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Abstract. Let Oλ be a generic coadjoint orbit of a compact semi-
simple Lie group K. Weight varieties are the symplectic reductions
of Oλ by the maximal torus T in K. We use a theorem of Tolman
and Weitsman to compute the cohomology ring of these varieties.
Our formula relies on a Schubert basis of the equivariant coho-
mology of Oλ and it makes explicit the dependence on λ and a
parameter in Lie(T )∗ =: t∗.

1. Introduction

Let K be a compact semisimple Lie group, T ⊂ K a maximal torus
and t ⊂ k their Lie algebras. Pick a fundamental chamber in t∗ and a
point λ in the interior. Let Oλ be the orbit of λ under the coadjoint
representation of K on k∗. Oλ is diffeomorphic to the flag variety
K/T and it has a naturally occurring symplectic form ω known as the
Kirillov-Kostant-Souriau form. The action of T on Oλ is Hamiltonian,
which means that there is an invariant map

Φ : Oλ → t∗

satisfying ω(Xη, ·) = dΦη, where η ∈ t, Xη the vector field on Oλ

generated by η, and Φη(m) = Φ(m)(η) defined by the natural pairing
between t and t∗. We call Φ a moment map for this action.

The image of Φ is the convex hull of W · λ, the Weyl group orbit of
λ. Let µ ∈ Φ(Oλ) be a regular value of Φ. We define the symplectic
reduction at µ by

Φ−1(µ)/T = Oλ//T (µ).

The goal of this note is to give a presentation of the cohomology1

ring of Oλ//T (µ) in terms of the root system of K. We present
H∗(Oλ//T (µ)) as a quotient of the T -equivariant cohomology ring H∗

T (Oλ)
by a certain ideal. We rely on the following fundamental result.

Date: October 29, 2002.
1Only cohomology with coefficients in the field Q of rational numbers will be

considered throughout this paper.
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Theorem 1.1 (Kirwan). Let M be a compact symplectic manifold with
a Hamiltonian T action, where T is a compact torus. If µ ∈ t∗ is a
regular value of Φ, then the restriction map in equivariant cohomology

κ : H∗
T (M) → H∗

T (Φ−1(µ))

is surjective.

As the T action is locally free on level sets of the moment map
at regular values, H∗

T (Φ−1(µ)) = H∗(M//T (µ)). The resulting map
κ : H∗

T (M) → H∗(M//T (µ)) is called the Kirwan map. Kirwan’s
result is of particular importance because the equivariant cohomology
can be described in terms of the equivariant cohomology of the fixed
point sets of the T action. In the case of isolated fixed points, this is
just a sum of polynomial rings.

Theorem 1.2 (Kirwan). Let M be a compact Hamiltonian T -space.
Let MT denote the fixed point set of the T action. The restriction map

i∗ : H∗
T (M) → H∗

T (MT )

is injective. In the case that MT is a finite set of points, H∗
T (MT ) =

⊕p∈MT Q[x1, . . . , xn] where n = dim T .

A presentation of the cohomology ring of the reduced space M//T (µ)
can be obtained by using the following description of the kernel of the
Kirwan map, which is due to Tolman and Weitsman [TW]. If α is in
H∗

T (M) we denote

supp(α) = {p ∈ MT : α|p %= 0}
Fix an arbitrary inner product 〈 , 〉 on t∗.

Theorem 1.3 (Tolman-Weitsman). The kernel of the Kirwan map κ
is the ideal of H∗

T (M) generated by all α ∈ H∗
T (M) with the property

that there exists ξ ∈ t∗ such that

Φ(supp(α)) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.
In other words, α is in kerκ if and only if all points of supp(α) are
mapped by Φ to the same side of an affine hyperplane in t∗ which passes
through µ.

The T -equivariant cohomology ring of the coadjoint orbit Oλ = K/T
is well understood. Kostant and Kumar constructed in a basis {xw}w∈W

of H∗
T (K/T ) as a H∗

T (pt)-module, which we refer to as the Schubert basis
[KK]. Let B be a Borel in G := KC, and B− an opposite Borel. For
any v ∈ W , let Xv = B−ṽB/B, where ṽ is any choice of lift of v ∈ W
in the normalizer of the torus. These opposite Schubert varieties are
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T -invariant subvarieties of G/B ∼= K/T . The basis {xw} is uniquely
defined by the property that

∫

Xv

xw = δvw.

Theorem 1.2 suggests the importance of knowing how to restrict the
classes xw to fixed points W ·λ. This formula was worked out for general
K by S. Billey [Bi]. In particular, it is easy to show that xw|v = 0 if
v %≤ w in the Bruhat order.2 In other words,

supp(xw) = {vλ : v ≤ w}.
To each τ ∈ W we can associate the new basis

{xτ
w = τ · xτ−1w}w∈W ,

whose elements have the property

supp(xτ
w) = {vλ : τ−1v ≤ τ−1w}.

Let λ1, . . . ,λl ∈ t∗ denote the fundamental weights associated to the
chosen fundamental chamber of t∗. Let 〈 , 〉 be the restriction to t∗ of
a K-invariant product on k∗. Our main result is:

Theorem 1.4. The cohomology ring H∗(Oλ//T (µ)) is isomorphic to
the quotient of H∗

T (K/T ) by the ideal generated by

{xτ
v : there exists j such that 〈λj, τ

−1vλ〉 ≤ 〈λj, τ
−1µ〉}.

Remarks.
1. One can take the description of H∗

T (K/T ) (see for instance [Br]) and
deduce a precise presentation of the cohomology ring H∗(Oλ//T (µ))
in terms of generators and relations.
2. For K = SU(n) this result was proven by the first author in [Go1].

Acknowledgement. The second author would like to thank Lisa
Jeffrey for introducing him to the topic of the paper. Both authors
would like to thank her for a careful reading of the manuscript and for
suggesting several improvements.

2. Primary description of kerκ

For any ξ ∈ t∗ we denote by fξ the corresponding height function on
Oλ,

fξ(x) = 〈ξ, x〉.
Under the pairing between t∗ and t, the function fξ is a component of
the moment map. In fact, it is well known that fξ is Morse-Bott for all

2The class xw differs from the ξw constructed in [KK] by the relationship xw :=
w0 · ξw0w, where w0 is the longest element of W .
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ξ ∈ t∗. Denote by C ⊂ t∗ the fundamental (positive) Weyl chamber,
which can be described by

C = {r1λ1 + . . . + rlλl : all rj > 0},

and let C be its closure.

Lemma 2.1. Let τ be in W and ξ in τC. If τ−1v < τ−1w in the
Bruhat order, then fξ(vλ) ≤ fξ(wλ).

Proof. The result follows immediately from the fact that if ξ ∈ C, then
the unstable manifold of fξ through vλ with respect to the Kähler
metric on

Oλ = K/T = G/B

is just the Bruhat cell B · vB/B (see for instance [Ko]). !
The main result of this section is:

Theorem 2.1. Suppose that α ∈ H∗
T (Oλ) has the property that

Φ(supp(α)) ⊂ {x ∈ t∗ : 〈ξ, x〉 ≤ 〈ξ, µ〉}.
Then α can be decomposed as

α =
∑

w∈W

aτ
wxτ

w

with aτ
w ∈ H∗

T (pt), such that if aτ
w %= 0 then

Φ(supp(xτ
w)) ⊂ {x ∈ t∗ : 〈ξ, x〉 ≤ 〈ξ, µ〉}.

Proof. Take τ ∈ W such that ξ ∈ τC. Suppose that the decomposition
of α with respect to the basis {xτ

w}w∈W is of the form

(1) α =
∑

w∈W

aτ
wxτ

w + aτ
v1

xτ
v1

+ . . . + aτ
vr

xτ
vr

,

where the first sum contains only w with

〈ξ, wλ〉 ≤ 〈ξ, µ〉,
whereas

〈ξ, vjλ〉 > 〈ξ, µ〉, aτ
vj
∈ S(t∗), aτ

vj
%= 0,

for any 1 ≤ j ≤ l. We may assume that v1 has the property that there
exists no j > 1 with τ−1v1 < τ−1vj. Now let us evaluate both sides of
(1) at v1λ. Since

〈ξ, wλ〉 ≤ 〈ξ, µ〉 < 〈ξ, v1λ〉,
by Lemma 2.1 we must have

xτ
w|v1λ = 0
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for any w corresponding to a term in the first sum in (1). It follows
that

α|v1λ = aτ
v1

xτ
v1
|v1λ %= 0

so v1λ is in supp(α) even though 〈ξ, v1λ〉 > 〈ξ, µ〉. This is a contradic-
tion. !

3. Proof of the main result

We now prove Theorem 1.4. Let v and τ in W be such that

(2) 〈λj, τ
−1vλ〉 ≤ 〈λj, τ

−1µ〉,
for some 1 ≤ j ≤ l. We show that xτ

v is in the kernel of the Kirwan
map

κ : H∗
T (Oλ) → H∗(Oλ//T (µ)).

Let ξ = τλj be in τC. Note that if w ∈ supp(xτ
v), then τ−1w ≤ τ−1v

implies by Lemma 2.1

〈ξ, wλ〉 ≤ 〈ξ, vλ〉 ≤ 〈ξ, µ〉.
Thus xτ

v ∈ kerκ.
Now let us consider α ∈ H∗

T (K/T ) with the property that there
exists ξ ∈ t∗ with

supp(α) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.
Take τ ∈ W such that ξ ∈ τC. By Theorem 2.2, we can decompose α
as

(3) α =
∑

w∈W

aτ
wxτ

w

where aτ
w can be nonzero only if

supp(xτ
w) ⊂ {x ∈ t∗|〈ξ, x〉 ≤ 〈ξ, µ〉}.

In particular, if aτ
w %= 0, then

(4) 〈ξ, wλ〉 ≤ 〈ξ, µ〉.
Since ξ is in τC, it can be written as

(5) ξ = τ
l∑

j=1

rjλj,

where all rj are non-negative. So (4) and (5) imply that there exists
j ∈ {1, . . . , l} such that

〈τλj, wλ〉 ≤ 〈τλj, µ〉.
In other words, each nonzero term in the right hand side of (3) is a
multiple of a xτ

w of the type claimed in Theorem 1.4. !
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Remark. It follows that, in the particular situation of generic coad-
joint orbits, in order to cover the whole Tolman-Weitsman kernel of
the Kirwan map it is sufficient to consider affine hyperplanes through
µ which are perpendicular to vectors of the type τλj, with τ ∈ W
and j ∈ {1, . . . , l}. But these are just the hyperplanes parallel to the
walls of the moment polytope. This result concerning a “sufficient set
of hyperplanes” has been proved by the first author in [Go2], for an
arbitrary Hamiltonian torus action on a compact manifold.
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