if σ = Cone(S), where S is a finite
subset of N .

Lemma 4.5. If σ ⊂ V is a rational polyhedral cone, then we have:

a) any face of σ is rational,
b) the cone σ∨ ⊂ V is rational.

Proof. a) If σ = Cone(S) and τ is a face of σ, then τ = Cone(S ∩ τ).
b) First assume that dimσ = dimV =: n. By equation (3), we have to show that any

facet of σ can be written as Hu ∩ σ, where u ∈M (i.e. u(N) ⊂ Z). Indeed, a facet is of the
form Cone(S ′), where S ′ ⊂ S ⊂ N has the property that H := Span(S ′) is a hyperplane in
V . There exists v ∈ N \ H . Choose u ∈ M such that u|H is identically 0 and 〈u, v〉 = 1.
Then u takes integer values on n linearly independent vectors in N , thus u(N) ⊂ Z. Finally,
we have H = Span(S ′) = Hu, hence the facet is H ∩ σ = Hu ∩ σ.

Consider now the general case. Take W := Span(σ), which is a proper vector subspace
of V . The set NW := N ∩W is a free abelian group of finite rank (because it is finitely
generated, namely by S), and we have NW ⊗Z R = W . From the previous paragraph, we
know that the dual of σ in W , call it σ∨

W , is a rational polyhedral cone in W ∗. If r : V ∗ →W ∗

is the restriction map, then σ∨
W = Cone(S ′), where S ′ ⊂ r(M) ⊂ W ∗ is finite. Assume that

S ′′ is a subset of M which is mapped bijectively onto S ′ by r. One can easily see that

9This gives the following alternative definition: a convex polyhedral cone is an intersection of closed
half-spaces.
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σ∨ = r−1(σ∨
W ). This cone is obviously generated by S ′′ ∪ r−1(0). Next, we can show that

Span(r−1(0) ∩M) = r−1(0): the idea is that if W ⊂ Rn is a k-dimensional vector subspace
which has a basis consisting of elements in Zn, then the orthogonal subspace W⊥ also has
a basis of that type10. We deduce that σ∨ is generated as a cone by S ′′ ∪ (r−1(0) ∩M). It
only remains to note that r−1(0)∩M is a finitely generated group (because r(M) is finitely
generated, namely by S ′, and r|M : M → r(M) is a group homomorphism). �

We will be especially interested in the lattice points in σ∨, namely σ∨ ∩M , which is a
semigroup.

Proposition 4.6. (Gordan’s Lemma) If σ is a rational convex polyhedral cone, then the
semigroup Sσ := σ∨ ∩M is finitely generated.

Proof. By Lemma 4.5, we know that there exists u1, . . . , us ∈ σ∨ ∩M which generate σ∨ as
a cone. Take K := {∑ tiui : 0 ≤ ti ≤ 1}, which is compact. Cosequently the intersection
K ∩M is finite. We show that K ∩M generates σ∨ ∩M . Indeed, if u ∈ σ∨ ∩M , we can
write it as u =

∑

riui, where ri ≥ 0. Write ri = mi + ti, where mi ∈ Z≥0 and 0 ≤ ti < 1.
This gives

(4) u =
∑

miui +
∑

tiui.

Both u and the first sum are in M , hence the second sum is in M . This means that it is
actually in K ∩M . We deduce that (4) gives a decomposition of u as a linear combination
of elements in K ∩M with coefficients in Z≥0 (note that ui is obviously in K ∩M). �

The next result relates Sσ to Sτ , where τ ⊂ σ is a face.

Proposition 4.7. If σ is a rational convex polyhedral cone in V and τ is a face of it, then
there exists u ∈ Sσ such that τ = Hu ∩ σ and

Sτ = Sσ + Z≥0(−u).

Proof. By definition, we know that τ = Hu ∩ σ, for some u ∈ V ∗. One can see that in fact
u can be any vector in the relative interior of the dual face τ⊥ ∩ σ∨ (see Proposition 4.4).

Because that face is a rational cone, we can choose u ∈ M , and the first part of the
statement is proved. To prove the second part, we note first that −u ∈ τ∨, because 〈u, ·〉
vanishes on τ . Consequently, −u ∈ τ∨ ∩M = Sτ , which implies Sσ ∩ Z≥0(−u) ⊂ Sτ .

To prove the inverse inclusion, we write σ = Cone(S), where S ⊂ N is a finite set. Let w
be an arbitrary element in Sτ . Set

C := max{|〈w, v〉| : w ∈ S \Hu}.
Claim. w + Cu ∈ Sσ.

To prove the claim, we have to check that for any v ∈ S it holds 〈w + Cu, v〉 ≥ 0. First
we take v ∈ S \Hu. We have

〈w + Cu, v〉 = 〈w, v〉 + C〈u, v〉 ≥ −C + C〈u, v〉 = C(〈u, v〉 − 1) ≥ 0,

because 〈u, v〉 is an integer number which is positive (remember that u ∈ Sσ and v ∈ S).
Now, if v ∈ Hu, then v ∈ Hu ∩ σ = τ . It follows that

〈w + Cu, v〉 = 〈w, v〉 ≥ 0.

10Otherwise expressed, the space of solutions of a homogeneous system of linear equations with integer
coefficients has a basis consisting of vectors with all entries integer
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The claim implies that w ∈ Sσ ∩ Z≥0(−u), QED. �

Another result which will be needed later is the following.

Proposition 4.8. Let σ and σ′ be rational convex polyhedral cones in V such that σ ∩ σ′ is
a face of both of them. Then we have

Sσ∩σ′ = Sσ + Sσ′ .

Sketch of the proof. (see [Su, Lecture 1, Prop.5.6]).

Denote τ = σ∩σ′. The most difficult step is to show that there exists u ∈ σ∨∩(−σ′)∨∩M
such that τ = Hu ∩ σ (see the figure in order to get a feeling why is that so).

Because Sσ ⊂ Sτ and Sσ′ ⊂ Sτ , we deduce that Sσ +Sσ′ ⊂ Sτ . We now prove the opposite
inclusion. From Proposition 4.7, we have that

Sτ = Sσ + Z≥0(−u).
But −u ∈ (σ′)∨ ∩M = Sσ′ , which implies that

Sτ = Sσ + Z≥0(−u) ⊂ Sσ + Sσ′ ,

and the proof is finished. �

Remark. We note that under the hypotheses of the theorem one can show that there exists
u ∈ σ∨ ∩ (−σ′)∨ ∩M such that τ = Hu ∩ σ and τ = Hu ∩ σ′. Then Hu is called a separating
hyperplane.

At the end we say a few words about strongly convex polyhedral cones.

Definition. A convex polyedral cone σ is called strongly convex if σ ∩ (−σ) = {0}.
Proposition 4.9. Let σ be a convex polyhedral cone. The following assertions are equivalent.

1. σ is strongly convex.
2. σ contains no positive dimensional vector subspaces.
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3. {0} is a face of σ.
4. dim σ∨ = n.

The proof is fairly obvious (see also Proposition 4.4). Strongly convex polyhedral cones
have a natural set of generators, as the next proposition states. First, one-dimensional faces
of a convex polyhedral cone are called edges.

Proposition 4.10. Let σ be a strongly convex polyhedral cone with edges ρ1, . . . , ρs. Pick
vi ∈ ρi \ {0}. Then we have:

a) σ = Cone{v1, . . . , vs},
b) {v1, . . . , vs} is a minimal generating set for σ , in the sense that if σ = Cone(T ),

then there exist numbers λi > 0 such that {λ1v1, . . . , λmvm} ⊂ T .

Sketch of the proof. (a) We look at the facets of σ∨, which by Proposition 4.4, are σ∨∩ρ⊥i =
σ∨ ∩Hvi

, 1 ≤ i ≤ m. By the proof of Theorem 4.3, we have that σ∨ =
⋂m

i=1H
+
vi

(note that
〈σ∨, vi〉 ≥ 0), and

σ = Cone{v1, . . . , vs}.

(b) Suppose that σ = Cone(T ). Then ρi = Cone(ρi ∩ T ).. This implies that T contains
an element of ρi, which is a positive multiple of vi. �
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5. Affine toric varieties

Like in the previous section, we consider a lattice N , then we take the dual lattice M =
HomZ(N,Z) and the vector spaces V = N ⊗Z (R), and also V ∗. We fix a rational strongly
convex polyhedral cone σ ⊂ V . We consider the semigroup Sσ = σ∨ ∩M and the group ring

Aσ := C[Sσ].

As already mentioned in section 2, this consists of all linear combinations of formal powers
of the form χu, where u ∈ Sσ and χ is a formal variable.

Lemma 5.1. The C-algebra Aσ is finitely generated, it is a domain, and has no nonzero
nilpotents.

Proof. The first assertion follows from the fact that Sσ is a finitely generated semigroup (see
Proposition 4.6). To prove the rest of the lemma, we note that {0} is a face of σ. This
implies that Sσ is a subsemigroup of S{0}, hence Aσ is a subalgebra of A{0}. But S{0} is
the whole M . Let {e1, . . . , en} be a basis of N and {e∗1, . . . , e∗n} the dual basis of M . As a
semigroup, S0 has the basis {e∗1,−e∗1, . . . , e∗n,−e∗n}. Then A{0} = C[S0] is just the algebra

C[X1, X
−1
1 , . . . , Xn, X

−1
n ] of Laurent polynomials, whereXi := χe∗i . We only have to note that

C[{Xi}, {X−1
i }] is a domain (i.e. it has no divisors of zero) and has no nonzero nilpotents.

Consequently any of its subalgebras is a domain and has no nonzero nilpotents. �

By Propositions 1.3 and 1.1, there exists a unique affine variety, call it Uσ, which is
irreducible (see Proposition 3.1), and whose coordinate ring is Aσ. By Corollary 1.2, Uσ

can be identified with HomC−alg(Aσ,C). But one can easily see that this is the same as11

Homsgp(Sσ,C), where Homsgp stands for the space of all semigroup homomorphisms, and C

is regarded as a semigroup with respect to the multiplication.

Examples. 1. Take the cone {0} ⊂ V = Rn. Then S{0} is the whole M . Consequently,
we have U{0} = Homsgp(M,C). This is the same as the space HomZ(M,C∗) of all group
homomorphisms M → C∗. This implies that

U{0} = HomZ(M,C∗) = (C∗)n,

which is the complex torus (see section 2, example 1). Note that we can also write

U{0} = HomZ(M,C∗) = HomZ(M,Z) ⊗Z C
∗ = N ⊗Z C

∗ =: TN .

2. To the cone σ = R≥0e1+. . .+R≥0en in V = R
n corresponds σ∨ = R≥0e

∗
1+. . .+R≥0e

∗
n ⊂

V ∗. Hence Sσ has a basis consisting of e∗1, . . . , e
∗
n. We have Uσ = Homsgp(Sσ,C), which is

obviously Cn. Note that there is a natural embedding (C∗)n = U{0} ⊂ Uσ = (C)n.

One may also want to look again at the examples 2 and 3 in section 2.

Next we will discuss explicit descriptions of Uσ by polynomial equations. In other words,
we need a presentation of Aσ in terms of generators and relations. Let {u1, . . . , uk} ⊂ Sσ

be a set of generators. Then Y1 := χu1 , . . . , Yk := χuk generate Aσ. Relations involving
Y1, . . . , Yk are induced by equations of the form

k
∑

i=1

aiui =

k
∑

i=1

biui,

11More precisely, to α : Sσ → C corresponds the morphism Aσ → C, χu 7→ α(u).
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where ai, bi ∈ Z≥0. The induced relation is obviously

(5)
k

∏

i=1

Y ai

i −
k

∏

i=1

Y bi

i = 0.

These generate the ideal of relations of the affine variety Uσ ⊂ Ck.

Example. Let σ ⊂ R3 be the cone generated by e1, e2, e3, and e1 + e3 − e2. Then σ∨ is

e e
ee + e � e 221 1

33
generated by e∗1, e

∗
3, e

∗
1+e

∗
2, and e∗2+e

∗
3 (note that e1+e2 is perpendicular to e3 and e1+e3−e2;

also, e2 + e3 is perpendicular to e1 and e1 + e3 − e2; in this way we obtain edges of σ∨). We
deduce that the generators of the ring Aσ are Y1 := χe∗

1 , Y2 = χe∗
2 , Y3 = χe∗

1
+e∗

2 , Y4 = χe∗
2
+e∗

3 .
In order to find the relations among those, we note that

e∗1 + (e∗2 + e∗3) = e∗3 + (e∗1 + e∗2)

which gives Y1Y4 = Y2Y3. Consequently, we have

Uσ = V(Y1Y4 − Y2Y3) ⊂ C
4.

Note that the point 0 on Uσ is a “singularity” (i.e. a singular point of the function C4 → C,
(y1, y2, y3, y4) 7→ y1y4 − y2y3).

The next result will relate the varieties Uσ and Uτ , where τ is a face of σ. In order to prove
this relationship (see Proposition 5.3 below) we need to make some general considerations.
Let V ⊂ Cn be an affine variety, and let C[V ] = C[X1, . . . , Xn]/I(V ) be its coordinate ring.
This consists of cosets [f ], where f ∈ C[X1, . . . , Xn]. We assume that V is irreducible, which
implies that C[V ] is a domain. If [f ] ∈ C[V ] is nonzero, we consider the localization12 of
C[V ] at [f ], which is

C[V ][f ] := { [g]

[f ]n
: n ≥ 0 and [g] ∈ C[V ]}.

This has an obvious ring structure. It is (finitely) generated by the generators of C[V ]
together with 1

[f ]
. It has obviously no nonzero nilpotents. According to Proposition 1.3,

there exists an affine variety whose coordinate ring is C[V ][f ]. The next lemma shows that
this variety is just the principal open set Vf (see section 3 for the definition of this).

Proposition 5.2. If V is an affine variety and [f ] ∈ C[V ] is different from 0, then the
principal open set Vf := {x ∈ V : f(x) 6= 0} is an affine variety whose coordinate ring is the
localized ring C[V ][f ]. If we identify V = HomC−alg(C[V ],C), and Vf = HomC−alg(C[V ][f ],C)

12This is actually a subring of the field of fractions of the domain C[V ].
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(see Corollary 1.2), then the inclusion Vf ⊂ V is just the restriction map induced by the
obvious inclusion C[V ] ⊂ C[V ][f ] (see Proposition 1.1).

Proof. We identify Vf with the set

{(x1, . . . , xn, xn+1) ∈ C
n+1 : g(x1, . . . , xn) = 0, ∀g ∈ I(V ) and xn+1f(x1, . . . , xn) = 1},

and it becomes an affine variety in C
n+1. The coordinate ring of the latter variety is

the quotient of C[X1, . . . , Xn+1] by the ideal generated by g(X1, . . . , Xn), g ∈ I(V ) and
Xn+1f(X1, . . . , Xn) − 1. We identify the latter with C[V ][f ] via

C[Vf ] ∋ [F (X1, . . . , Xn, Xn+1)] 7→ F (X1, . . . , Xn,
1

[f ]
) ∈ C[V ][f ].

�

Example. Take V = Cn and f = X1 . . .Xn. We have

C[V ] = C[X1, . . . , Xn], C[V ]X1...Xn
= C[X1, X

−1
1 , . . . , Xn, X

−1
n ].

According to what we said above, Vf = V(X1 . . .XnXn+1 − 1) ⊂ Cn+1, which is just the
torus (C∗)n (see Example 1, section 2).

Now let us consider a rational convex polyhedral cone σ and τ ⊂ σ a face of it. Because
Sσ ⊂ Sτ , we obtain the embedding

(6) Homsgp(Sτ ,C) = Uτ →֒ Uσ = Homsgp(Sσ,C),

given by the restriction map.

Proposition 5.3. The inclusion (6) makes Uτ into a principal open subset of Uσ.

Proof. By Proposition 4.7, we have

Sτ = Sσ + Z≥0(−u0),

for some u0 ∈ Sσ. We deduce that the ring C[Sτ ] = SpanR{χu : u ∈ Sτ} coincides with
the localized ring C[Sσ]χu0 . In other words, Aτ is the localization of Aσ at χu0 . We use
Proposition 5.2. �

Example. The prototypical situation is described by σ = R≥0e1+. . .+R≥0en like in example
2 from above, and τ = {0} like in example 1. Then U{0} = (C∗)n is the principal open subset
of Uσ = Cn corresponding to f = X1 . . .Xn.

We note that in the previous example, U{0} = (C∗)n has an obvious group structure given
by componentwise multiplication. This group acts on Uσ = C

n and the embedding U{0} ⊂ Uσ

is equivariant. We will see next that this is a general situation:

Proposition 5.4. If V is an affine toric variety then there exists a complex torus (C∗)n

which is contained in V as an open subset such that the action of (C∗)n on itself by left
multiplication can be extended to an algebraic action13 on the whole V .

Proof. Let Uσ be the toric variety associated to an arbitrary rational strongly convex poly-
hedral cone. We saw that U{0} = Homsgp(M,C) = HomZ(M,C∗) = TN is a complex torus
which, by Proposition 5.3, is contained in Uσ as an open set. The action of TN on itself by
left multiplication is described as follows: if t1, t2 ∈ HomZ(M,C∗), then

t1 · t2(u) := t1(u)t2(u).

13A group action on an affine variety is called algebraic if it is done by morphisms of varieties (in the sense
defined in section 1).



21

The torus TN acts on Uσ = Homsgp(Sσ,C) as follows: if t ∈ TN and x ∈ Uσ, then t·x : Sσ → C

is defined by

(7) t · x(u) := t(u)x(u), u ∈ Sσ.

It is obvious that the inclusion TN →֒ Uσ is TN -equivariant.

We show that the action of TN on Uσ is induced by a C-algebra endomorphism of Aσ =
C[Sσ] — by using Proposition 1.1 we deduce that the action is algebraic. Regard t ∈ TN as
a C-algebra homomorphism t : C[M ] → C. It induces the endomorphism Aσ → Aσ given
by t.a := t−1(a)a, for all a ∈ Aσ (note that Aσ ⊂ C[M ]). The endomorphism induced on
HomC−alg(Aσ,C) is

(t.x)(a) := x(t−1.a) = x(t(a)a) = t(a)x(a),

which is exactly the one given by (7). �

Finally, we will show that any affine toric variety is normal. In order to define the notion
of normal affine variety, we recall that an integral domain R with field of fractions K is said
integrally closed if

[k ∈ K and f ∈ R[x] \ {0} is monic such that f(k) = 0] ⇒ k ∈ R.

Example. The polynomial ring C[X1, . . . , Xn] is integrally closed (this is an easy exercise).

Definition. We say than an (irreducible) affine variety V is normal if C[V ] is integrally
closed.

Example. See [Su, Lecture 1, Exercise 1.10] for an example of a variety which is not normal.

We just mention the following result.

Proposition 5.5. For any rational strongly convex polyhedral cone σ ⊂ V , the semigroup
ring C[Sσ] is integrally closed. Consequently any affine toric variety Uσ is normal.

For a proof one can see for instance [Su, Lecture 2, proof of Proposition 3.2].

6. General toric varieties

We have already presented in section 2 a few examples of varieties of the type mentioned in
the title (see examples 4,5 and 6 in that section). They are constructed starting from what is
called a fan. In order to define this notion, we place ourselves again in the context described
in section 4. More precisely, we consider a lattice N ≃ Zn of dimension n, V = N ⊗Z R

the associated vector space and V ∗ the dual vector space, which is the same as M ⊗Z R, for
M = HomZ(N,Z).

Definition. A fan in N is a finite non-empty collection ∆ of rational strongly convex
polyhedal cones with the following properties:

(a) each face of a cone in ∆ belongs to ∆
(b) the intersection of any two cones in ∆ is a face of both.

Example. An important example of a fan is any strongly rational convex polyhedral cone
σ. To be more precise, the set of all faces of σ satisfies the conditions from above.

We note that a fan contains a certain number of maximal cones (in the sense of the
inclusion). Their union is the same as the union of all cones of the fan.

If ∆ is a fan, we associate to it the prevariety denoted X(∆) as follows. For any σ, σ′ ∈ ∆,
the intersection σ ∩σ′ is (not empty and) a face of both σ and σ′. Consequently, the variety
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Uσ∩σ′ is an open subspace of both Uσ and Uσ′ (see Proposition 5.3). Then X(∆) is the
prevariety obtained from the collection of all affine varieties Uσ, σ ∈ ∆, by gluing them
along Uσ∩σ′ (see the definition of the gluing given in section 3).

Proposition 6.1. The prevariety X(∆) is actually a variety.

Proof. We use Proposition 3.3. We need to show that for any σ, σ′ ∈ ∆, the image of the
diagonal map δ : Uσ∩σ′ → Uσ × Uσ′ is a closed subvariety of the product variety Uσ × Uσ′ .
This is equivalent to the fact that the C-algebra homomorphism

δ∗ : C[Uσ × Uσ′ ] → C[Uσ∩σ′ ]

(see section 1 for the definition of this homomorphism) is surjective14 . The coordinate rings
are as follows15

C[Uσ] = C[Sσ],C[Uτ ] = C[Sτ ],C[Uσ×Uτ ] = C[Uσ]⊗C[Uτ ] = C[Sσ]⊗C[Sτ ],C[Uσ∩τ ] = C[Sσ∩τ ].

We need to prove that
δ∗ : C[Sσ] ⊗ C[Sσ′ ] → C[Sσ∩σ′ ]

is surjective. One can see that if we regard δ∗ as a map C[Uσ] ⊗ C[Uσ′ ] → C[Uσ∩σ′ ], then
δ∗([f ] ⊗ [g]) = i∗1([f ])i∗2([g]), where i1 : Uσ∩σ′ → Uσ and i2 : Uσ∩σ′ → Uσ′ are the inclusion
maps. This implies that

δ∗(χu ⊗ χv) = χu+v,

for u ∈ C[Sσ], v ∈ C[Sσ′ ]. The decisive argument is Proposition 4.8, which says that Sσ∩σ′ =
Sσ + Sσ′ . �

We discuss again the examples 4, 5 and 6 in section 2. The following general considerations
will be useful. Assume that τ is a common face of σ and σ′ and we want to understand the
gluing of Uσ and Uσ′ along Uτ , which is contained in both of them as an open subspace.
First, we describe Uτ by equations of the type (5), i.e. by finding generators u1, . . . , um in Sτ

and the relations among them. We stick to the variables X1 := χu1 , . . . , Xm = χum, which
give coordinates x1, . . . , xm on Uτ . The embedding Uτ ⊂ Uσ has to be understood in terms
of Proposition 5.3. That is, by Proposition 4.7, we can find u ∈ Sσ such that

(8) Sτ = Sσ + Z≥0(−u).
If v1, . . . , vm−1 is a generating set for Sσ, then Sτ is generated by v1, . . . , vm−1, and −u. The
embedding Uτ ⊂ Uσ is given by

(χu1, . . . , χum) = (χv1 , . . . , χvm−1 , χ−u) 7→ (χv1 , . . . , χvm−1).

To see it exactly, we need to express v1, . . . , vm−1 in terms of the basis u1, . . . , um. The same
has to be done for Sσ′ , and then we can try to understand the gluing.

Example 4, section 2, revisited. The cones σ0, σ1, and σ2 are a fan (according to the
definition from above). Because σ∨

0 = R, we have Sσ0
= Z. The generators are e and −e;

consequently, if X1 = χe and X2 = χ−e, then Uσ0
= V(X1X2 − 1). In other words, the

14A general result says that that the image of an injective homomorphism of affine varieties ϕ : V → W
is closed if and only if the map ϕ∗ : C[W ] → C[V ] is surjective. See for instance Fantechi’s notes [Fa],
Proposition 2.11.

15A general result says that if V and W are two affine varieties and V × W the product variety, then
C[V × W ] = C[V ] ⊗ C[W ]. To prove this, we note that I(V × W ) = I(V ) + I(W ) (where I(V ) and I(W )
are ideals in C[X1, . . . , Xn, Y1, . . . , Ym]). Then

C[X1, . . . , Xn, Y1, . . . , Ym]/(I(V ) + I(W )) ≃ C[X1, . . . , Xn]/I(V ) ⊗ C[Y1, . . . , Ym]/I(W ).
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coordinates on Uσ0
are x1, x2, and they satisfy x1x2 = 1. We identify Uσ0

with C∗. Now we
discuss the embedding Uσ0

⊂ Uσ1
. The semigroup Sσ1

is generated by e, hence Uσ1
= C. We

have

Sσ0
= Sσ1

⊕ Z≥0(−e).
According to what we said above, the embedding is (χe, χ−e) 7→ χe, in other words,

Uσ0
= C

∗ ∋ x 7→ x ∈ C = Uσ1
.

The semigroup Sσ2
is generated by −e, hence Uσ2

= C again. We have

Sσ0
= Sσ2

⊕ Z≥0(e),

so the embedding is (χe, χ−e) 7→ χ−e, in other words,

Uσ0
= C

∗ ∋ x 7→ x−1 ∈ C = Uσ2
.

The way of identifying the toric variety X(∆) with the projective space P1 has been described
in Example 4, section 2.

Example 5, section 2, revisited.
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In fact, this time we consider a slightly more general construction (which has the advantage

of being symmetric). We start with a more general fan, but the corresponding variety is again
the projective space P2. We consider the vectors v0, v1, v2 in N which generate N and such
that v0 + v1 + v2 = 0. The cones of the fan are σ0 := Cone(v1, v2), σ1 := Cone(v0, v2), and
σ2 := Cone(v0, v1) (see the figure). The shaded cones in the figure are the dual ones (as
usually, we identify V ∗ with V by means of an inner product on V ). For some vectors u1, u2

in M we have

σ∨
0 = Cone(u1, u2), σ∨

1 = Cone(−u1, u2 − u1), σ∨
2 = Cone(−u2, u1 − u2).

Let us understand the gluing of Uσ0
and Uσ1

along Uτ . As we said above, we start by choosing
(and fixing) coordinates on Uτ . Because Sτ = τ∨ ∩M is generated by u1,−u1, and u2, we
deduce that if we put X1 = χu1, X2 = χu2 , X3 = χ−u1 , then Uτ = V(X1X3 − 1) in C3. The
induced coordinate functions on Uτ are x1, x2, x3 and we have to bear in mind that x1x3 = 1.
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We can identify Uτ with C∗ × C. Now we look at the embedding Uτ ⊂ Uσ0
. The semigroup

Sσ0
is generated by u1 and u2, hence Uσ0

= C2. Note that

Sτ = Sσ0
⊕ Z≥0(−u1).

The embedding is (χu1, χu2 , χ−u1) 7→ (χu1 , χu2), hence

Uτ = C
∗ × C ∋ (x1, x2) 7→ (x1, x2) ∈ C

2 = Uσ0
.

We look at Uτ ⊂ Uσ1
. The semigroup Sσ1

is generated by −u1 and u2 − u1, hence Uσ2
can

be identified with C2 as well. This time we have

Sτ = Sσ1
⊕ Z≥0(u1).

The embedding is (χu1, χu2 , χ−u1) 7→ (χ−u1 , χu2−u1), hence

Uτ = C
∗ × C ∋ (x1, x2) 7→ (x−1

1 , x−1
1 x2) ∈ C

2 = Uσ1
.

The other gluings can be understood similarly. The way of identifying the toric variety
X(∆) with the projective space P2 has been described in Example 5, section 2. Note that
the same construction can be done in a more symmetric way if instead of starting with
N = Z2, we take N = Z3/Z(e1 + e2 + e3). Then we take the fan consisting of the cones
generated by the cosets of e1, e2, respectively e1, e3, respectively e2, e3 (just observe that
e3 = −e1 − e2 modulo Z(e1 + e2 + e3).) The last two examples can be generalized, in the
sense that any projective space P

n (i.e. space of all complex lines in C
n+1) can be realized

as X(∆) for some fan ∆.

Any cone σ ∈ ∆ has {0} as a face, hence TN = U{0} is a principal open subset of Uσ and
it acts on Uσ in such a way that the embedding TN ⊂ Uσ is TN -equivarient (see the end of
the previous section). If τ ⊂ σ is a face, then the embedding Uτ ⊂ Uσ is TN -equivariant:
indeed, we only need to note that the map

Uτ = Homsgp(Sτ ,C) →֒ Homsgp(Sσ,C) = Uσ

is given by restriction from Sτ to Sσ; then we take into account the definition of the action of
TN on Uσ (and Uτ ) described in Proposition 5.4. Consequently, TN is embedded in the glued
space X(∆) as an open subspace. Moreover, the embedding TN →֒ X(∆) is TN -equivariant.
We have proved “half” of the following theorem.

Theorem 6.2. A variety X contains a torus T as an open subvariety in such a way that
the embedding T ⊂ X is T -equivariant if and only if X = X(∆) for some fan ∆.

The other implication is harder: a reference is given in [Fu] at the end of section 1.4.
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