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Abstract. One obtains descriptions of the cohomology ring of the manifolds mentioned in the
title in terms of their multiplicities and the Euler, respectively Stiefel^Whitney classes of the
curvature distributions. Lifts of equifocal hypersurfaces in symmetric spaces are also discussed.
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1. Introduction

Let M be an immersed submanifold of the Hilbert space V . Denote by
n�M� � f�x; u�: x 2M; u 2 n�M�xg the normal bundle and consider the end-point
map Z: n�M� ! V , Z�x; u� � x� u. We say thatM is proper Fredholm if it has a ¢nite
codimension and

(i) the map Z is Fredholm, i.e. its derivative at any point is a Fredholm linear map;
(ii) the restriction of Z to any normal disk bundle of ¢nite radius r is proper.

The notion was considered for the ¢rst time by C.-L. Terng in [13]. One of the main
ideas of her paper is that under the two hypotheses above the major problems which
occur when passing from the geometry of submanifolds in Euclidean spaces to that of
submanifolds in in¢nite-dimensional Hilbert space are dropped: we can manage the
spectrum of the shape operators and we can apply the classical Morse theory of
submanifolds. More precisely, if M is proper Fredholm, then the shape operator
Ax associated to any normal vector x is compact and the squared distance function
fa:M ! R, fa�x� � kxÿ ak2, satis¢es the condition (C) of Palais and Smale.

A proper Fredholm submanifold M of V is called isoparametric if

(a) the normal bundle n�M� is £at with respect to the normal connection,
(b) for any parallel normal vector ¢eld x and any p; q 2M, the shape operators Ax�p�

and Ax�q� are orthogonally conjugate.

The isoparametric submanifolds here will be always supposed as being connected
and complete.
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So far there exists only one class of examples of isoparametric submanifolds in
in¢nite-dimensional Hilbert space, namely the lifts of so-called equifocal submani-
folds of symmetric spaces to certain path spaces (we shall return to this in more
details in Section 5); for sake of simplicity we call them `lifts of equifocal
hypersurfaces'. Since the isoparametric hypersurfaces in a sphere are equifocal,
we can lift them and get an important subclass.

The main goal of our paper is to obtain descriptions of the cohomology ring of an
arbitrary isoparametric hypersurface in Hilbert space in terms of multiplicities and
characteristic classes (Euler, respectively Stiefel^Whitney) of the curvature dis-
tributions. More precisely, ¢x M as an isoparametric hypersurface in the in¢nite
dimensional Hilbert space V and choose Eÿ and E� as the curvature distributions
whose corresponding curvature spheres Sÿ, respectively S�, have the smallest radii
among all curvature spheres, mÿ and m� their ranks. The antipodal maps of the
leaves Sÿ and S� give rise to the involutive automorphisms jÿ and j� of M.
The group W generated by them is what we call the Weyl group of M (it is really
an af¢ne Weyl group of type ~A1). The homology module ofM can be easily obtained
by Morse theory applied to a nondegenerate distance function. Its critical set is a
W -orbitW :p, p 2M and passing through the critical level corresponding to an arbi-
trary critical point x � w:p brings in homology a new one-dimensional direct
summand, generated by a cycle of the Bott^Samelson type. We modi¢ed the cycle
originally constructed by Hsiang, Palais and Terng in [5]; the advantage of our cycle
is that it makes use only of the spheres Sÿ and S�. More exactly, if

w � jirjirÿ1 . . .ji1 ; ij � �ÿ1�j�1;
then our Bott^Samelson cycle at x � w:p is

Fr � f�z1; . . . ; zr� 2M�r: z1 2 Si1 �p�; z2 2 Si2 �z1�; . . . ; zr 2 Sir�zrÿ1�g;
together with ur:Fr !M, ur�z1; . . . ; zr� � zr (it is the homology cycle ur���Fr�� which
has to be added as a generator in H��M� after passing the critical level of x).
The map

pr:Fr ! Frÿ1; pr�z1; . . . ; zr� � �z1; . . . ; zrÿ1�
is a sphere bundle map and

sr:Frÿ1! Fr; sr�z1; . . . ; zrÿ1� � �z1; . . . ; zrÿ1; zrÿ1�
is a section of it. The space Fr being an iterated sphere bundle, its homology module
and even cohomology ring are easily manageable. Through reasons related to the
orientability of Fr, we shall take the coef¢cients ring R � Z if both mÿ and m�
are greater than 1 andR � Z2 if the contrary (of course, a simple modulo 2 reduction
will furnish theZ2- cohomology ring ofM also in the ¢rst situation). In the ¢rst case,
we choose arbitrary orientations on Eÿ and E� and ¢x them. Because E� restricted to
S� is the tangent bundle, in this way we get orientations on S�.
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The following two numbers associated to M play an important role:

�d1; d2� � �e�E�jSÿ�; e�EÿjS���; if R=Z;
�w1�E�jSÿ�;w1�EÿjS���; if R � Z2:

�

THEOREM 1.1. Put ik � �ÿ1�k�1. We have

(a) H��Fr� ' H��Si1�p�� 
 . . .
H��Sir �p��.
(b) If xj 2 Hmij �Fr� is determined by xj��Sik �� � djk (Kronecker delta), 1W j; kW r, then

H��Fr� is the graded commutative ring generated by x1; . . . ; xr, subject to the
relations �1ÿ dikik�x2k ÿ

Pkÿ1
j�1 dij ikxjxk � 0, where

dij ik �
e�Eik jSij

�; if R � Z
w1�Eik jSij

�; if R � Z2

(
�

d1; if k is odd; j even;
d2; if k is even; j odd;
1� �ÿ1�mik ; if k � j mod 2:

8<:
The inclusions of the chain F1 ,!s2 F2 ,!

s3
F3 ,!s4 � � � ,!sr Fr satisfy pk � sk � pk,

1W kW r, hence they make possible the de¢nition of F �SkX 1 Fk and

u � lim
k
ÿ!

uk:

Through the reasons sketched above, u�:H��F � ! H��M� is surjective, hence
u�:H��M� ! H��F � is injective.

THEOREM 1.2. (a) Regarded as a module, H��F � is the set of all formal homo-
geneous series

P
J�Nnf0gfinite nJxJ , where nJ 2 R and xJ :� xj1 . . . xjk , for any

J � fj1 < . . . < jkg �N n f0g. The structure of H��F � as graded commutative ring
is completely determined by the expression of x2k given by Theorem 1.1 (b).

(b) Associate to any J � fj1 < . . . < jkg �N n f0g the element g�J� � jijk
. . .jij1

of
W, whose length l�g�J�� is at most k. Then the ring H��M;R� is the subring of
H��F ;R� which is freely generated as R-module by all formal series of the formX

J�Nnf0g;g�J��w;Card�J��l�w�
xJ ;

with w 2W. Consequently, H��M;R� is uniquely determined by mÿ, m�, d1 and d2.
In order to obtain more concrete expressions of H��M;R� we look, for given

mÿ, m�, d1 and d2, for prototypes which are easy to manage. These will be always
lifts of equifocal hypersurfaces. In this way, we get

THEOREM 1.3. (a) If mÿ 6� m� or mÿ � m� > 1 is an odd number, then

H��M;R� ' H��Smÿ � Sm� � OSmÿ�m��1;R�:
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(b) If mÿ � m� � 1, then

H��M;Z2� '
H��S1 � OS2;Z2�; if �d1; d2� � �0; 0�;
H��B2=T � OS9;Z2�1

2
; if �d1; d2� � �1; 0�;

H��A2=T � OS7;Z2�1
2
; if �d1; d2� � �1; 1�;

8><>:
where A2, B2 denote the simply connected simple Lie groups of these types, T the
corresponding maximal torus and the subscript 1

2 means that we divide by 2 the
dimensions of all generators of the corresponding ring.

Regarding the remaining case, when mÿ � m� is an even integer, it seems dif¢cult
to obtain restrictions for the integers d1 and d2 and then concrete formulae for the
cohomology rings. But if we restrict ourselves to lifts of equifocal hypersurfaces,
this task can be almost completely achieved:

THEOREM 1.4. Let ~M be the lift of an equifocal hypersurface, having multiplicities
mÿ � m� even and let d1 and d2 be the integers given by Theorem 1.1. Then

(a) It holds that d1d2 2 f0; 1; 2; 3; 4g.
(b) If d1 � d2 � 0; then H�� ~M;Z� ' H��Sm � Sm � OS2m�1;Z�.
(c) If d1 � d2 � �2, then H�� ~M;Z� ' H��Sm � OSm�1;Z�.
(b) If d1d2 2 f0; 4g and �d1; d2� 6� �0; 0�, then

H�� ~M;Q� ' H��Sm � OSm�1;Q�:

(c) We have

H�� ~M;Z� '
H��A2=T � OS7;Z�m

2
; if d1d2 � 1;

H��B2=T � OS9;Z�m
2
; if d1d2 � 2;

H��G2=T � OS13;Z�m
2
; if d1d2 � 3;

8><>:
where A2, B2, G2 denote the simply connected simple Lie groups of these types, T the
corresponding maximal tori and the subscript m=2 means that we multiply the
dimensions of all generators of the corresponding ring by m=2.

We are not able to elucidate the situations d1d2 � 0 and d1d2 � 4. Does the ¢rst one
imply d1 � d2 � 0? Does the second one imply d1 � d2 � �2? We do not know the
answer.

Notice that such evaluations can be relevant for the following fundamental
questions:

(1) Does there exist isoparametric hypersurfaces in Hilbert space which are not
lifts of equifocal hypersurfaces?

(2) Does there exist a lift of an equifocal hypersurface in a certain symmetric space
which is not in the same time lift of an isoparametric hypersurface in a sphere?
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A positive answer to the ¢rst question could be given (Theorem 1.3) by an
isoparametric hypersurface in Hilbert space for which mÿ � m� even and
d1d2 > 4. As to the second question, we can easily see that the lift of an isoparametric
hypersurface in a sphere cannot lead to �d1; d2� � �1; 4� or to d1d2 � 0 and
�d1; d2� 6� �0; 0� (see Proposition 5.4 (e)). Hence it would be enough to ¢nd an
equifocal hypersurface in a symmetric space which furnishes these values of d1
and d2. We couldn't ¢nd examples able to illustrate either of these two situations
and the questions still remain open.

As a direct consequence of Theorem 1.3, we would like to notice the following
result, closely related to question 2:

COROLLARY 1.5. Let ~M be the lift of an equifocal hypersurface in a symmetric
space, having multiplicities mÿ � m� even. Then there exists M0 an isoparametric
hypersurface in a sphere, whose lift ~M0 satis¢es:

H�� ~M;Q� ' H�� ~M0;Q�:

Our calculations use the ideas initiated by Hsiang, Palais and Terng in [5] and
carried over by us in [7] which had as the main goal the cohomology of isoparametric
submanifolds in euclidean spaces. The proof of Theorem 1.4 involves estimations
obtained by Grove and Halperin in [4] about the rational homotopy ¢ber associated
to a double mapping cylinder. There are two basic facts which allow us to do that: if
M is an equifocal hypersurface in the simply connected Lie group G andM1,M2 are
its focal manifolds, then, by a result of [14], G is the double mapping cylinder DM
associated to the mappings M1 M !M2. Moreover, the lift of M to the Hilbert
space is homeomorphic to the homotopy ¢ber F of the inclusionM,!DM (for more
details, see Section 5). The basic tool of [4] is the classi¢cation of F up to the rational
homotopy type.

2. Homology of Isoparametric Hypersurfaces

TakeV to be an (always separable) in¢nite-dimensional Hilbert space andM � V an
isoparametric hypersurface. One of the main ingredients we need in studying the
topology of M is the so-called F-cycle associated to a critical point of a
nondegenerate distance function. The goal of this section is to describe this notion.

We begin with some basic facts of the theory of isoparametric submanifolds,
adapted to our particular case; for more details, the reader can consult [11]. Let
us denote by x the unit normal vector ¢eld on M. The eigenspace decomposition
of TMp relative to the compact, selfadjoint operatorAx�p�, p 2M arbitrary, furnishes
a countable family of distributions fEigi2Z, where E0�p� denotes the kernel of Ax�p�
and Ei�p� �Ker(Ax�p� ÿ tiid) is ¢nite dimensional, for i 6� 0. The punctual spectrum
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ftigi2Z is obviously independent of p. We arrange the subscripts in such a way that

� � � 1
tÿ2

<
1
tÿ1

< 0 <
1
t1
<

1
t2
< � � � :

It turns out that every distribution Ei, i 6� 0, is integrable and its leaf through p is the
full sphere Si�p� centered at p� �1=ti�x�p�, of radius 1=ti, in the af¢ne space
p� Ei�p� � n�M�p. For a ¢x j 6� 0, the re£ection jj of the af¢ne line p� n�M�p at
p� �1=tj�x�p� leaves invariant the set fp� �1=ti�x�p�: i 6� 0g of the centers of all cur-
vature spheres through p. Consequently, the group generated by fjjgjX 1 is an af¢ne
Weyl group of rank 1 and the curvature radii can be expressed as

1
ti
� a� �i ÿ 1�l; if i > 0;
ÿbÿ �i � 1�l; if i < 0;

�
where a, b, l are positive numbers, a� b � l, l being the distance between two focal
points on the line p� n�M�p. Notice that the Weyl group W de¢ned above acts
in a obvious way on M. The intersection of M with p� n�M�p is just the W -orbit
of p. Also notice that W acts on the set of all curvature spheres in such a way that
the latter ones can be partitioned as the disjoint union W :Sÿ1�p� tW :S�1�p�. Hence,
if mi denotes dim(Si) � rank(Ei), then

mÿ1 � m2 � mÿ3 � m6 � mÿ5 � � � � :� mÿ

and

m1 � mÿ2 � m3 � mÿ6 � m5 � . . . :� m�:

Fix p a point of M and choose a arbitrarily in the interior of the Weyl chamber

p� 1
tÿ1

x�p�; p� 1
t1
x�p�

� �
:

The distance function

fa:M ! R; fa�x� � kxÿ ak2;
is then nondegenerate and its critical set is the intersection of p� n�M�p with M, i.e.
the set W :p. Any critical point x of fa is of linking type: from the point of view
of the Morse theory, this means that the cell attached to the sublevel set after passing
the critical level f ÿ1a �x� can be extended to a full cycle in the upper sublevel set;
consequently, the only change which occurs in the homology module is the addition
of a new one-dimensional direct summand, namely those generated by that cycle.
A beautiful geometric construction of Hsiang, Palais and Terng furnishes the linking
cycle we are referring to as a so-called cycle of Bott^Samelson type. More precisely,
this is of the form �N;j�, where N is a closed manifold of a dimension equal to
the index of x and j:N !M is a smooth map such that fa � j has a unique
maximum, which is nondegenerate, at the point jÿ1�x�. The linking cycle will be
then j���N��, where �N� is the fundamental homology cycle of N. Of course,
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homology can be considered with coef¢cients in the ring R � Z only if N is
orientable; otherwise, we shall always take R � Z2.

For more details concerning the topic from above, one can consult the original
paper of Hsiang, Palais and Terng [5]. We would like to sketch, in a few words their
construction, adapted to our particular situation. Counting from a to x, we consider
the focal points ofM contained in the line segment �ax�: suppose they are of the form
x� �1=ti�x�x�, i � k; kÿ 1; . . . ; 1. Then de¢ne

N � f�y1; . . . ; yk�: y1 2 Sk�x�; y2 2 Skÿ1�y1�; . . . ; yk 2 S1�ykÿ1�g
and

u:N ! R; u�y1; . . . ; yk� � yk:

It is not dif¢cult to see that d�u��x;...x� maps �TN��x;...;x� isomorphically onto the nega-
tive space of fa at x. Now, we can show that if �y1; . . . ; yk� 2 N, then fa�yk�W fa�x�,
with equality only when �y1; . . . ; yk� � �x; . . . x�. Namely, we notice that the broken
polygonal line

a; x� 1
tk
x�x�

� �
[ y1 � 1

tk
x�y1�; y1 � 1

tkÿ1
x�y1�

� �
[ . . .[

ykÿ1 � 1
t2
x�ykÿ1�; ykÿ1 � 1

t1
x�ykÿ1�

� �
[ yk � 1

t1
x�yk�; yk

� �
has the same length as �ax� and joins a to yk, hence the inequality from above is clear.
At the end of the construction we notice that N is an iterated sphere bundle whose
initial base space and ¢bers are spheres of dimensions mÿ and m�, so N is orientable
ifmÿ andm� are both greater than 1. This is the reason why the ringR of coef¢cients
will be Z in the latter situation and Z2 otherwise. The moduleH��M;R� is then free,
with a basis consisting of the cycles associated to all critical points of fa. We shall
usually identify H��M;R� with the module freely generated by the elements of W .

The main goal of the section is to show how we can replace the homology cycles
considered by Hsiang, Palais and Terng in their paper by some others, which will
make our future computations possible. Fix once again x 2M a critical point of
fa and take w 2W determined by x � w:p. The reduced expression of w is in our
case, unique, say w � jikjikÿ1 . . .ji1 , with ij 2 fÿ1; 1g. We de¢ne the F -cycle associ-
ated to x as the pair �F ; u0� with

F � f�z1; . . . ; zk�: z1 2 Si1�p�; z2 2 Si2�z1�; . . . ; zk 2 Sik�zkÿ1�g
and u0:F !M, �z1; . . . ; zk� 7!zk. For sake of simplicity, we shall usually denote F by
Si1�p�Si2 . . .Sip .

PROPOSITION 2.1. The map F:F ! N,

�z1; . . . ; zk� 7!�jikjikÿ1 . . .ji2z1; . . . ;jik�zkÿ1�; zk�
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is a diffeomorphism which satis¢es u � F � u0. Consequently, �F ; u0� is another cycle of
the Bott^Samelson type of fa at x, which induces in homology the cycle u0��F � � u��N�.

Proof. SinceF is an automorphism ofM�r, it is enough to show thatFmaps F into
N and its inverse maps N into F . But these facts are obvious. &

3. The Action of W on Hlower�M�
In the previous section we describe the action of the Weyl group W �
hjÿ;j�jj2

ÿ � j2
� � 1i on M (from now on, + means +1 and ÿ means ÿ1). For

reasons that will become clear later, we need a complete description of the represen-
tation induced by W on the R-module

Hlower�M;R�:� Hmÿ�M;R� �Hm��M;R�; if mÿ 6� m�;
Hm�M;R�; if mÿ � m�:

�
A basis of this module consists in the cycles b� � �S��p��, bÿ � �Sÿ�p�� carried by the
two fundamental curvature spheres. What we need is ji��bj� as a linear combination
of bÿ and b�, for i 6� j, having in mind that ji��bi� � �ÿ1�mi�1bi, i � �;ÿ. We shall
get that in terms of the Euler, respectively Stiefel^Whitney classes of the
distributions Eÿ and E�. As already speci¢ed in the introduction, in the case
R � Z we ¢x arbitrary orientations on Eÿ and E�. The spheres Sÿ and S� are auto-
matically oriented.

PROPOSITION 3.1. It holds j���bÿ� � bÿ ÿ d1b�, jÿ��b�� � b� ÿ d2bÿ, where

�d1; d2� �
�0; 0�; if mÿ 6� m�;
�e�E�jSÿ�; e�EÿjS���; if mÿ � m� > 1;
�w1�E�jSÿ�;w1�EÿjS���; if mÿ � m� � 1:

8<:
Proof. Consider F2 � Sÿ�p�S�, which is the total space of the S�-bundle

p2:F2! Sÿ�p�, �z1; z2� 7!z1. The bundle admits a section, namely s2:Sÿ�p� ! F2,
z 7!�z; z�. It is not dif¢cult to see that

H��F2;R� � Kerp2� � Ims2�;Kerp2� � R�a2� and Ims2� � R�a1�;
where we have denoted

a1 � f�z; z�: z 2 Sÿ�p�g a2 � f�p; z2�: z2 2 S��p�g:

The map

j�:F2 ! F2;j��z1; z2� � �z1;j��z2��
is an involutive automorphism of degree �ÿ1�m��1 of F2 with the property that
p2 � j� � p2. It follows that p2�j���a1� � p2��a1�, hence j���a1� ÿ a1 2 Kerp2�.
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Let d1 2 R be given by

j���a1� � a1 ÿ d1a2: �1�

Notice now that j� � u2 � u2 � j�. Since u2��a1� � bÿ and u2��a2� � b�, it follows
from (1) that

j���bÿ� � bÿ ÿ d1b�: �2�

It now remains to calculate d1. It it quite clear that d1 � 0 when mÿ 6� m�. Suppose
from now on that mÿ � m�. Consider the basis �x1; x2� of Hlower�F2;R� dual to
�a1; a2�. By the theorem of Leray^Hirsch, the set f1; x1; x2; x1x2g is a basis of
H��F2;R�. There exists a natural orientation of F2 which leads to x2x1�F2� � 1
(of course, we are referring only to the case R � Z). In order to describe this
orientation, we notice ¢rst that the submanifolds a1 and a2 of F2 have a unique
intersection at �p; p� and the tangent space at this point is

�TF2��p;p� � f�X ;X � Y �:X 2 Eÿ�p�;Y 2 E��p�g;

the direct sum of

�Ta1��p;p� � f�X ;X �:X 2 Eÿ�p�g and �Ta2��p;p� � f�0;Y �:Y 2 E��p�g:

The orientation we give to F2 associates to the point �p; p� the direct sum orientation
�Ta1��p;p� � �Ta2��p;p� (a1 and a2 are already oriented). Take l 2 Z given by
x1x2�F2� � �ÿ1�l . Since x21 � 0, it follows that �F2� \ x1 � �ÿ1�la2, hence �ÿ1�la2 is
the Poincarë dual of x1 in F2. The submanifolds a1 and a2 have the intersection
number +1. By using, for instance, [3], Prop. 31.7, we have �ÿ1�lx1�a1� �
�ÿ1�m2 � �ÿ1�m, hence l � m(mod 2). Finally, we obtain x2x1�F2� � 1.

If a denotes the Poincarë dual of x2 in F2, then from �F2� \ x2 � a it follows
a \ x1 � 1. But x1 � p�2�xÿ�, where xÿ is the generator of Hmÿ�Sÿ�p�;R�, hence
a \ p�2�xÿ� � 1 and further p2��a� \ xÿ � 1, i.e. p2��a� � �Sÿ�p��. In this way we
get a � a1 � qa2, for a certain q 2 R.

We have now to anticipate Lemma 4.5 and deduce x2j���x2� � 0; which is by (1)
equivalent to �ÿ1�mx22 � ÿd1x2x1. If m > 1 is odd, then clearly d1 � 0. Suppose from
now on that m > 1 is even or m � 1. Return to the relation �F2� \ x2 � a1 � qa2 and
deduce that

q � x2��F2� \ x2� � �F2� \ x22 � ÿd1�F2� \ x2x1 � ÿd1;

hence a � j���a1�. Consequently, ÿd1 � j���a1� \ x2; that is the intersection
number of j���a1� with itself. Denote by PD:H��F2;R� !H2mÿ��F2;R� the inverse
of the Poincarë duality operator. Since j� is a diffeomorphism of degree ÿ1 overR,
we have j�� � PD � ÿPD � j��. By also using the fact that j� is involutive, it follows
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that x2 � PD�j���a1�� � ÿj���PD�a1��, consequently

d1 � j���a1� \ j���PD�a1�� � j���j2
���a1� \ PD�a1��

� j���a1 \ PD�a1�� � a1 \ PD�a1� � PD�a1��a1�;

hence d1 is the intersection number of a1 with itself in F2.
On the other hand, the R-Poincarë dual of the submanifold a1 is the Euler class

(respectively, the ¢rst Stiefel^Whitney class) of the normal bundle of a1 in F2

(we have in mind that both the dimension and codimension in F2 of a1 are even
numbers). For any �z; z� 2 a1, we have �na1��z;z� � f�0;Y �:Y 2 E��z�g. The mapping
�a1; n�a1�� ! �Sÿ�p�;E�jSÿ�p�� given by ��z; z�; �0;Y �� 7!�z;Y � is an orientation
preserving vector bundle isomorphism, hence the Euler (respectively, Stiefel^
Whitney) numbers of n�a1� and E�jSÿ�p� coincide. We can conclude now that

d1 � PD�a1��a1� � e�na1��a1� � e�E�jSÿ�p����Sÿ�p��� � e�E�jSÿ�p��;
if mÿ � m� > 1

and similarly, d1 � w1�E�jSÿ�p�� if mÿ � m� � 1. &

Remark. If mÿ � m� is odd and greater than 1, then we have again d1 � d2 � 0.

4. General Estimations

A complete description of the cohomology ring of an isoparametric hypersurfaceM
in the Hilbert space V in terms of multiplicities and the numbers d1 and d2 described
above will be obtained in this section.

Fix p a point in M. For any positive integer k, take

Fk � S��p�SÿS� . . .|�����������{z�����������}
k elements

;

together with uk:Fk !M, uk�z1; . . . ; zk� � zk. By convention, we take F0 � fpg and
u0�p� � p. Denote by sk:Fkÿ1,!Fk the map given by �z1; . . . ; zkÿ1� !
�z1; . . . ; zkÿ1; zkÿ1�, which is obviously an imbedding and will play for us the role
of the inclusion map. It is obvious thatuk � sk � ukÿ1: Consider now
F � SkW 0 Fk, with the direct limit topology and also u:F !M,

u � lim
k
ÿ!

uk:

Then

H��F ;R� � lim
k
ÿ!

H��Fk;R�
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and

u� � lim
k
ÿ!

uk�:H��F � ! H��M�:

As an (in¢nite) iterated sphere bundle, F is very well manageable from the point of
view of the homology module and even cohomology ring. More precisely, the
map pk:Fk ! Fkÿ1, �z1; . . . ; zk� 7!�z1; . . . ; zkÿ1� is an Smik - bundle (as usual
ik � �ÿ1�k�1) and sk:Fkÿ1! Fk is a section of it. By a simple argument involving
the Gysin sequence, we can see that the module H��F ;R� is free. More precisely,
associate to any J � fj1 < . . . < jrg �N n f0g the space

aJ � f�z1; z2; . . .� 2 F : z1 � � � � zj1ÿ1 � p; zj1 � � � � zj2ÿ1 2 Sij1
�p�;

zj2 � � � � zj3ÿ1 2 Sij2
�zj1�; . . . ; zjrÿ1 � � � � zjrÿ1 2 Sijrÿ1

�zjrÿ2�; zjr � � � � 2 Sijr �zjrÿ1�g:
It is itself an iterated sphere bundle, orientable if both multiplicities are greater then
1. The orientation of any aJ (inclusively any Fr) is obviously completely determined
once we have oriented Sÿ and S�. Namely, we consider recursively the bundle
pr:Fr ! Frÿ1, rX 1, and we orient Fr by demanding that sr�Frÿ1� and the ¢ber have
intersection number +1 inside Fr. The set f�aJ �: J �N n f0g finite subsetg is a basis
of H��F ;R�.

To any ¢nite subset J �N n f0g we associate the diffemorphism
g�J� � jijr

jijrÿ1
. . .jij1

which is in the same time an element of W . With respect
to the generators j�, jÿ of W , the length l�g�J�� of g�J� 2W is at most equal
to the cardinality of J.

LEMMA 4.1. By identifying W with a basis of H��M;R�, the linear mapping
u�:H��F ;R� ! H��M;R� is completely determined by the relationship:

u��aJ � � g�J�; if l�g�J�� � Card�J�;
0; if contrary:

�
In particular, u� is surjective.

Proof. Suppose that g�J� is not reduced. This means that there exists
t 2 f1; . . . ; rÿ 1g with ijt � ijt�1 . If F

0 denotes the space

f�y1; . . . ; yr�: y1 2 Sij1
�p�; y2 2 Sij2

�y1�; . . . ; yr 2 Sijr �yrÿ1�g

and u0:F 0 !M, �y1; . . . ; yr� 7!yr, then u��aJ � � u0��F 0�. We also consider

F 00 �f�y1; . . . ; ytÿ1; yt�1; . . . ; yr� : y1 2 Sij1
�p�; . . . ; yt�1 2 Sijt �ytÿ1�; . . . ;

yr 2 Sijr �yrÿ1�g;
together with u00:F 00 !M, given by �y1; . . . ; ytÿ1; yt�1; . . . yr� 7!yr. The map
C:F 0 ! F 00, �y1; . . . ; yr� 7!�y1; . . . ; ytÿ1; yt�1; . . . ; yr� is well-de¢ned and satis¢es
u00 �C � u0. Hence, u0��F 0� � u00�C��F 0� � 0, since dimF 0 >dim F 00. &
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We are now interested in the cohomology of F and M and the relationship that u
induces between them.We start with a general viewpoint: suppose that the homology
moduleH��X ;R� of the spaceX is free and fakgkX 1 is a basis of it (R here can beZ or
Z2). If a�k denotes the homomorphism of H��X ;R� dual to ak, then the module
H��X ;R� can be identi¢ed with the set of formal series of the form
j �PkX 1 nka

�
k, nk 2 R.

Regarding the ring structure of H��X ;R�, it is completely determined by the
coef¢cients of the decompositions

a�i [ a�j �
X
kX 1

ckija
�
k; �3�

i; jX 1, if the folowing assumptions are full¢lled:

ASSUMPTION 1. For all subscripts i, j, the sum given by (3) is ¢nite.
ASSUMPTION 2. For any kX 1, there exist only ¢nitely many pairs �i; j� with
�a�i [ a�j ��ak� 6� 0.

Both conditions are satis¢ed by F , as we shall prove in the sequel. First of all, we
construct in a convenient manner the element of H��F ;R� dual to aJ ,
J �N n f0g arbitrary ¢nite subset. Namely, for any rX 1, we take the bundle
pr:Fr ! Frÿ1 and xr 2 Hmir �Fr� uniquely determined by xr�afrg� � 1 and
xr�afjg� � 0 for any 1W jW rÿ 1 with mij � mir . The section sr:Frÿ1! Fr satis¢es
s�r �xr� � 0. It follows from the theorem of Leray^Hirsch that p�r :H

��Frÿ1� !
H��Fr� is injective and we have the decomposition:

H��Fr� � p�rH
��Frÿ1� � xrp

�
rH
��Frÿ1�:

Via the monomorphisms of the form p�k�1, we can regard the ringsH��Fk�, 1W k < r,
as subrings ofH��Fr�. In particular, any xj with 1W jW r is regarded as an element of
H��Fr�.

We shall need in the sequel the following algebraic notion (R will be always Z or
Z2).

DEFINITION. Let A� be a skew-commutative in¢nite-dimensional graduated
R-algebra (i.e. xy � �ÿ1�deg�x�deg�y�yx for any two x, y 2 A�). For any
J � fj1 < j2 < . . . < jtg �N n f0g, denote xJ :� xj1xj2 . . .xjt . We say that A� is simply
generated by its elements x1, x2, . . . and denote that by A� � D�x1; x2; . . .� if,
regarded as an R-module, A� is the set of all formal homogeneous series of the formP

J�N nJxJ , with nJ integer numbers.
Now take an algebra A� which is simply generated by its elements x1, x2, . . ..

Suppose that we know how to express all squares of the type x2j , jX 1 as series
of the type

P
j1<j2 cj1j2xj1xj2 , with cj1j2 2 R. The structure of algebra of A� is then

completely determined if the following assumption is satis¢ed:
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ASSUMPTION 3. For any K �N n f0g, there exist only ¢nitely many pairs �I; J�,
I; J �N n f0gwith the property that xK occurs as summand with nonzero coef¢cient
in the homogeneous series corresponding to xIxJ .

Let us return now to our previous considerations. Our next goal is to show that
H��F ;R� � D�x1; x2; . . .�. The following two propositions are intended to present
the dual of aJ in H��F ;R�. Denote by I r the set f1; 2; . . . ; rg, for r positive integer.

PROPOSITION 4.2. For any J � I r, we have xJ�aJ� � �ÿ1�l�J�, where:

l�J� � 0; if J consists of only one element,P
j1;j22J;j1<j2 mj1mj2 ; otherwise.

�
Proof. It will be suf¢cient to prove that xI r��Fr�� � �ÿ1�lr , where lr denotes 0 if

r � 1, respectively
P

1W j1<j2 W r mj1mj2 , otherwise. We shall do that by an inductive
argument. For r � 1, the relation is obvious.

We now show that if x simply denote xI rÿ1 , then from x��Frÿ1�� � �ÿ1�lrÿ1 it follows
xI r ��Fr�� � p�r �x�xr��Fr�� � �ÿ1�lr . The homological cycle carried by

ar:� f�z1; z2; . . . ; zr� 2 Fr: z1 � � � � � zrÿ1 � p; zr 2 Sirg
generates the homology of the ¢ber for the bundle pr:Fr ! Frÿ1. Let x0 denote the
Poincarë dual of ar in H��Fr�. As already noticed at the beginning of the section,
the submanifold sr�Frÿ1� and a ¢ber can intersect at only one point, the intersection
number being +1. By using, for instance, [3], Prop. 31.7, we have

x0�sr��Frÿ1�� � �ÿ1�qr ; �4�
where qr �dimar� dimFrÿ1 � mir�

Prÿ1
j�1 mij �.

On the other hand, pr���Fr� \ p�r �x�� � 0, hence �Fr� \ p�r �x� � kar, with k 2 R. It
follows that

k � xr��Fr� \ p�r �x�� � �p�r �x� [ xr���Fr�� � �ÿ1�l;
for a certain integer l (we used in the last step the theorem of Leray^Hirsch). Con-
sequently, p�r �x� � �ÿ1�lx0 and by (4), l � qr � lrÿ1 i.e. l � lr. &

PROPOSITION 4.3. For any I, J different subsets of I r with dim aI � dimaJ , it holds
xJ�aI � � 0.

Proof. Once again we shall use an inductive argument by rX 1. For r � 1, the
assertion is trivial. Let us suppose it true for all 1W k < r and prove it for r.

Case 1: r =2 J: If r =2 I , then we can use the induction hypothesis. If r 2 I , then
pr��aI � � 0, hence xJ�aI � � pr��xJ��aI � � xJ �pr�aI � � 0.

Case 2: r 2 J. Take J of the form J � J 0
Sfrg, with J 0 � I rÿ1. We have to prove

that xJ�aI � � �xr [ xJ 0 �aI � � 0.
If J 0 6� I , then notice that

xJ�aI � � �xr [ xJ 0 �iI�aI � � ��iI ���xr� [ �iI ���xJ 0 ��aI �;
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where iI : aI ,!Fr is the inclusion map. The idea is to show that the element �iI ���xJ 0 � of
H��aI � is zero. As long as the moduleH��aI � is freely generated by the cycles aK , with
K � I , we only need to take a such K with dimaK � dimaJ 0 and to observe that
�iI ���xJ 0 ��aK � � xJ 0 �aK � is zero, by using Case 1 (notice that it is impossible to have
K � J 0).

If J 0 � I and r =2 I , then

�xr [ xJ 0 ��aI � � �xr [ xJ 0 ��s�r aI � � s�r �xr� [ s�r �xJ 0 ��aI � � 0;

since s�r �xr� � 0 (remember that xr has been chosen in such a way that it vanishes
every mir -dimensional element of Imsr�).

From J 0 � I and r 2 I would follow J � I and J 6� I , hence dimaJ <dimaI ,
impossible. &

We can resume the last two propositions by saying that, for J �N, the monomial
xJ is, up to a sign, the dual of �aJ � 2 H��F ;R�. More precisely,

xI �aJ� � 0; if I 6� J;
�ÿ1�l�J�; if I � J:

�
Consequently, H��F ;R� � D�x1; x2; . . .� in the sense of the de¢nition above, with
degxj=mij , jX 1.

As already mentioned, the ring structure of H��F ;R� will be completely deter-
mined after getting every x2r , rX 1, as a (actually ¢nite) series of typeP

j1<j2 cj1j2xj1xj2 , with cj1j2 2 R (we shall also check later Assumption 3).
Consider to this end the involutive automorphism jr of Fr, which associates to an

arbitrary �z1; . . . ; zr� 2 Fr the element �z1; . . . ; zrÿ1;jir�zr�� of Fr. Notice that
pr � jr � pr. It follows that for any generator aj of the module Hlower�Fr�,
1W jW r, it holds that pr�jr��aj� � pr��aj�, i.e. jr��aj� ÿ aj belongs to Kerpr�jHlower�Fr�.
But the latter one is Rar, and in this way we obtain:

jr��aj� � aj � bjrar;

for any 1W jW r, where bjr are certain coef¢cients in R. It can be immediately seen
that jir � ur � ur � jr. Hence from ur��aj� � bij it follows jir��bij � � bij � bjrbir . By
comparing this relation to Proposition 3.1, we immediately identify the coef¢cients
bjr. More precisely, if we denote as follows:

dkl �
d1; if k � ÿ and l � �;
d2; if k � � and l � ÿ
1� �ÿ1�ml ; if k � l

8<: � e�EljSk
�; if R � Z;

w1�El jSk
�; if R � Z2;

�
�5�

then we have

jr��aj� � aj ÿ dij irar; �6�
for any 1W jW r. Since the basis fxj: 1W jW rg of Hlower�Fr� is dual to the basis
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faj: 1W jW rg of Hlower�Fr�, a simple calculation leads to

j�r �xr� � �1ÿ dirir �xr ÿ
Xrÿ1
j�1

dij irxj : �7�

The following technical result will be needed later:

LEMMA 4.4. Let p:E ! S1 be a circle bundle over the circle S1 and s:S1! E a
section of it. Let j denote the involutive automorphism of the total space E induced
by the antipodal maps of the ¢bers. Let x2 be the element of H1�E;Z2� uniquely deter-
mined by the fact that it generates, together with the unit, the cohomology of the ¢ber
and it vanishes s�H��S1;Z2�. Then it holds that x2j��x2� � 0:

Proof. One knows that there are only two bundles of the form described in the
enouncement, namely the trivial one and the bundle induced by the Klein bottle
(see for instance [12], ½26).

In the ¢rst case, E � S1 � S1 and j associates to any pair �z1; z2� of S1 � S1 the
pair �z1;ÿz2�, hence j is obviously homotopic to the identity map. It follows that
x2j��x2� � x22 � 0, since this time x2 is simply the generator of H1�S1�.

Now let E be the Klein bottle regarded as a circle bundle over S1. Take s:S1! E
as a section of this bundle, a1 � s���S1�� and a2 the homology cycle in H��E� carried
by the ¢ber. The same argument as in the proof of Proposition 3.1 shows that
j��a1� � a1 � da2, where d is the Stiefel^Whitney number of the line bundle obtained
by taking the tangent spaces to the ¢bers along s�S1�. But this line bundle is obviously
nonorientable, hence d � 1, i.e.:

j��a1� � a1 � a2: �8�
Let fx1; x2g be the basis of H1�E;Z2� dual to fa1; a2g. A simple algebraic reasoning
shows that (8) implies

j��x2� � x1 � x2: �9�
By using the description of the ring H��E;Z2� (see for instance [8], Example 2, p.
295), we easily see that x22 � x2x1 and the lemma is completely proved.

We come back now to the general context and prove the following lemma:

LEMMA 4.5. It holds that xrj�r �xr� � 0, for any rX 1.
Proof. For any subset I of f1; . . . ; rg which do not contain r, it holds that

xrj�r �xr��aI � � xrj�r �xr��sr�aI � � 0, since sr��xr� � 0. It now follows that we have a
description of the form:

xrj
�
r �xr� �

Xrÿ1
j�1

cjxjxr; �10�

with cj 2 R. We shall show that all coef¢cients cj involved in (10) vanish, by sep-
arately taking the following situations:
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Case 1. mir X 2. Take J � f1W jW r:mij � mirg and J 0 � J n frg. Then the
restriction map

pr: aJ ! aJ 0 �11�
is also a Smir -bundle, which is clearly orientable (since aJ 0 is simply connected). The
restriction map

sr: aJ 0 ! aJ �12�
is a section of this bundle. If {: aJ ! Fp denotes the inclusion map, having in mind
(10), it is suf¢cient to prove that {��xrj�r �xr�� � �{��xr��j�r �{��xr�� � 0. To this end,
we restrict ourselves to the oriented Smir -bundle given by (11) with the section
described by (12) and the involutive automorphism jr restricted to aJ . Associate
to this bundle the Gysin sequence, which has the form:

� � � ! Hq�aJ 0 � !
p�r Hq�aJ� !t Hqÿmir �aJ 0 � ! Hq�1�aJ 0 � ! � � � :

By using thm. 21.9 of [6], p�r t��{�xr�j�r �{�xr�� � 0. But in our case p�r is injective, hence
there exists u 2 H��aJ 0 � with �{�xr�j�r �{�xr� � p�r �u�. By applying s�r to both terms of
the last identity, we get u � 0, since s�r �{�xr� � 0 and pr � sr � id.

Case 2. mir � 1. We have only to take an arbitrary 1W j < r with mij � 1 and to
notice that if |: afj;rg ! Fr is the inclusion map, then

xrj
�
r �xr��afj;rg� � xrj

�
r �xr��|�afj;rg� � �|�xr�j�r �|�xr��afj;rg� � 0;

because of Lemma 4.4. A simple algebraic calcutation now proves the formula for x2k
given by Theorem 1.1.

Assumption 1 from above is now obviously full¢lled forF . As about Asumption 2,
we can prove even something more:

LEMMA 4.6. If �xI [ xJ��aK � makes sense and is nonzero, then I
S

J � K.
Proof. Let L denote I

S
J
S

K . Suppose we could ¢nd i 2 I with i =2 K . Take
s: aLnfig ! aL the natural inclusion, i.e. the map given by �z1; . . . ; zm� 7!
�z1; . . . ; ziÿ1; ziÿ1; zi; . . . ; zm�. If m:� xI[Jnfig, then

�xI [ xJ��aK � � ��xi [ m��s�aK � � ��s�xi [ s�m��aK � � 0;

since s��xi� � 0. &

The cohomology of F is now completely determined:

COROLLARY 4.7. We have H��F ;R� � D�x1; x2; . . .� under Assumption 3, with x2r
given by Theorem 1.1 (b)).

We are now almost ¢nished: Since u�:H��F ;R� ! H��M;R� is surjective, its dual
u�:H��M;R� ! H��F ;R� is injective. We have already seen in which way the Weyl
group W can be identi¢ed with a basis of H��M;R�. To any w 2W we associate
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its dual element w� 2 H��M;R�. By Lemma 4.1, Proposition 4.2 and 4.3, it follows
now Theorem 1.2.

This is what we like to call the quantitative side of our estimations. Unfortunately,
it seems impossible to manage with these formulae in order to getH��M;R� in terms
of generators and relations. The last assertion of Theorem 1.2 will be anyway very
useful: it is, of course, suf¢cient to take, for a certain choice of mÿ, m�, d1 and
d2, a prototype which corresponds to this data and is easily manageable. As we shall
see in the next section, such prototypes can be obtained by lifting equifocal
hypersurfaces in symmetric spaces.

5. Lifts of Equifocal Hypersurfaces

A very important class of examples of isoparametric hypersurfaces in Hilbert space
(actually, the only ones which are known so far) is given by the lifts of equifocal
hypersurfaces in symmetric spaces. We would like to start the section by reviewing
the main notions and results concerning equifocal hypersurfaces in symmetric spaces
and their lifts. For more details, the reader can consult the basic paper of Terng and
Thorbergsson [14].

Let us ¢x N a simply connected, compact symmetric space, M � N a connected
compact hypersurface and x the unitary normal ¢eld on M. We say that t 2 R
is a focal radius of multiplicity m at the point x0 if expx0 �tx�x0�� is a focal point
of multiplicity m, i.e. the end-point map Z: n�M� ! N, Z�x; u� � expx�u� is singular
at the point �x0; tx�x0��. We say that M is equifocal if the focal radii are constant
along M, as values and multiplicities. For instance, it is not dif¢cult to see that
for hypersurfaces in the sphere, constancy of focal radii is the same as constancy
of principal curvatures, i.e. equifocal is the same as isoparametric. The theory of
isoparametric hypersurfaces in the sphere is a very rich one (see the foundational
work of E. Cartan [1] and also the papers of Mu« nzner, [9, 10], of Ferus, Karcher
and Mu« nzner, [2], etc.).

The notion of equifocal submanifold was de¢ned by Terng and Torbergsson in
[14]. In order to study the geometry of this spaces, they used as the basic instrument,
the lifts to isoparametric submanifolds in Hilbert space. In the following we shall
sketch the construction of these lifts.

First take N of the form G=K , with G a compact, connected, semisimple and
simply connected Lie group and K the ¢x-point set of an involutive automorphism
of G.

THEOREM 5.1 (cf. [14]). Let N � G=K be a symmetric space of compact type and
p:G! G=K the corresponding Riemannian submersion. If M � N is an equifocal
hypersurface, then M�:� pÿ1�M� is an equifocal hypersurface of G. Let x� be the
horizontal lift of x. Then t is the focal radius of multiplicity m in direction x if
and only if t is the focal radius of multiplicity m in direction x�.
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Now take G the Lie algebra of G and consider V � H0��0; 1�;G� the Hilbert space of
L2-integrable paths in G. Also take H1��0; 1�;G� � fg: �0; 1� ! G: g0 is L2-
integrableg and its subspace P�G; e� G�:� fg 2 H1��0; 1�;G�: g�0� � eg. De¢ne
E:H0��0; 1�;G� ! P�G; e� G� which associates to the path u the unique solution
E�u� of the differential equation:

E�u�ÿ1E�u�0 � u; E�u��0� � e::

The map E is an isometry. The action of P�G; e� G� on V by gauge transformations
is described by

g ? u:� gugÿ1 ÿ g0gÿ1;

g 2 P�G; e� G�, u 2 V . It is transitive and free. If f:V ! G is de¢ned by
f�u� � E�u��1�, then f is a O�G�-principal bundle, hence a Riemannian submersion.

THEOREM 5.2 (cf. [14]). If M� � G is an equifocal hypersurface, then
~M:� fÿ1�M�� is an isoparametric hypersurface in V. If ~x is the horizontal lift of
x�, then the following three conditions are equivalent:

(a) t is a focal radius of multiplicity m in direction x�;
(b) t is a focal radius of multiplicity m in direction ~x;
(c) 1=t is a principal curvature in direction ~x.

We notice now a quite simple fact which will later play an important role: if
p:P�G; e� G� ! G is the end-point map, then obviously p � E � f; hence the lift
~M of M� is homeomorphic, via E, to pÿ1�M�� � P�G; e�M��.
If M � G=K is an equifocal hypersurface, we shall call ~M:� fÿ1�pÿ1�M�� the

isoparametric lift of M. The goal of this section is the study of isoparametric lifts
from the point of view of their cohomology rings. Some more information about
equifocal hypersurfaces is still needed to this end:

THEOREM5.3 (cf. [14]).LetM be an equifocal hypersurface in the simply connected
symmetric space of compact type N. Then:

(a) the normal geodesics to M are all closed and of the same length l;
(b) there exist integers m1, m2, an even number 2g and y 2 �0; l=2g� such that

(1) the focal points on the normal circle Tx � exp�n�M�x� are of the form
xj � exp�tjx�x��, 1W jW 2g, with tj � y� ��j ÿ 1�l=2g�, and their multi-
plicities are m�, if j is odd, respectively mÿ, if j is even,

(2) the group generated by the end-point maps jj � Ztjx, 1W jW 2g, is isomorphic
to the dihedral group W with 2g elements which operates freely on M;

(c) M
T

Tx �W :x;
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(d) the parallel set Mt � Ztx�M� is an equifocal hypersurface and Ztx maps M
di¡eomorphically onto Mt if t 2 �ÿ�l=2g� � y; y�;

(e) M�:�My and Mÿ:�Myÿ�l=2g� are embedded submanifolds of codimension
m� � 1, mÿ � 1 in N and the maps p�:� Zyx:M !M� and pÿ:� Z�yÿ�l=2g��x:
M !Mÿ are Sm� -, respectively, Smÿ-bundles;

(f) N � D1
S

D2 and D1
T

D2 �M, where D1 and D2 are di¡eomorphic to the normal
disk bundles of M� and Mÿ respectively.

Before starting the direct approach to our problem, we prove

PROPOSITION 5.4. LetMn � Sn�1 an isoparametric submanifold, p:Spin�n� 2� !
Sn�1 the natural Riemannian submersion and f:V � H0��0; 1�; so�n� 2�� !
Spin�n� 2� the Riemannian submersion considered above. Let p 2M and
p� 2 fÿ1�pÿ1�p�� arbitrary.
(a) If tÿ and t� have the meaning given in Section 2, then t� � 1=y, tÿ � 1=yÿ �l=2g�.
(b) The following diagrams are commutative:

~M ÿ!j� ~M ~M ÿ!jÿ ~M

p � f
??y ??yp � f p � f

??y ??yp � f
M ÿ!j1 M M ÿ!j2gÿ1

M

(c) The sets

S1�p�:� Zÿ1t1x�Zt1x�p�� and S2�p�:� Zÿ1t2gÿ1x�Zt2gÿ1x�p��

are the fundamental curvature spheres of M through p; the map p � f establishes a
di¡eomorphism between S��p�� and S1�p�, respectively Sÿ�p�� and S2�p�.

(d) The lift ~M is homotopy equivalent to M � OSn�1.
(e) If d1 and d2 are the coe¤cients associated in Proposition 3.1 to ~M, then, up to a

permutation or a simultaneous change of sign, we have

�d1; d2� 2 f�0; 0�; �ÿ1;ÿ2�; �ÿ1;ÿ3�; �ÿ2;ÿ2�g:

Proof. Point (a) follows directly from Theorems 5.1, 5.2 and 5.3 above. Regarding
(b) and (c), they are direct consequences of Corollary 5.11 and Lemma 6.2 from [14].
(d) Take p0 � p�e� 2 Sn�1 and also

p:P�Spin�n� 2�; e� Spin�n� 2�� ! P�Sn�1; p0 � Sn�1�

the map naturally induced by p. We can easily see that p is a
P�Spin�n� 1�; e� Spin�n� 1��-¢bering. Notice now that if

p1:P�Spin�n� 2�; e� Spin�n� 2�� ! Spin�n� 2�

COHOMOLOGY OF ISOPARAMETRIC HYPERSURFACES 39



and

p2:P�Sn�1; p0 � Sn�1� ! Sn�1

are the end-point maps, then the following diagram is commutative:

Since E is an isometry and p a ¢bering whose ¢ber is contractible, ~M is homotopy
equivalent to pÿ12 �M�. But if p is arbitrary in Sn�1 nM, then Sn�1 n fpg is contractible
and because p2 is a OSn�1-¢bering, it is quite clear that pÿ12 �M� is homotopically
equivalent to M � OSn�1.

(e) By Proposition 3.1 applied to ~M, we have

j���Sÿ� � �Sÿ� ÿ d1�S��; jÿ��S�� � �S�� ÿ d2�Sÿ�:
From (b) and (c) above, we immediately get

j1��S2� � �S2� ÿ d1�S1�; j2��S1� � �S1� ÿ d2�S2�: �13�
But the coef¢cients d1, d2 that (13) associates to Mn � Sn�1 isoparametric with at
least two distinct principal curvatures have already been determined in [7]. Namely,
they must be the nondiagonal entries of one of the Cartan matrices associated with
rank 2 root systems (eventually modulo 2, or with a simultaneous change of sign).

It remains the case when we have only one principal curvature: then M � Sn is
imbedded in Sn�1 in the natural way, the spheres S1�p� and S2�p� coincide, conse-
quently �d1; d2� � �2; 2�. The conclusion is now clear. &

Theorem 1.3 is completely proved.

Consider now G an arbitrary semisimple, compact, simply connected Lie group
and M � G a compact equifocal hypersurface. By Theorem 5.3(f), G is home-
omorphic to the double mapping cylinder

D �Mÿ
[
pÿ

�M � I�
[
p�

M�:�Mÿ tM � I tM�= �;
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where � is de¢ned by

pÿ�x� � �x; 1� and p��x� � �x; 0�; x 2M:

The inclusion M,!G is then given by x 7!�x; 1=2�, x 2M. The homotopy ¢ber
associated to this inclusion is just P�G; e�M�, the latter one being, as we already
remarked, homeomorphic to ~M (see the remark following Theorem 5.2). The basic
tool of Grove and Halperin's paper [4] is the classi¢cation, up to the rational
homotopy type, of the homotopy ¢ber associated to the double mapping cylinder
of two sphere bundles over the same space. We need, in fact, only a partial result
of their paper, namely:

PROPOSITION 5.5 (cf. [4]). Let p1:X ! X1, p2:X ! X2 arbitrary Sm-bundles,
where X, Xi are connected spaces. Let D � X1

S
p1 X

S
p2 X2 be the associated double

mapping cylinder and F the homotopy ¢ber of the inclusion X,!D. If D is simply
connected and mX 2, then the rational cohomology ring of F is isomorphic to
one of the following rings:

(a) H��Sm � Sm � OS2m�1;Q�,
(b) H��Sm � OSm�1;Q�,
(c) H�k;m� 
H��OSmk�1;Q�, k 2 f3; 4; 6g, whereH�k;m� is the rational algebra gen-

erated by x, y, with degx �degy�m, subjects of the relations:

xk � x2 � y2 � 0; if k � 4;
xk � x2 � 3y2 � 0; if k � 3 or 6:

�

We are now in a position to prove Theorem 1.4:

Proof of Theorem 1.4. The main idea is to compare the algebraic structures of
H�� ~M;Q� given in Section 4 and Proposition 5.5 respectively. As already mentioned,
the formulae obtained in Section 4 are dif¢cult to manage; but we still can obtain
some relations that the generators of lower levels satisfy, as we shall see in the sequel.

Recall that, in our case, H�� ~M;Z� has no torsion and

dimHp� ~M;Z� � 2; if p � 0�m�;
0; if contrary:

�

If f � i1i2 . . . iq is a word consisting of alternative signs + andÿ, we denote by of the
element �ji1ji2 . . .jiq�� ofH�� ~M;Q�. Two such possible words of length q furnishes a
basis of Hqm� ~M;Z�, qX 1 ¢xed.
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A few simple calculations lead to

o2
� � d1o�ÿ;

o2
ÿ � d2oÿ�;

oÿo� � oÿ� � o�ÿ;

o3
� � d1�d1d2 ÿ 1�o�ÿ�;

o3
ÿ � d2�d1d2 ÿ 1�oÿ�ÿ;

o2
�oÿ � d1�d2o�ÿ� � oÿ�ÿ�;

o�o2
ÿ � d2�d1oÿ�ÿ � o�ÿ��;

o4
� � d2

1 �d1d2 ÿ 1��d1d2 ÿ 2�o�ÿ�ÿ;
o4
ÿ � d2

2 �d1d2 ÿ 1��d1d2 ÿ 2�oÿ�ÿ�:

We distinguish now the following cases, dictated by Proposition 5.5:

Case 1. H�� ~M;Q� ' H��Sm � Sm � OS2m�1;Q�: Then clearly o3
� and o3

ÿ must
both be zero, which implies d1d2 � 1, or else d1 � d2 � 0. But the situation
d1 � d2 � �1 cannot occur: it is impossible to ¢nd o�, oÿ 2 Hm�Sm � Sm;Q� with
o2
ÿ and o2

� linearly independent.
Case 2.

H�� ~M;Q� ' H��Sm � OSm�1;Q�

or

H�� ~M;Q� ' H�k;m� 
H��OSmk�1;Q�; k 2 f3; 4; 6g:

All these cases have in common thatH�� ~M;Q� is generated as algebra by its elements
of degree m, in our case, by oÿ and o�. Moreover, if we compare the relations of
degree 2m dictated by the two appearances of H�� ~M;Q�, we shall notice that
d2o2

� ÿ d1d2o�oÿ � d1o2
ÿ must be a nonzero multiple of x2, or x2 � y2, or

x2 � 3y2. It follows that the discriminant of the quadratic form d2o2
�ÿ

d1d2o�oÿ � d1o2
ÿ is less or equal to zero, that is d1d2�d1d2 ÿ 4�W 0, and the con-

clusion follows. &
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